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Abstract. In the context of fault attacks on nonce-based authenticated
encryption, an attacker faces two restrictions. The first is the unique-
ness of the nonce for each new encryption that prevents the attacker
from collecting pairs of correct and faulty outputs to perform, e.g.,
differential fault attacks. The second restriction concerns the verifi-
cation/decryption, which releases only verified plaintext. While many
recent works either exploit misuse scenarios (e.g. nonce-reuse, release of
unverified plaintext), we turn the fact that the decryption/verification
gives us information on the effect of a fault (whether a fault changed a
value or not) against it.

In particular, we extend the idea of statistical ineffective fault attacks
(SIFA) to target the initialization performed in nonce-based authenti-
cated encryption schemes. By targeting the initialization performed dur-
ing decryption/verification, most nonce-based authenticated encryption
schemes provide the attacker with an oracle whether a fault was ineffec-
tive or not. This information is all the attacker needs to mount statisti-
cal ineffective fault attacks. To demonstrate the practical threat of the
attack, we target software implementations of the authenticated encryp-
tion schemes Keyak and Ketje. The presented fault attacks can be carried
out without the need of sophisticated equipment. In our practical eval-
uation the inputs corresponding to 24 ineffective fault inductions were
required to reveal large parts of the secret key in both scenarios.

Keywords: Fault attack · Statistical ineffective fault attack · SIFA
Authenticated encryption · Keyak · Ketje

1 Introduction

With the rise of the Internet of Things (IoT), devices implementing authenti-
cated encryption schemes will become ubiquitous. A trend, NIST is planning
to address with standardization efforts in the area of lightweight authenticated
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encryption schemes [21,24]. As a consequence, authenticated encryption schemes
will be more and more applied on devices in areas, where the physical access
of malicious entities is unavoidable. Hence, implementation attacks like side-
channel attacks and fault attacks, are a major concern for such devices as demon-
strated, e.g., by Ronen, Shamir, Weingarten, and O’Flynn [28] in their attack
on smart lamps. To identify and protect against the potential threats raised
by implementation attacks, research in the practicability and applicability of
implementation attacks on authenticated encryption schemes is needed.

As observed by many publications [29–31], the uniqueness of the nonce in
authenticated encryption schemes prohibits the straight-forward application of
prominent fault attacks like differential fault analysis (DFA) [10] to the authenti-
cated encryption. In the case of authenticated decryption, the built-in validation
of the authenticity of the processed data often provides an implicit detection of
induced faults. Therefore, a lot of attacks published so far assume scenarios,
where the uniqueness of the nonce is not ensured [31] or unverified plaintext is
released [29], or even require a precise induction of faults at multiple locations
during one execution of the authenticated encryption scheme [30]. Recently, sta-
tistical fault attacks (SFA) that are applicable to a wide-range of AES-based
authenticated encryption schemes including popular schemes like GCM, CCM
and OCB have been published [15]. However, the presented attacks face some
limitations. In particular, they are only applicable to schemes where the secret
key is processed right before the data is output. Thus, it is typically not appli-
cable to sponge or stream cipher-based constructions. Moreover, they only work
in the case of authenticated encryption, leaving fault attacks targeting authen-
ticated decryption (assuming that the unverified plaintext is not released) as an
open problem.

Our Contribution. In this work, we close the aforementioned gaps. We present
the—to the best of our knowledge—first fault attacks targeting authenticated
decryption/verification that are applicable to a broad range of nonce-based
authenticated encryption schemes. In particular, the presented attacks are appli-
cable whenever the nonce is mixed with the secret key during the initialization as
it is the case in a wide range of authenticated encryption schemes. This includes
sponge and stream cipher-based authenticated encryption schemes for which
most of the existing fault attacks are not applicable.

We focus our analysis on Keyak and Ketje designed by Bertoni, Daemen,
Peeters, Van Assche, and Van Keer [6,7]. Both designs are based on the Keccak-f
permutation [4], which also underlies Keccak/SHA-3 [23]. Please note that the
presented attacks do not exploit a weakness inherent in the design of Keyak and
Ketje, these two primitives just serve as an example to show the applicability
of fault attacks on sponge and stream cipher-based authenticated encryption
schemes.

Our attacks are based on statistical ineffective fault attacks [14,16] and do
not require an extensive profiling or characterization of the attacked device.
Additionally, they are resilient against “errors” induced by miss-located faults,
or in general fault inductions that do not behave as intended. As a consequence,
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they can be easily applied in practice as demonstrated by our attack target-
ing 8-bit software implementations of Keyak and Ketje running on an AVR
Xmega 128D4. After inducing faults during authenticated decryptions and fil-
tering for the inputs of 24 unaffected computations, we can recover large parts
of the secret keys. The remaining unknown key bits can then either be brute-
forced or further reduced by repeating the attack and inducing the fault at a
different point in time.

Outline. In Sect. 2, we cover the required background of our attack. After, we
describe the state-of-the-art of fault attacks, we give a short overview of authen-
ticated encryption schemes. We provide a more detailed description of Keyak
and Ketje, the two authenticated encryption schemes that are the main target
of our practical attack evaluation, in Sect. 3. In Sect. 4, we discuss the idea and
working principle of the attack. Section 5 describes the practical evaluation of
our fault attack on a real microprocessor. We conclude the paper in Sect. 6.

2 Background

In this section, we give a brief introduction to fault attacks in general and state
the idea behind Statistical Ineffective Fault Attacks (SIFA), recently proposed
by Dobraunig, Eichlseder, Korak, Mangard, Mendel, and Primas [16], in more
detail. We then recall the concept of nonce-based authenticated encryption with
associated data.

