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Abstract. In this study we investigate the recommendation problem
with multifaceted contextual information to overcome the scarcity of
users’ check-in data in Location-based Social Networks. To generate
accurate personalized Point-of-Interest (POI) recommendations in the
presence of data scarcity, we account for both users’ and POIs’ contex-
tual information such as the social influence of friends, as well as the geo-
graphical and sequential transition influence of POIs on user’s check-in
behavior. We first propose a multi-view learning strategy to capture the
multifaceted contextual information of users and POIs along with users’
check-in data. Then, we feed the learned user and POI latent vectors to a
deep neural framework, to capture their non-linear correlations. Finally,
we formulate the objective function of our geo-based deep collaborative
filtering model (GeoDCF) as a Bayesian personalized ranking problem
to focus on the top-k recommendation task and we learn the parame-
ters of our model via backpropagation. Our experiments on real-world
datasets confirm that GeoDCF achieves high recommendation accuracy,
significantly outperforming other state-of-the-art methods. Furthermore,
we confirm the influence of both users’ and POIs’ contextual informa-
tion on our GeoDCF model. The evaluation datasets are publicly avail-
able at: http://snap.stanford.edu/data/loc-gowalla.html, https://sites.
google.com/site/yangdingqi/home/foursquare-dataset.

Keywords: Point-of-interest recommendation
Deep collaborative filtering · Multifaceted contextual information
Location-Based Social Networks

1 Introduction

With the emergence of Location-based Social Networks (LBSNs) such as Yelp
and Foursquare, users can search for a Point-of-Interest (POI) e.g., a restaurant
or a museum to visit, and share their location with their friends by making a
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check-in at the POI they have visited. Such implicit source of feedback provides
rich information about both users and POIs that can be leveraged to study the
user’s movement in urban cities, as well as enhance the quality of personalised
POI recommendations. Most existing POI recommendation systems apply col-
laborative filtering techniques to suggest relevant POIs to users based on the
assumption that similar-minded users are likely to visit similar POIs [7,26]. In
practice, rather than explicit feedbacks of ratings for traditional recommendation
systems, binary implicit feedbacks are usually available at LBSNs in the form
of check-in data [20]. Several methods have been proposed to handle the case of
users’ implicit feedback, such as weighted matrix factorization [6], with square
or cross-entropy loss functions to either minimize the rating error or predict if
an unobserved item would be preferred or not by a user. However, provided
that end-users are usually interested in the top-k recommendations, such loss
functions do not focus on the top-k recommendation problem. To overcome this
limitation, Bayesian Personalized Ranking (BPR) strategies use a pairwise rank-
ing loss function, considering the relative ordering of items in a ranked list [17].
The pairwise ranking criterion of the BPR model is based on the assumption
that a user prefers the observed items over the unobserved ones. This idea results
in a pairwise ranking loss function that tries to discriminate between a small set
of observed items and a very large set of unobserved ones. Due to the imbalance
between the user’s observed items and unobserved ones, the BPR model uni-
formly samples negative examples from the set of unobserved items to reduce
the training time. However, both studies [6,17] ignore the multifaceted contex-
tual information at LBSNs for POI recommendations [11,26].

POI recommendation strategies suffer from the data scarcity problem, as
the number of POIs visited by a user is usually only a small portion of all the
available POIs at a LBSN [2,9]. As a consequence, the data scarcity limits the
performance of the collaborative filtering strategies when generating recommen-
dations. To handle the data scarcity problem, POI recommendation strategies
exploit the multifaceted contextual information of both users and POIs, such as
the social influence of friends, as well as the geographical and sequential transi-
tion influence of POIs on user’s check-in behavior. In particular, although user
preferences are influenced by users’ social relationships, the selections of social
friends do not necessarily match [13,14]. As a consequence we have to learn the
impact of friends’ selections on users’ check-in behavior [7]. Regarding POIs’
geographical influence, user preferences are based on the user mobility and the
geographical distances among POIs, as most users only visit POIs within small
regions [10,11,21]. In addition, two users may behave differently with respect to
time. For example, one often checks in at restaurants during lunch time, while
the other likes bars and often checks in at midnight. The POI recommendation
task becomes even more challenging, as there is a sequential transition influence
of locations on users’ check-in behaviors, where a user might like visiting POIs
in a specific order e.g., office→, lunch, gym→home or home→bar [1,26].