2.1 Fault Attacks

The threat of fault attacks was demonstrated by Boneh, DeMillo, and Lipton [11]
in 1997 when they showed the vulnerability of several asymmetric primitives
like RSA to erroneous computations. Since then, fault attacks have been demon-
strated targeting many other cryptographic schemes [9], including symmetric
ones [10,25].

The way in which faults can be induced into a cryptographic computation is
manifold. Originally, the most popular fault attacks were based on clock glitches
or variations on the supply voltage. However, by the time, more and more sophis-
ticated fault induction methods were presented like attacks based on lasers [32],
EM-pulses [19], or even X-rays [1].

While the induction of (more or less) precise faults into a cryptographic
computation is an essential prerequisite for the attack, the exploitation of the
observed erroneous behavior is equally important. Biham and Shamir [10] pro-
posed Differential Fault Analysis (DFA) as an effective key recovery method for
DES. DFA requires the collection of pairs of valid and faulty ciphertexts where
a fault was induced in the last few rounds of the encryption. The difference
between valid and faulty ciphertexts together with knowledge about the faulted
operation can then be used to recover the used secret key. Later it has been
shown that DFA is not limited to DES and can be applied to broad range of
block ciphers.
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One immediate consequence of fault attacks was the evaluation of possi-
ble countermeasures that can prevent such attacks. One commonly used coun-
termeasure is the detection of the induced fault by means of redundancy like
double-execution [2]. Here, the cryptographic computation is performed twice
and the output is only released, if the results of both computations match up.
While double-execution does prevent the attacks presented so far, a more pow-
erful attacker can still succeed by either inducing a fault that skips the final
comparison or by inducing a fault with equivalent effect during both computa-
tions. On top of that, Safe Error Attacks (SEA) [34] or Ineffective Fault Analysis
(IFA) [13] solely rely on valid outputs of faulted cryptographic computations and
hence are unaffected by double-execution.

So far, most fault attacks require the attacker to send specific inputs multi-
ple times to the attacked cryptographic implementation. This raises the question
whether or not such attacks also apply to nonce-based authenticated encryption
schemes where unique nonces prevent attackers from doing so. Indeed, the feasi-
bility of fault attacks has been shown by Dobraunig, Eichlseder, Korak, Lomné,
and Mendel [15] for various block cipher-based authenticated encryption schemes
by using Statistical Fault Attacks (SFA) [18]. However, their attacks face some
limitations. For instance, they are not applicable in a straight-forward manner to
most sponge-based and stream cipher-based authenticated encryption schemes.
In our attack, we make use of Statistical Ineffective Fault Attacks (SIFA) [16]
that build upon the concepts of both SFA [18] and IFA [13].

2.2 Statistical Ineffective Fault Attacks

The Statistical Ineffective Fault Attack (SIFA) [16] is a technique that exploits
distributions of faults that have been induced, but do not affect the outcome
of a computation (ineffective faults). Concretely, the effect of an induced fault
depends on the values that are currently processed by a device. As a consequence,
the distribution of the values where an induced fault does not change the pro-
cessed value is often biased in practice. This distribution can then be exploited
in attacks, which cannot be precluded by popular detection/infection counter-
measures [16]. As shown in [14], even additional masking does not preclude such
attacks.

To discuss the basic working principles of SIFA, let us consider an encryption
where an attacker is able to force (using fault inductions) one specific intermedi-
ate value to follow an unknown but non-uniform distribution during the compu-
tation. Such fault inductions are rather easy to achieve in practice as it has been
shown, e.g. in [16] by using clock glitches for various microprocessors, or in [15]
by using lasers on a hardware AES co-processor. If we continuously perform such
faulted encryptions we will probably observe plain- or ciphertexts where the fault
was ineffective. In those cases, the distribution of the targeted value, where the
fault has been ineffective, might also follow a biased/non-uniform distribution.

Once the attacker has collected a sufficiently large set of unaffected plain-
or ciphertexts, key recovery can be performed as follows. First, the attacker
needs to identify all key bits that are involved in the calculation of the targeted
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value. Clearly, the time frame of the fault induction has to be either towards
the beginning or the end of the encryption such that the targeted value only
depends on parts of the key. Hence, when attacking sponge or stream cipher-
based authenticated encryption schemes, the usual location for fault inductions is
the initialization phase. Next, she calculates the targeted value for each collected
unaffected plain- or ciphertext and every possible key candidate. The targeted
value should, when calculated using the correct key candidate, follow a non-
uniform distribution (which is usually not known to the attacker). In contrast,
the calculated distribution for a wrong key guess is typically unrelated to the
event that there has been an ineffective fault and hence, is expected to be closer
to uniform. As a consequence, we are able to distinguish wrong key guesses
from a right key guess. For a detailed description of the working principles of
the attack including statistical background and on the effects of faults we refer
to [14,16].

2.3 Authenticated Encryption

An authenticated encryption scheme provides confidentiality and authenticity for
a given plaintext. It is usually modeled as a function of four input parameters:
a secret key K, unique nonce N , associated data A and plaintext P [26]. The
output of authenticated encryption is a tuple that consists of a ciphertext C and
tag T :

E(K,N,A, P ) = (C, T )

The corresponding authenticated decryption takes the following five inputs: a
secret key K, unique nonce N , associated data A, ciphertext C and tag T .
During decryption T is used to verify the authenticity of A and C. If they are
not authentic the original plaintext P is not released and the special error symbol
⊥ is returned instead:

D(K,N,A,C, T ) ∈ {P,⊥}
The concrete implementation of authenticated encryption schemes can differ
significantly. Currently, many of the popular schemes like GCM [20], CCM [33],
EAX [3], and OCB [27] are all based on block ciphers like AES. However, since
the announcement of CAESAR [12], we can also see an increasing number of
stream cipher-based and sponge-based authenticated encryption schemes. In the
next section, we will present two such sponge-based designs: Keyak and Ketje,
in more detail, since we will use them to describe the attack and for the practical
evaluation.

3 Keyak and Ketje

Keyak [7] and Ketje [6] are sponge-based authenticated encryption schemes.
Their design is heavily inspired by the hash function Keccak [4], the winner
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of the SHA-3 competition. While both schemes make use of variants of the
permutation in Keccak, their modes of operation are slightly different. At first,
we give a short description of Keccak and its underlying permutation. We then
describe how Keyak and Ketje make use of the Keccak permutation in order to
build an authenticated encryption scheme.

3.1 Keccak

Keccak is a sponge-based hash function that was selected as the winner of the
SHA-3 competition. It is parameterized by the permutation Keccak-f , rate r,
and capacity c.

Keccak-f , more precisely denoted by Keccak-f [b], is an iterated permutation
that operates on a b-bit state that is organized in 5 × 5 lanes of 2l bits where
l ranges from 0 to 6. The number of rounds nr is determined by the width of
the permutation and is equal to 12 + 2l. Keccak-f consists of the 5 operations:
θ, ρ, π, χ, ι that are applied to the state in the presented order in every round.
From these 5 operations χ is the only non-linear transformation. The purpose
of θ, π and ρ is to cause diffusion while ι breaks any symmetries.

In the case of Keccak, the lane size l equals 6, thus the state has a size
of 5 × 5 × 64 = 1600 bits and the number of rounds nr is 12 + 2 × 6 = 24.
Depending on the desired security, c is chosen as twice the desired preimage
resistance in bits and r = 1600 − c. Following the sponge construction design
principle, Keccak can be divided into two phases: an initial absorbing phase and
a subsequent squeezing phase. During the absorbing phase input chunks of r bits
are repeatedly XOR-ed into the state and subsequently processed by Keccak-f .
Once all input chunks have been absorbed, a chunk of the desired hash bit-size
can be extracted from the state (squeezing phase).

Besides Keccak-f , a variety of similar permutations Keccak-p[b,nr] were pro-
posed by the Keccak designers. In contrast to Keccak-f , in Keccak-p the number
of rounds nr does not depend on the state size b anymore and can be set to any
positive integer. This allows for more flexibility in the design of Keccak-based
cryptographic primitives. The state size b is however still restricted to the same
values. Next, we give basic descriptions of the authenticated encryption schemes
Keyak and Ketje.

3.2 Keyak

Keyak is an authenticated encryption scheme that uses the Motorist mode of
operation and is based on the Keccak-p permutation. Even though Keyak sup-
ports a parameterized degree of parallelism we limit our description to the (rec-
ommended) Lake Keyak variant that does not support parallelization and thus
can be used even on constrained devices. Lake Keyak utilizes a 1600-bit state,
uses the 12-round Keccak-p[1600,12] permutation and performs authenticated
encryption with 128 to 256 bits of secret key, up to 150 bytes of nonce and 128-
bit tags. In the following, we describe the Motorist mode of operation, as used
in Keyak. Whenever we refer to Keyak we mean Lake Keyak.
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Motorist Mode. The Motorist mode defines how incoming messages are pro-
cessed together with key, nonce, associated data and tag in Keyak. It is closely
related to the duplex construction [5], with the main difference being the size of
the input blocks. While the original duplex construction only allows input blocks
as large as the outer part (rate r) of the underlying permutation, Motorist uses
full-state keyed duplexes [22] that can make use of the full width of the permu-
tation and thus allow higher throughput as shown in Fig. 1.

0

⊕

⊕

K, N

f12

⊕

⊕

Z0 σ1

f12

⊕

⊕

Z1 σ2

f12 ...

Z2

Initialization Duplexing Duplexing

Fig. 1. Lake Keyak. f12 denotes the Keccak-p[1600,12] permutation, σ denotes the
input string, and Z denotes the key stream.

3.3 Ketje

Ketje is an authenticated encryption scheme that consists of 2 parts: The mode
of operation MonkeyWrap and the Keccak-p permutation. While 4 different ver-
sions of Ketje have been proposed by the designers for the 4 different permuta-
tion sizes of 200, 400, 800 and 1600 bits, our practical evaluation is performed on
Ketje Jr. The main use case of Ketje Jr is lightweight authenticated encryption
for constraint devices. Hence, the permutation is based on Keccak-p[200, nr],
meaning that only a rather small 200-bit state is used and the number of per-
mutation rounds nr is variable. Ketje Jr performs authenticated encryption with
a 96-bit secret key and up to 86-bits of nonce. Different to Keccak and Keyak,
in Ketje every call of the permutation is slightly twisted. The twisted permuta-
tion Keccak-p∗ is an extended version of the standard permutation Keccak-p. It
always starts with an additional call of π−1 and ends with an additional call to
π. In the following we describe the MonkeyWrap mode of operation, as used in
Ketje. Whenever we refer to Ketje we mean Ketje Jr.

Monkey Wrap. The MonkeyWrap mode defines how incoming messages are
processed together with key, nonce, associated data and tag in Ketje.

The initialization of MonkeyWrap is called Start which is similar to the
Motorist mode. First, key K and nonce N are XOR-ed into the zero-initialized
state. Then 12 rounds of twisted Keccak-p∗ permutation are performed.
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The key stream generation Step is accomplished by performing duplexing
calls, yet this time not the full width of the permutation is utilized, as illustrated
in Fig. 2. Since the rate r of the permutation in Ketje is very small only a 1-round
twisted Keccak-p∗ permutation is needed in between Step calls.