Although POI recommendation strategies exploit different contextual factors,
they do capture well the non-linear correlations of users’ and POIs multifaceted
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information [20]. Also, they not necessarily focus on the ranking performance
of the POI recommendation task, such as in the studies reported in [11,21].
To overcome the shortcomings of the existing methods we propose the GeoDCF
model, making the following contributions: (C1) To account for the fact that the
multifaceted information of users and POIs can significantly boost the quality
of recommendations, we first introduce a multi-view joint factorization strategy.
We compute the user and POI latent vectors by co-factorizing users’ check-in
behavior on POIs with users’ and POIs’ contextual information. (C2) To better
capture the non-linear correlations of the user and POI latent vectors, we adopt
a deep learning strategy by learning the model parameters via a backpropagation
algorithm. (C3) To focus on the ranking performance, we formulate our model as
a pairwise ranking task, by placing a BPR layer at the top of our deep learning
architecture. Our experiments on benchmark datasets from the real-world LBSNs
of Gowalla and Foursquare show that our GeoDCF model beats other baseline
strategies. In addition, we experimentally show the impact of users’ and POIs’
contextual information on our model.

The remainder of the paper is organized as follows, Sect. 2 reviews the related
work, and in Sect. 3 we formally define our pairwise ranking problem. Section 4
details the proposed GeoDCF model, Sect. 5 presents the experimental results
and Sect. 6 concludes the study.

2 Related Work

In collaborative filtering with implicit feedback, such as weighted matrix fac-
torization [6], some missing entries are treated as negative instances (negative
sampling) trying to minimize a pointwise loss function such as the square or
cross-entropy loss. Liu et al. [11] model geographical influence by incorporat-
ing neighboring characteristics into weighted matrix factorization to handle the
implicit feedback of users’ check-in data. Lian et al. [10] present a geographi-
cal weighted matrix factorization model that integrates geographical influence
by modeling users’ activity regions and the influence propagation on geograph-
ical space. Instead of using a pointwise loss function, Yuan et al. [23] focus on
the top-k recommendation performance, presenting a model that incorporates
geographical influence, assuming that neighborhood POIs of POIs previously
visited by users should be ranked higher than distant ones. In a similar spirit,
RankGeoFM is a ranking-based model that first learns users’ preference rank-
ings for POIs, and then includes the geographical influence of neighboring POIs
to alleviate the recommendation accuracy [9].

Apart from the geographical influence on users’ check-in behaviour,
Ye et al. [21] also consider users’ social correlation for POI recommendation, fol-
lowing a friend-based collaborative filtering strategy. In particular, they produce
POI recommendations based on similar friends, where the similarity between
friends is calculated based on their common check-in POIs and common friends.
In [24], a friend-based collaborative filtering strategy is also used to leverage
friends’ check-ins, where the similarity between friends is computed based on
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the distance of their residences. In [12], a personalised ranking framework with
multiple sampling criteria is proposed, leveraging both social correlation and
geographical influence on users’ check-in behavior. In particular, Manotumruksa
et al. [12] apply a multi-center Gaussian model and a power-law distribution
method, to capture the geographical influence and social correlation respectively
when performing negative sampling for the non-visited POIs. In [7] a two-step
POI recommendation framework is proposed, which first learns potential loca-
tions from users’ friends and then, incorporates potential locations into weighted
matrix factorization. Zhang et al. [26] employ an additive Markov chain to exploit
the sequential transition influence between POIs, where the sequential probabil-
ity of a user visiting a POI is based on the transition probability between all the
user’s visited POIs and a target non-visited POI.