Before the extraction of the tag starts, a 6-round twisted Keccak-p∗ permu-
tation is performed.

0 ⊕

K, N

f12

⊕

σ0

f1

Z0

⊕

σ1

f6 ...

Z1

Start Step Stride

Fig. 2. Ketje Jr. fnr denotes the application of a nr-round twisted Keccak-p∗[200]
permutation, σ denotes the input string, and Z denotes the key stream.

4 Attack Strategy

In our attack, we target the decryption/verification of Lake Keyak and Ketje Jr
(D(K,N,A,C, T )). To be precise, we observe the behavior of the authenti-
cated decryption of valid messages (N,A,C, T ) in the presence of faults that
are induced during the initialization phase. For both schemes, the initialization
is the application of variants of Keccak-f to a state, which is composed out of
the secret key K and a publicly known nonce N . If the fault induction affects
and changes the outcome of this computation, also the value of the afterwards
computed tag T will change compared to the value of the transmitted tag T and
thus, the verification will fail. If the induced fault does not change the outcome
of the initialization, the verification will succeed and the authenticated decryp-
tion will return a plaintext. Please note that the actual plaintext is not needed
for the attack, we solely assume that the attacker is able to distinguish a failed
verification from a successful one.

As shown in [16], inducing faults in multiple runs of the same computation
with differing inputs, followed by a subsequent filtering for unaffected compu-
tations, most likely leads to biased distribution in the targeted intermediate
value. In our case, unaffected computations (and thus ineffective faults) can be
deduced from the condition that the verification succeeds. Hence, we assume
that the attacker is able to affect one or multiple bits (Aχ2 [x, y, z]) of the inter-
nal state before the application of χ in the 2nd round of the initialization, so that
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the distribution of these bits is non-uniform for the filtered inputs (N,A,C, T ).
More concretely, we assume that the attacker is able to collect several nonces
N , which lead to one or multiple biased bits before the 2nd round χ-layer of the
initialization.

Out of this knowledge, the attacker is able to extract information about the
secret key. In the following section, we give a detailed description of how key
recovery is achieved for Keyak. A very similar approach can then be used to
perform key recovery for Ketje Jr. The major difference is the fact that a 200-
bit permutation is used and hence bits of the equivalent key directly before the
application of the 1st round χ-layer are guessed in the attack.

4.1 Involved Bits in Keyak

Information about the secret can be deduced by identifying key bits that are
involved in the calculation of Aχ2 [x, y, z] and evaluate the value of Aχ2 [x, y, z]
under every possible assignment of the key bits for every previously collected
value of the nonce N . For the right key guess, we expect to observe the highest
bias in the values of Aχ2 [x, y, z]. But at first, we have to identify the involved
bits.

First, we need to determine the bits at the input of the linear layer of the
2nd round, which are involved in the calculation of Aχ2 [x, y, z]. The linear layer
of one round of Keccak-p[1600, 12] consists of the application of the single round
functions θ, ρ, and π. The function π just swaps the words, so that

Aχ2 [x, y, z] = Aπ2 [(x + 3y) mod 5, x, z] .

The function ρ rotates each lane by a different offset R[x, y]. Hence,

Aχ2 [x, y, z] = Aρ2 [(x + 3y) mod 5, x, (z − R[(x + 3y) mod 5, x]) mod 64] .

Finally, θ computes its output by XOR-ing each bit with the parity of two
columns in the array, thus, one bit Aχ2 [x, y, z] is the sum of 11 input bits to θ.

Aχ2 [x, y, z] =Aθ2 [(x + 3y) mod 5, x, (z − R[(x + 3y) mod 5, x]) mod 64]

⊕
4⊕

y′=0

Aθ2 [(x + 3y − 1) mod 5, y′, (z − R[(x + 3y) mod 5, x]) mod 64]

⊕
4⊕

y′=0

Aθ2 [(x + 3y + 1) mod 5, y′, (z − R[(x + 3y) mod 5, x]−1) mod 64]

Each of the 11 bits Aθ2 [xi, yi, zi] can be calculated using three input bits to
χ. Therefore,

Aθ2 [xi, yi, zi] =Aχ1 [xi, yi, zi]⊕
((Aχ1 [(xi + 1) mod 5, yi, zi] ⊕ 1) · Aχ1 [(xi + 2) mod 5, yi, zi]) .
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Note that two bits at the input of θ in the 2nd round needed in the calculation
of Aχ2 [x, y, z] are adjacent bits of the same S-box, namely

Aθ2 [(x + 3y) mod 5, x, (z − R[(x + 3y) mod 5, x]) mod 64]
Aθ2 [(x − 3y − 1) mod 5, y, (z − R[(x + 3y) mod 5, x]) mod 64] .

As a consequence, only 31 bits of Aχ1 [xj , yj , zj ] are involved in the calculation
of Aχ2 [x, y, z].

The bits at the input to the 1st round that are needed to compute the 31
bits Aχ1 [xj , yj , zj ] can be determined in a similar manner as done for the second
round. However, doing so for general values of x and y gets a bit clumsy, hence,
we focus on the restricted case of calculating Aχ2 [0, 0, 0]. The necessary equations
are given in AppendixB.