Accordingly, in recommendation systems deep learning strategies use either
a pointwise or a pairwise ranking loss function to handle user implicit feedback
and capture user data non-linear correlations. In [8,18,22], various deep learn-
ing strategies are introduced to exploit user feedback with users’ and items’ side
information. For example, Ying et al. [22] model implicit feedback in stacked
denoising autoencoders with the side information of articles, such as the title
and abstract of the articles. Ding et al. [3] design a ranking model for friend rec-
ommendations. However, the studies at [3,8,9,18] do not consider any contextual
information when training their deep learning models, a key factor to generate
accurate POI recommendations [7,21,25]. Recently, a deep recurrent neural net-
work is proposed to capture the sequential transition influence on users’ check-
in behavior [4]. Nonetheless, the users’ social relations are ignored at [4]. Yang
et al. [20] introduce PACE, a deep neural architecture that jointly learns the
embeddings of users and POIs to predict user preferences over POIs and vari-
ous context associated with users and POIs. PACE first transforms the users’
and POIs’ contextual relations into graphs and then, employs neural embedding
for POI recommendation as a bridge between collaborative filtering and semi-
supervised learning. Instead of using a pairwise ranking function, PACE defines
a pointwise function to handle the case of implicit feedback during the deep
neural network learning. Consequently, PACE does not focus on the ranking
performance when generating top-k POI recommendations.

3 Problem Formulation

Let N and M be the sets of users and POIs, where n = |N | and m = |M| are
the numbers of users and POIs, respectively. Users’ check-in data are tuples in
the form of (user, POI, time). In addition, each user u has a set of friends Au.
Each POI is also associated with a pair of geographical latitude and longitude
coordinates in the form of (lat, long). In our problem we consider the following
input matrices:

Definition 1 (Check-in matrix X). “Based on the users’ data we construct
a binary check-in matrix X ∈ {0, 1}n×m.”
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Definition 2 (Social link matrix A). “According to each user u’s social rela-
tionships in Au, we compute a binary adjacency matrix A ∈ {0, 1}n×n.”

Definition 3 (Geographical similarity matrix G). “Given the geographical
coordinates (lat, long), we first compute the angular distance δ(a, b) between each
pair of POIs a and b based on the Haversine formula1, and then we calculate
the geographical similarity matrix G ∈ R

m×m
+ . Each element of G is computed

as G(a, b) = 1
1+(δ(a,b)×r) , with r = 6, 371 km being the earth radius.”

Definition 4 (Sequential transition matrix T ). “Provided that users’
check-in data are timestamped, we calculate a transition matrix T ∈ R

m×m
+ ,

where each element T (a, b) corresponds to the frequency of successive POI visits,
a → b. In the sequential transition matrix T , we filter out successive POI visits
in a long interval e.g., more than a day, as these successive POI visits are weakly
or not correlated at all [26].”

Given user preferences in the check-in matrix X, users’ contextual informa-
tion in A and POIs’ contextual information in G and T , the goal of our model is
to generate top-k POI recommendations for a user u ∈ N . In our GeoDCF model
we formulate the POI recommendation problem as a pairwise ranking task [17].
We define a check-in probability2 xui, where xui = X(u, i) denotes that user u
has already visited POI i. Thus, we can define two disjoint sets, a set X+

u of
visited POIs that user u has already checked-in, and a set X −

u of non-visited
POIs. For the task of POI recommendation, we build a pairwise ranking model
that is able to rank the visited POIs before the non-visited ones. For any pair
of POIs i and j, with i ∈ X+

u and j ∈ X −
u , the check-in probability xui should

be greater than xuj . To describe this relation we define a partial relation i >u j.
For each user u ∈ N the set of all partial relationships is computed as follows:

Ru = {i >u j|i ∈ X+
u , j ∈ X −

u } (1)

We define our POI recommendation task as the following ranking problem:

Definition 5 (Problem). “Given the set of all partial relationships Ru for
each user u ∈ N , the goal of GeoDCF is to maximize the ranking likelihood
probability as follows:”

max
∏

u∈N

∏

(i,j)∈Ru

P (i >u j) (2)

4 The GeoDCF Model

4.1 Model Overview

An overview of the proposed GeoDCF model is presented in Fig. 1. The inputs
are the check-in matrix X and contextual matrices A, G and T (Sect. 3). In the
1 https://en.wikipedia.org/wiki/Haversine formula.
2 Initially, the check-in probability is binary to construct matrix X, and after the

model learning the entries of X are in the range of [0, 1].