Determining the necessary bits to calculate Aχ2 [x, y, z] by hand is quite time
consuming and also error prone. Thus, we have used a search tool [17], which
has been developed to search for linear characteristics to identify the bits at
the input of the Keccak-f permutation that are involved in the calculation of a
certain Aχ2 [x, y, z]. In Fig. 3, we give the involved bits for calculating Aχ2 [0, 0, 0].
The figure represents one lane as hexadecimal value, where bits that are set to 1
are needed in the calculation of Aχ2 [0, 0, 0]. A corresponding figure for Ketje Jr
is given in AppendixA.

snoitisoptiBottupnI

θ1

C-62-C1---9C---1 8E-12----C3----C 6-1--45----E-3-4 -384983--118---6 1---4228184--181
C-62-C1-189C---- 8E-12----C38---C 661--45----E-3-- -384982--118-3-6 1---5A28184--181
D-62-C1---9C---- 8E212----C3----C 6-1--45---3E-3-- -384986--118---6 1---4228194--181
C-62-C1---DC---- 8E-12----C34---C 6-11-45----E-3-- -3849C2--118---6 1-8-4228184--181
C-624C1---9C---- CE-12----C3----C 6-1--45----E-3-8 -384982--118-1-6 1--44228184--181

χ1

---------------1 8--------------1 8--------------1 8--------------- ---------------1
---------------1 8--------------1 8--------------- 8--------------- ---------------1
---------------1 8--------------1 8--------------- 8--------------- ---------------1
---------------1 8--------------1 8--------------- 8--------------- ---------------1
---------------1 8--------------1 8--------------- 8--------------- ---------------1

θ2

---------------1 8--------------- ---------------- ---------------- ---------------1
---------------- 8--------------- ---------------- ---------------- ---------------1
---------------- 8--------------- ---------------- ---------------- ---------------1
---------------- 8--------------- ---------------- ---------------- ---------------1
---------------- 8--------------- ---------------- ---------------- ---------------1

χ2

---------------1 ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------
---------------- ---------------- ---------------- ---------------- ----------------

Fig. 3. Bits involved in calculation of Aχ2 [0, 0, 0]. The position of the 128-bit key is
highlighted in gray. Zeros are replaced by - to improve readability.
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4.2 Recovered Bits

In this section, we will discuss how much information on the key bits can be
recovered by exploiting a bias in Aχ2 [x, y, z]. For the sake of simplicity, we will
stick to the example of Aχ2 [0, 0, 0]. Bits having a gray background in Fig. 3 are
bits that represent the 128 key bits. Hence, to compute Aχ2 [0, 0, 0], 25 bits of
the key have to be guessed. However, from the equation given in Appendix B,
we can see that only the 17 bits:

Aθ1 [0, 0, 0] , Aθ1 [0, 0, 18], Aθ1 [0, 0, 20], Aθ1 [0, 0, 23], Aθ1 [0, 0, 36], Aθ1 [0, 0, 43],
Aθ1 [0, 0, 53], Aθ1 [0, 0, 54], Aθ1 [1, 0, 2] , Aθ1 [1, 0, 20], Aθ1 [1, 0, 21], Aθ1 [1, 0, 27],
Aθ1 [1, 0, 48], Aθ1 [1, 0, 58], Aθ1 [1, 0, 59], Aθ1 [1, 0, 63], Aθ1 [2, 0, 62]

can influence Aχ2 [0, 0, 0] in a non-linear manner, while the 8 bits:

Aθ1 [0, 0, 19], Aθ1 [0, 0, 42], Aθ1 [0, 0, 49], Aθ1 [1, 0, 3] , Aθ1 [1, 0, 26], Aθ1 [1, 0, 45],
Aθ1 [1, 0, 57], Aθ1 [2, 0, 61]

only have a linear influence.
As a consequence, we can at most uniquely identify the 17 bits that influence

Aχ2 [0, 0, 0] in a non-linear way. For the 8-bits that influence Aχ2 [0, 0, 0] in a
linear way, only their XOR-sum (parity) effects the value of Aχ2 [0, 0, 0]. Since
for 8 bits, half of the possible assignments have parity 0 and the other half has
parity one, we get at least 27 key candidates that always lead to the same result.
Please note that this is a rather simplistic evaluation and does not consider the
dependencies of the non-linear bits and also the bits, which are used as nonce
and constants. In fact, the key recovery depends on the value of these bits,
since an unfortunate choices for the nonce can, for instance, lead to situations,
where some S-boxes are linearized for some key bits, or some key bits are always
blocked, so that they do not influence Aχ2 [0, 0, 0]. For instance, let us have a
look at the results of one of our concrete experiments given in Sect. 5. Instead
of recovering 17 out of the 25 bits uniquely from 27 key candidates scoring best,
we are able to recover 15 of the 25 bits uniquely out of 29 key candidates that
score best.

5 Practical Evaluation

We now describe the practical evaluation of our attack on a microprocessor
implementation. Although we have performed attacks on both Lake Keyak and
Ketje Jr, we limit our description to Lake Keyak, since the attack procedure is
similar for both schemes. We do, however, state the results for both schemes
at the end of this section. We start this section by giving a quick overview of
the attack procedure in Sect. 5.1. We then describe the hardware/software that
we have used to perform our attack evaluation in Sect. 5.2. After that, we state
requirements on a fault setup more generally in Sect. 5.3. Finally, we present the
results of our fault attacks on Lake Keyak and Ketje Jr in Sect. 5.4.
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5.1 Attack Procedure

As described in Sect. 4, our key recovery exploits the input of specific Keyak
decryptions. We are interested in decryptions that have a bias in one or multiple
bits of the Keccak state before χ in the 2nd round. To achieve the required
filtering of inputs we use statistical ineffective fault attacks (SIFA), as proposed
in [16].

Before the attack we set the secret key of the microprocessor Keyak imple-
mentation to a constant and unknown value. During the attack we send inputs,
consisting of random nonce and tag, to the microprocessor, induce a clock glitch
with constant offset during the computation and observe the behavior. The tag
verification is used to detect whether or not an induced fault was ineffective.