https://en.wikipedia.org/wiki/Haversine_formula
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Fig. 1. Overview of GeoDCF. In this example, we use h = 2 hidden layers in our deep
collaborative filtering strategy. For each user u POIs i and j denote a visited and a
non-visited POI, respectively.

embedding layer the goal is to jointly learn the influence of the contextual
information on user preferences and compute the latent matrices U ∈ R

n×d

and V ∈ R
m×d of the preference matrix X, with d being the low dimensional

embeddings. In the remaining layers of our architecture in Fig. 1, we perform
BPR learning for the pairwise ranking task to generate POI recommendations.
As defined in our pairwise ranking task in Eq. (2), for each user u we have pairs
of partial relations (i, j) ∈ Ru. In the feature layer we consider the POI latent
vectors Vi ∈ R

d and Vj ∈ R
d, that is the i-th and j-th rows of V , as well as

the user latent vector Uu ∈ R
d, the u-th row of U . Then, we design three neural

networks3, where each latent vector Vi, Uu and Vj is provided to the respective
neural network. Given h hidden layers, we first try to capture the non-linear
representations H

(q)
i , H

(q)
u and H

(q)
j of Vi, Uu and Vj in each neural network

separately, with q = 1, . . . , h. In the example of Fig. 1 we use h = 2 hidden
layers. The output layer calculates the check-in probabilities xui and xuj by
combining the last hidden layers H

(h)
i , H

(h)
u and H

(h)
j with a sigmoid function

σ(x) = 1/(1 + e−x). Finally, the BPR layer predicts the probability of the
partial relation P (i >u j).

3 Alternatively, we could concatenate the three latent vectors and use a single neural
network, increasing the computational cost of the learning process.
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4.2 Embedding Layer

Given that we have to learn the influence of the contextual matrices A, G and
T on user preferences in the check-in matrix X, at the embedding layer we
formulate a multi-view joint factorization problem. In particular, we define the
following joint loss function:

min
Θe

L = LX + λALA + λGLG + λTLT (3)

where the four loss functions LX , LA, LG and LT correspond to the joint fac-
torizations of the input matrices X, A, G and T . Θe is the parameter set of the
joint loss function L, and parameters λA, λG and λT regularize the respective
loss functions in Eq. (3). Note that in Eq. (3) a regularization parameter for
LX is omitted, as matrix X is the main check-in matrix with user preferences.
The problem of the joint loss function in Eq. (3) is similar with the Multi-View
Non-negative Matrix Factorization (MV-NMF) problem of [5]. MV-NMF tries
to bring the latent matrices of different views as close as possible to a common
consensus matrix. For example, if we assume that the four input matrices are
only coupled at the POI dimension, we have a consensus matrix V ∗ ∈ R

m×d,
with d being the low-dimensional latent embeddings. While jointly factorizing
the input matrices, the goal of MV-NMF is to minimize the four reconstruc-
tion errors ||V (v) − V ∗||2F of the consensus matrix V ∗ and the respective POI
latent matrices V (v) ∈ R

m×d, with v = 1, . . . , 4. Instead of having couplings
at one dimension as in [5], in our setting the input matrices might be coupled
at different dimensions, that is either at the user or POI dimensions. Thus, we
extend [5], by introducing the user and POI consensus matrices U∗ ∈ R

n×d and
V ∗ ∈ R

m×d for the couplings at the user and POI dimensions, accordingly. We
calculate the loss functions LX , LA, LG and LT of Eq. (3) as follows:

– LX = ||X − UV �||2F + γX ||U − U∗||2F + δX ||V − V ∗||2F , with the check-in
matrix X being coupled with all the contextual matrices at the user or POI
dimensions. U ∈ R

n×d and V ∈ R
m×d are the user and item latent matrices,

when factorizing X.
– LA = ||A − UAV �

A ||2F + γA||UA − U∗||2F . The social link matrix A is only
coupled with the check-in matrix X at the user dimension, thus the recon-
struction error of the POI consensus matrix V ∗ is omitted. Provided that A
is symmetric we preserve the latent matrix UA ∈ R

n×d, with UA = VA.
– LG = ||G − UGV �

G ||2F + δG||VG − V ∗||2F . The geographical similarity matrix
G is coupled with the check-in matrix X at the POI dimension. Given that
G is symmetric we keep only the latent matrix VG ∈ R

n×d, with UG = VG.
– LT = ||T − UT V �

T ||2F + δT ||VT − V ∗||2F . The sequential transition matrix T is
coupled with the check-in matrix X at the POI dimension. In this case, we
also preserve the latent matrix VT ∈ R

m×d, with UT = VT .

The regularization parameters γX and γA control the reconstruction errors of
the respective user latent matrices of each loss function and the user consensus
matrix U∗. Accordingly, parameters δX , δG and δT are used to regularize the
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reconstruction errors of the respective POI latent matrices of each loss function
and the POI consensus matrix V ∗. To reduce the complexity of our model, in our
implementation we set the regularization parameters for the consensus matrices
to 0.01.

Summarizing, the parameter set Θe of the joint loss function L in Eq. (3) is
set to Θe = {U, V, UA, VG, VT , U∗, V ∗}, as A, G and T are symmetric matrices,
with UA = VA, UG = VG and UT = VT . However, the minimization problem
of Eq. (3) is not convex with respect to all the variables of the parameter set
Θe. To solve this problem, we follow an alternating optimization strategy, that
is update one variable while fixing the remaining variables of Θe. According to
the learning strategy of multiplicative rules [5], we compute the update rules of
each variable for the alternating optimization algorithm. Due to lack of space we
omit the presentation of the update rules, as they can be computed in a similar
way as in the study at [5]. By solving the minimization problem of Eq. (3), the
embedding layer computes the user and POI latent matrices U and V of the
check-in matrix X with user preferences, by also accounting for the contextual
information.

4.3 BPR Learning

Feature Layer. At the remaining layers of our architecture in Fig. 1 we adopt
the BPR technique to produce top-k recommendations. Having computed the
user and POI latent matrices U and V at the embedding layer, for each user
u ∈ N we consider the partial relations (i, j) ∈ Ru based on Eq. (1). Then,
in the feature layer we consider the low d-dimensional embeddings, that is the
latent vectors Vi, Uu and Vj , which are then provided to the respective three
neural networks, as shown in Fig. 1.

Hidden Layers. When training the GeoDCF model we aim to maximize the
likelihood in Eq. (2), hence the loss function of GeoDCF becomes:

min
Θb

L = −
∑

u∈N

∑

(i,j)∈Ru

P (i >u j) + λ||Θb||2 (4)

Θb is the parameter set, with Θb = {W
(q)
i ,W

(q)
u ,W

(q)
j , b

(q)
i , b

(q)
u , b

(q)
j }, ∀q =

1, . . . , h, where h is the number of hidden layers used in the three neural networks
of Fig. 1. Matrices W

(q)
i , W

(q)
u and W

(q)
j are the weighting matrices of the q-th

hidden layers to produce the deep learning representations of the latent vectors
Vi, Uu and Vj . Variables b

(q)
i b

(q)
u , b

(q)
j denote the respective biases of the q-th

hidden layers of each neural network. As the size of hidden layers is important,
in our architecture the bottom layer is the widest and each successive layer has a
smaller number of hidden units. This way it learns more abstractive features of
the d-dimensional embeddings and consequently better captures the non-linear
correlations of the multifaceted contextual information with user preferences.
For each neural network we implement the tower structure, halving the layer
size for each successive layer. Hence, to implement the tower architecture we
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add the constraint of 2h ≤ d for the number of hidden layers h and the low
d-dimensional embeddings of MV-NMF. For the hidden layers there are several
choices of activation functions, like sigmoid, hyperbolic tangent tanh(x) and
rectifier linear unit function ReLU(x). In our implementation, we used ReLU
activation functions, with ReLU(x) = max(0, x), as they are non-saturated4,
well-suited for sparse data and making the model less likely to be overfitting [19].
Using ReLU activation functions, ∀q = 1, . . . , h, the q-th hidden layers of the
three neural networks produce the respective representations:

H
(q)
i = ReLU(W (q)

i H
(q−1)
i + b

(q−1)
i )

H(q)
u = ReLU(W (q)

u H(q−1)
u + b(q−1)

u )

H
(q)
j = ReLU(W (q)

j H
(q−1)
j + b

(q−1)
j )

(5)

with H
(0)
i = Vi, H

(0)
u = Uu and H

(0)
j = Vj .