5.2 Attack Setup

The practical evaluation of our fault attack was done on an 8-bit Xmega 128D4
microprocessor. The attacked software implementation of Lake Keyak consists
of two parts. The first part is a C implementation of the Motorist mode of oper-
ation. The second part is a fast 8-bit AVR optimized assembler implementation
of the Keccak permutation. Both implementations are taken from the Keccak
Code Package [8] and therefore represent a good target software implementation
for our practical evaluation. The clock signal of the microprocessor is generated
by a Spartan-6 FPGA running at 12 MHz. We additionally use this FPGA for
the insertion of glitches onto the clock signal. The insertion of clock glitches is
achieved by XOR-ing an additional fast clock edge onto the original clock sig-
nal at a specified time. By doing so, we can violate the critical path to force
undefined behavior of the microprocessor.

In our practical evaluation we can force strong biases in virtually every state
bit that is affected by χ, however only in blocks of 8 bits at a time (which is not
surprising on a 8-bit architecture). We suspect that our glitch does skip one of
the XOR instructions in the bit-sliced χ implementation, but we cannot say for
sure though.

5.3 Attack Setup - Requirements

As we use SIFA [16], the requirements we have on the locality and especially the
effect of the fault are quite relaxed. Basically, we only need some sort of bias in
any bit at the input of χ in the 2nd round. This can be achieved by e.g. faulting
instructions in χ, slightly before χ, or by directly faulting registers using lasers.
In the case of AES, such fault inductions have already been demonstrated for
multiple microprocessors and even for hardware co-processors [15,16]. One way
to find a suitable glitch location in practice would be to estimate the clock cycles
until the targeted operation is executed. Hence, in our scenario, one can estimate
the time frame of the 2nd round and try to induce a glitch in several different
clock cycles towards the end of that round.
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5.4 Results

Keyak. As already mentioned in Sect. 4.2, when getting a bias in the bit
Aχ2 [0, 0, 0] located at the input of the 2nd round χ-layer, 25 bits of the key
are involved in its calculation. In our attack, we guess these 25 bits and eval-
uate the bias in Aχ2 [0, 0, 0] for each key guess. Since some of the guessed key
bits only influence Aχ2 [0, 0, 0] in a linear manner, we get several equivalent key
candidates having the same bias. As a consequence, Fig. 4 shows the advan-
tage in bits the attacker gets from guessing key candidates down to a bias
which also the correct key guess over just randomly guessing the key, which
is log2(#total keys) − log2(#candidate keys).
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Fig. 4. Attack on Keyak. Advantage in bits when targeting Aχ2 [0, 0, 0] and guessing
the associated 25 bits of the 128-bit key.

As shown in Fig. 4, 24 inputs of such unaffected decryptions are necessary
to get a maximum advantage of 16 bits. In our case, we get 29 keys ranked
top that have the same bias (not considering its sign). From those 29 keys, the
values of 15 key bits can be uniquely determined. Due to the architecture of the
implementation, we do not only get a bias in one bit, but one byte. By combining
this information, we can uniquely determine 82-bits of the key.

In our attack setup, we are able to perform about 20 faulted decryptions per
second. According to the practical evaluation, in about 1 out of 250 decryptions
the induced fault is ineffective. The total time it took us to gather the required
amount of inputs is roughly 5 min.

Ketje. In the attack on Ketje Jr we use the same fault location as in the attack
on Lake Keyak. This is however not strictly necessary. Even though both schemes
use variants of Keccak-f during initialization, the influence of key bits on one of
our biased bits before χ in the 2nd round is quite different, mainly due to the fact
that the lane sizes are different (see Fig. 6). In contrast to Lake Keyak, in Ketje Jr
nearly all key bits influence each of our biased bits, most of the time in a linear way.
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Hence, for Ketje Jr we instead guess the 200-bit equivalent key before χ in the 1st

round (i.e. after the first linear layer). By doing so we can reduce the dependency
on the equivalent key to 31 bit and guessing becomes feasible in practice.

In our attack setup we can recover about 19 bits of the equivalent key that
correspond to one biased bit in about 10 h using a single thread on an Intel
Xeon CPU. Note that this time can be significantly improved, since we used
for our evaluation purposes just the unoptimized reference implementation. Fur-
thermore, the task of key guessing can be parallelized trivially. If we parallelize
the computations for e.g. the 8 bits that were affected by our fault induction
we can recover 152 bits of the equivalent key in the same amount of time. The
remaining bits can be determined either by brute-force or repeating key recovery
for a different fault location.

In total, again 24 inputs of unaffected decryptions are necessary for key
recovery as shown in Fig. 5. The total time it took us to gather the required
amount of inputs is below 5 min. Hence, the time complexity of entire attack is
dominated by the key guessing and was performed in about 10 h.
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Fig. 5. Attack on Ketje. Advantage in bits when targeting Aχ2 [0, 0, 0] and guessing
the associated 31 bits of the 200-bit equivalent key.

6 Conclusion

In this work, we present the first fault attacks targeting a broad range of nonce-
based authenticated encryption schemes. While fault attacks on authenticated
encryption have already been shown at Asiacrypt 2016 [15], this attack is mostly
limited to schemes that additionally feature a final key addition and thus, is not
directly applicable to most sponge-based or stream cipher-based constructions.
We close this gap and show attacks based on SIFA [16], which are in principle
applicable to most nonce-based authenticated encryption schemes that perform
some sort of initialization where the nonce (or an other publicly known input)
is mixed with the secret key. Since we only need to know whether a fault induc-
tion was ineffective or not, attacking the decryption function of authenticated
encryption schemes gives us a perfect oracle. Our attack evaluation is focused on
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Keyak and Ketje, however, we conjecture that our attack can also be adopted
to other schemes like the CAESAR finalists ACORN, AEGIS, Ascon, MORUS,
etc. in a rather straight-forward way.