Output and BPR Layers. At the output layer, we use the hidden represen-
tations and the biases of the last hidden layers, that is the h-th layers of the
three neural networks, which are then combined to compute the check-in prob-
abilities xui and xuj (Sect. 3). At the output layer we use the sigmoid function
σ to ensure that the check-in probabilities xui and xuj are in the range of [0, 1].
The check-in probabilities xui and xuj are calculated as follows:

xui = σ(H(h)
i

�
H(h)

u + b
(h)
i + b(h)u )

xuj = σ(H(h)
j

�
H(h)

u + b
(h)
j + b(h)u )

(6)

Provided that xui and xuj ∈ [0, 1], at the BPR layer the partial relation between
xui and xuj is computed as P (i >u j) = (xui − xuj)/2 + 0.5. Then, based on
the computed probability P (i >u j), the prediction of a non-visited POI i is
calculated by forwarding its low d-dimensional embedding Vi on the respective
neural network as shown in Fig. 1 and then computing the check-in probability
xui. The final top-k POI recommendations are generated by ranking the non-
visited POIs based on the probability P (i >u j).

Model Training. In our implementation we used Tensorflow5. We computed
the model parameters Θb via backpropagation with stochastic gradient descent.
In particular, we employed mini-batch Adam, which adapts the learning rate for
each parameter by performing smaller updates for frequent and larger updates for
infrequent parameters. In each backpropagation iteration we performed negative
sampling, as defined in BPR, to randomly select a subset of non-visited POIs
as negative instances j ∈ X −

u . In our implementation we sampled five negative
samples for each positive/observed sample, and set the batch size of mini-batch
Adam to 512 with a learning rate 1e−4. Finally, to account for the fact that
4 The saturation problems occurs when neurons stop learning and their output is near

either 0 or 1, a problem that can be suffered by the sigmoid and tanh functions [19].
5 www.tensorflow.org.

http://www.tensorflow.org
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the initialization of the model parameters Θb plays an important role for the
convergence and performance of our model, we followed a pretraining strategy.
By applying single-view factorization of X and producing the respective latent
matrices U and V , we first trained our model only using check-in data in X with
random initializations until convergence - ignoring the contextual information in
matrices A, G and T . Then, we used the trained parameters as the initialization
of our model with the contextual information.

5 Experimental Evaluation

5.1 Datasets

In our experiments we used two publicly available datasets from Gowalla and
Foursquare. The Gowalla check-in dataset6 was generated from February 2009
to October 2010. Following [10,20] we filter out those users with fewer than 15
check-in POIs and those POIs with fewer than 10 visitors. The filtered dataset
comprises 18,737 users, 32,510 POIs, 1,278,274 check-ins. The Gowalla check-
in dataset includes all the contextual information, that is social correlation,
as well as geographical and sequential transition information. The Foursquare
dataset7 includes check-in data from April 2012 to September 2013. We used the
records generated within United States and eliminated those users with fewer
than 10 check-in POIs, as well as those POIs with fewer than 10 visitors. The
filtered dataset contains 24,941 users, 28,593 POIs and 1,196,248 check-ins. In
the Foursquare dataset, geographical and sequential transition information is
available, whereas users’ social relations are missing.

5.2 Evaluation Protocol

To evaluate the top-k recommendation performance of the examined models
we used the ranking-based metrics recall (R@k) and Normalized Discounted
Cumulative Gain (NDCG@k). Recall R@k is defined as the ratio of the relevant
(checked-in) POIs in the top-k ranked list over all the relevant POIs for each
user. The Normalized Discounted Cumulative Gain NDCG@k metric considers
the ranking of the relevant POIs in the top-k list. For each user the Discounted
Cumulative Gain is defined as:

DCG@k =
k∑

l=1

2rell − 1
log2 l + 1

(7)

where rell represents the relevance score of POI l, that is binary relevance in
our case. We consider a POI as relevant if a user has checked-in, and irrelevant
otherwise. NDCG@k is the ratio of DCG@k over the ideal iDCG@k value for
each user, that is the DCG@k value given the check-in data in the test set.
6 http://snap.stanford.edu/data/loc-gowalla.html.
7 https://sites.google.com/site/yangdingqi/home/foursquare-dataset.

http://snap.stanford.edu/data/loc-gowalla.html
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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Following the evaluation protocol of [9,20] we randomly select a percentage of
20% of the check-in data as a test set, while the remaining check-in data are
used to train our model. We repeated our experiments five times, and in our
results we report average recall and NDCG over the five runs.

5.3 Compared Methods

In our experiments we compare the following methods:

– RankGeoFM [9]: a ranking-based model that first learns users’ preference
rankings for POIs, and then includes the geographical influence of neighboring
POIs to generate top-k POI recommendations.

– USG [21]: a POI recommendation algorithm that considers both geographical
influence and users’ social correlation, following a friend-based collaborative
filtering strategy with a pointwise loss function.

– PACE [20]: a deep learning strategy for jointly learning the embeddings of
users and POIs to predict user preferences over POIs and all the available
contextual information with a pointwise loss function.

– MV-NMF: a variant of our model, which ignores the deep learning strategy
of GeoDCF by only performing multi-view NMF of the check-in matrix with
the contextual information, as presented in Sect. 4.2. To generate recommen-
dations we compute the factorized matrix as the product of the user and
latent matrices UV �, and sort each row/user of the factorized matrix in a
descending order. MV-NMF exploits all the available contextual information,
and is a pointwise method.

– GeoDCF: the proposed model that first performs MV-NMF to calculate the
user and POIs latent vectors and then performs BPR learning with our deep
learning strategy.

The parameters of the examined methods have been determined via cross-
validation and in our experiments we report the best results. The parameter
analysis of the proposed method is further studied in Sect. 5.6.

5.4 Comparison with State-of-the-Art

In Fig. 2 we evaluate the performance of the examined models in terms of recall
R@k and NDCG@k, when varying the top-k POI recommendations. RankGe-
oFM and USG perform differently in the Gowalla and Foursquare datasets.
Although both RankGeoFM and USG exploit users’ check-in data and geo-
graphical information, in the Gowalla dataset USG achieves a better recommen-
dation accuracy than RankGeoFM as USG also uses the available contextual
information of users’ social relations. Instead, users’ social relations are miss-
ing from the Foursquare dataset (Sect. 5.1). As we can observe from Fig. 2 in
the Foursquare dataset RankGeoFM beats USG. This occurs because RankGe-
oFM is a ranking-based method focusing on the ranking performance, while
USG is a pointwise method. Regarding the most competitive method of PACE,
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Fig. 2. Performance evaluation in terms of recall (R@k) and Normalized Discounted
Cumulative Gain (NDCG@k) for the Gowalla and Foursquare datasets. Using the
paired t-test, the proposed GeoDCF model outperforms all the baselines for p < 0.05.

Fig. 2 shows that PACE outperforms both RankGeoFM and USG by capturing
the non-linear correlations of the available contextual information with its deep
learning strategy. Compared to the proposed GeoDCF model, our MV-NMF
variant performs poorly, as MV-NMF neither captures well the non-linear corre-
lations of the users’ and POIs’ contextual information nor focuses on the ranking
performance. Using the paired t-test we found out that compared to the second
best method of PACE, our GeoDCF model achieves an average improvement
of 18.96% and 17.81% in terms of recall and NDCG in all runs, at a signifi-
cance level of p < 0.05. This occurs because PACE is a pointwise method and
GeoDCF is a ranking-based model aiming to improve the top-k recommendation
accuracy. Furthermore, GeoDCF also captures the non-linear correlations of the
multifaceted contextual information with user preferences in our deep learning
architecture.