SIFA is resistant to popular fault countermeasures like double-execution and
infection-based countermeasures as shown in [16]. Even additional masking does
not preclude this attack vector [14]. The key recovery is capable of dealing with
an arbitrary amount of noise (however requiring more faulted decryptions) that
might arise due to possibly imperfect fault inductions. The effort required to
perform our attack is rather low. We neither require perfectly timed faults nor
precise knowledge about the effect of the induced fault. In our fault setup we
are able to collect enough material for key recovery within 5 min. The actual key
recovery for Keyak and Ketje is easily parallelizable and takes about 30 min and
10 h, respectively. The hardware cost of the attack setup does not exceed 300$.
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A Bits Involved in the Calculation for Ketje Jr

Input to Bit positions

θ1

ff bf 7f bf fb
fe bf 7f bf fb
fe bf 7f ff fb
fe bf 7f bf fb
fe ff 7f bf ff

χ1

-1 81 81 8- -1
-1 81 8- 8- -1
-1 81 8- 8- -1
-1 81 8- 8- -1
-1 81 8- 8- -1

θ2

-1 8- -- -- -1
-- 8- -- -- -1
-- 8- -- -- -1
-- 8- -- -- -1
-- 8- -- -- -1

χ2

-1 -- -- -- --
-- -- -- -- --
-- -- -- -- --
-- -- -- -- --
-- -- -- -- --

Fig. 6. Bits involved in calculation of Aχ2 [0, 0, 0]. Zeros are replaced by - to improve
readability.
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B Equations to Calculate Aχ2[0, 0, 0]

Aχ2 [0, 0, 0] = Aθ2 [0, 0, 0] ⊕
4⊕

y′=0

Aθ2 [4, y′, 0] ⊕
4⊕

y′=0

Aθ2 [1, y′, 63]

Aθ2 [0, 0, 0] = Aχ1 [0, 0, 0] ⊕ ((Aχ1 [1, 0, 0] ⊕ 1) · Aχ1 [2, 0, 0])
Aθ2 [4, 0, 0] = Aχ1 [4, 0, 0] ⊕ ((Aχ1 [0, 0, 0] ⊕ 1) · Aχ1 [1, 0, 0])
Aθ2 [4, 1, 0] = Aχ1 [4, 1, 0] ⊕ ((Aχ1 [0, 1, 0] ⊕ 1) · Aχ1 [1, 1, 0])
Aθ2 [4, 2, 0] = Aχ1 [4, 2, 0] ⊕ ((Aχ1 [0, 2, 0] ⊕ 1) · Aχ1 [1, 2, 0])
Aθ2 [4, 3, 0] = Aχ1 [4, 3, 0] ⊕ ((Aχ1 [0, 3, 0] ⊕ 1) · Aχ1 [1, 3, 0])
Aθ2 [4, 4, 0] = Aχ1 [4, 4, 0] ⊕ ((Aχ1 [0, 4, 0] ⊕ 1) · Aχ1 [1, 4, 0])

Aθ2 [1, 0, 63] = Aχ1 [1, 0, 63] ⊕ ((Aχ1 [2, 0, 63] ⊕ 1) · Aχ1 [3, 0, 63])
Aθ2 [1, 1, 63] = Aχ1 [1, 1, 63] ⊕ ((Aχ1 [2, 1, 63] ⊕ 1) · Aχ1 [3, 1, 63])
Aθ2 [1, 2, 63] = Aχ1 [1, 2, 63] ⊕ ((Aχ1 [2, 2, 63] ⊕ 1) · Aχ1 [3, 2, 63])
Aθ2 [1, 3, 63] = Aχ1 [1, 3, 63] ⊕ ((Aχ1 [2, 3, 63] ⊕ 1) · Aχ1 [3, 3, 63])
Aθ2 [1, 4, 63] = Aχ1 [1, 4, 63] ⊕ ((Aχ1 [2, 4, 63] ⊕ 1) · Aχ1 [3, 4, 63])

Aχ1 [0, 0, 0] = Aθ1 [0, 0, 0] ⊕
4⊕

y′=0

Aθ1 [4, y′, 0] ⊕
4⊕

y′=0

Aθ1 [1, y′, 63]

Aχ1 [1, 0, 0] = Aθ1 [1, 1, 20] ⊕
4⊕

y′=0

Aθ1 [0, y′, 20] ⊕
4⊕

y′=0

Aθ1 [2, y′, 19]

Aχ1 [2, 0, 0] = Aθ1 [2, 2, 21] ⊕
4⊕

y′=0

Aθ1 [1, y′, 21] ⊕
4⊕

y′=0

Aθ1 [3, y′, 20]

Aχ1 [4, 0, 0] = Aθ1 [4, 4, 50] ⊕
4⊕

y′=0

Aθ1 [3, y′, 50] ⊕
4⊕

y′=0

Aθ1 [0, y′, 49]
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Aχ1 [4, 1, 0] = Aθ1 [2, 4, 3] ⊕
4⊕

y′=0

Aθ1 [1, y′, 3] ⊕
4⊕

y′=0

Aθ1 [3, y′, 2]

Aχ1 [0, 1, 0] = Aθ1 [3, 0, 36] ⊕
4⊕

y′=0

Aθ1 [2, y′, 36] ⊕
4⊕

y′=0

Aθ1 [4, y′, 35]

Aχ1 [1, 1, 0] = Aθ1 [4, 1, 44] ⊕
4⊕

y′=0

Aθ1 [3, y′, 44] ⊕
4⊕

y′=0

Aθ1 [0, y′, 43]

Aχ1 [4, 2, 0] = Aθ1 [0, 4, 46] ⊕
4⊕

y′=0

Aθ1 [4, y′, 46] ⊕
4⊕

y′=0

Aθ1 [1, y′, 45]

Aχ1 [0, 2, 0] = Aθ1 [1, 0, 63] ⊕
4⊕

y′=0

Aθ1 [0, y′, 63] ⊕
4⊕

y′=0

Aθ1 [2, y′, 62]

Aχ1 [1, 2, 0] = Aθ1 [2, 1, 58] ⊕
4⊕

y′=0

Aθ1 [1, y′, 58] ⊕
4⊕

y′=0

Aθ1 [3, y′, 57]

Aχ1 [4, 3, 0] = Aθ1 [3, 4, 8] ⊕
4⊕

y′=0

Aθ1 [2, y′, 8] ⊕
4⊕

y′=0

Aθ1 [4, y′, 7]

Aχ1 [0, 3, 0] = Aθ1 [4, 0, 37] ⊕
4⊕

y′=0

Aθ1 [3, y′, 37] ⊕
4⊕

y′=0

Aθ1 [0, y′, 36]

Aχ1 [1, 3, 0] = Aθ1 [0, 1, 28] ⊕
4⊕

y′=0

Aθ1 [4, y′, 28] ⊕
4⊕

y′=0

Aθ1 [1, y′, 27]

Aχ1 [4, 4, 0] = Aθ1 [1, 4, 62] ⊕
4⊕

y′=0

Aθ1 [0, y′, 62] ⊕
4⊕

y′=0

Aθ1 [2, y′, 61]

Aχ1 [0, 4, 0] = Aθ1 [2, 0, 2] ⊕
4⊕

y′=0

Aθ1 [1, y′, 2] ⊕
4⊕

y′=0

Aθ1 [3, y′, 1]

Aχ1 [1, 4, 0] = Aθ1 [3, 1, 9] ⊕
4⊕

y′=0

Aθ1 [2, y′, 9] ⊕
4⊕

y′=0

Aθ1 [4, y′, 8]
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Aχ1 [1, 0, 63] = Aθ1 [1, 1, 19] ⊕
4⊕

y′=0

Aθ1 [0, y′, 19] ⊕
4⊕

y′=0

Aθ1 [2, y′, 18]

Aχ1 [2, 0, 63] = Aθ1 [2, 2, 20] ⊕
4⊕

y′=0

Aθ1 [1, y′, 20] ⊕
4⊕

y′=0

Aθ1 [3, y′, 19]

Aχ1 [3, 0, 63] = Aθ1 [3, 3, 42] ⊕
4⊕

y′=0

Aθ1 [2, y′, 42] ⊕
4⊕

y′=0

Aθ1 [4, y′, 41]

Aχ1 [1, 1, 63] = Aθ1 [4, 1, 43] ⊕
4⊕

y′=0

Aθ1 [3, y′, 43] ⊕
4⊕

y′=0

Aθ1 [0, y′, 42]

Aχ1 [2, 1, 63] = Aθ1 [0, 2, 60] ⊕
4⊕

y′=0

Aθ1 [4, y′, 60] ⊕
4⊕

y′=0

Aθ1 [1, y′, 59]

Aχ1 [3, 1, 63] = Aθ1 [1, 3, 18] ⊕
4⊕

y′=0

Aθ1 [0, y′, 18] ⊕
4⊕

y′=0

Aθ1 [2, y′, 17]

Aχ1 [1, 2, 63] = Aθ1 [2, 1, 57] ⊕
4⊕

y′=0

Aθ1 [1, y′, 57] ⊕
4⊕

y′=0

Aθ1 [3, y′, 56]

Aχ1 [2, 2, 63] = Aθ1 [3, 2, 38] ⊕
4⊕

y′=0

Aθ1 [2, y′, 38] ⊕
4⊕

y′=0

Aθ1 [4, y′, 37]

Aχ1 [3, 2, 63] = Aθ1 [4, 3, 55] ⊕
4⊕

y′=0

Aθ1 [3, y′, 55] ⊕
4⊕

y′=0

Aθ1 [0, y′, 54]

Aχ1 [1, 3, 63] = Aθ1 [0, 1, 27] ⊕
4⊕

y′=0

Aθ1 [4, y′, 27] ⊕
4⊕

y′=0

Aθ1 [1, y′, 26]

Aχ1 [2, 3, 63] = Aθ1 [1, 2, 53] ⊕
4⊕

y′=0

Aθ1 [0, y′, 53] ⊕
4⊕

y′=0

Aθ1 [2, y′, 52]

Aχ1 [3, 3, 63] = Aθ1 [2, 3, 48] ⊕
4⊕

y′=0

Aθ1 [1, y′, 48] ⊕
4⊕

y′=0

Aθ1 [3, y′, 47]



Fault Attacks on Nonce-Based Authenticated Encryption 275

Aχ1 [1, 4, 63] = Aθ1 [3, 1, 8] ⊕
4⊕

y′=0

Aθ1 [2, y′, 8] ⊕
4⊕

y′=0

Aθ1 [4, y′, 7]

Aχ1 [2, 4, 63] = Aθ1 [4, 2, 24] ⊕
4⊕

y′=0

Aθ1 [3, y′, 24] ⊕
4⊕

y′=0

Aθ1 [0, y′, 23]

Aχ1 [3, 4, 63] = Aθ1 [0, 3, 22] ⊕
4⊕

y′=0

Aθ1 [4, y′, 22] ⊕
4⊕

y′=0

Aθ1 [1, y′, 21]
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