5.5 Influence of Users’ and POIs’ Context

In Fig. 3 we evaluate separately the influence of users’ and POIs’ contextual
information on our GeoDCF model. We denote “check-in data”, when GeoDCF
only uses the check-in data to produce recommendations, ignoring any con-
textual information. Accordingly, “check-in data+user context” is a variant of
the GeoDCF model which exploits check-in data and user context, that is users’
social relations. Model “check-in data+POI context” is our variant when check-in
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Fig. 3. Influence of users’ and POIs’ contextual information. Provided that in the
Foursquare dataset users’ social relations are missing, the variants “check-in data”
and “check-in data+user context” have equal performance, and the variant “check-in
data+POI context” has the same performance with GeoDCF.

data are only combined with POIs’ contextual information, that is geographical
and sequential transition information. As in the Foursquare dataset users’ social
correlations are missing, the variants “check-in data” and “check-in data+user
context” have equal performance, and the variant “check-in data+POI context”
has the same performance with GeoDCF. Clearly, as we can observe from Fig. 3
in both datasets the “check-in data” variant has the lowest performance, as it
does not combine any contextual information with user preferences. This means
that the contextual information of users or POIs can boost the recommendation
accuracy. An interesting observation is that in the Gowalla dataset the “check-in
data+POI context” variant outperforms the “check-in data+user context” vari-
ant, which indicates that POIs’ context is more important than users’ context
in the POI recommendation task. This observation also complies with the obser-
vations of relevant studies such as [7,20].

5.6 Parameter Analysis

The two most important parameters in our GeoDCF model are: (i) the number
of low dimensional embeddings d at the embedding layer; and (ii) the number of
hidden layers h of the neural networks. Given the constraint of 2h ≤ d of Sect. 4.3,
we vary the number of low dimensional embeddings d to the power of 2. For d =
[1024, 512, 256] we vary the number of hidden layers h from 1 to 5 by a step of 1.
As described in Sect. 4.3 the bottom layer with the low dimensional embeddings
d is the widest and each successive layer has a smaller number of hidden units,
to learn more abstractive features of the d-dimensional embeddings. To better
capture the non-linear correlations of the multifaceted contextual information,
we implement the tower structure for each neural network, that is halving the
layer size for each successive layer. For example, for d = 1024 and h = 3 we have
the following tower architecture 1024 → 512 → 256 → 128 or for d = 512 and
h = 2 we have the architecture of 512 → 256 → 128. Figure 4 shows the impact of
the different deep learning architectures. We observe that the best architecture
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is when d = 256 and h = 3 in the Gowalla dataset, and d = 512 and h = 4
in the Foursquare dataset, corresponding to the following architectures: 256 →
128 → 64 → 32 and 512 → 256 → 128 → 64 → 32, respectively. For different
d and h values GeoDCF cannot capture well the non-linear correlations of the
multifaceted contextual information with users’ check-in data, which explains
the low performance of GeoDCF in these cases.

Fig. 4. Impact of different deep learning architectures when varying the number of low
dimensional embeddings d at the embedding layer and the number of hidden layers h
of the neural networks, subject to the constraint of 2h ≤ d.

6 Conclusions

In this paper we presented GeoDCF, an efficient POI recommendation strategy
to exploit the multifaceted information of users and POIs. The three key factors
of the proposed model are the (i) exploit of the contextual information of users
and POIs with a multi-view strategy at the embedding layer; (ii) capture of the
non-linear correlations of the multifaceted contextual information with users’
check-in data in our deep learning architecture; (iii) adding of a BPR layer at
the top of our architecture to focus on the ranking performance. Our experimen-
tal evaluation on two benchmark datasets showed the superiority of GeoDCF to
recently proposed baselines. Compared to the second best method, the proposed
GeoDCF model achieved an average improvement of 18.96% and 17.81% in terms
of recall and NDCG in all runs. We also evaluated GeoDCF with a variant of our
model, which ignores the proposed deep learning architecture. Our experimental
results demonstrated that GeoDCF outpeformed its variant. Clearly, the deep
learning strategy can significantly boost the recommendation accuracy, by cap-
turing the non-linear correlations of the contextual information and focusing on
the ranking performance in the POI recommendation task. Finally, we evaluated
the impact of users’ and POIs’ contextual information on our model separately.
We showed that POIs’ context contains more valuable information than users’
social relations when generating POI recommendations, also confirmed by rele-
vant studies [7,20]. Nowadays, users open multiple accounts on different social
media platforms. An interesting future direction is to exploit user data from var-
ious social media platforms, following cross-domain strategies to produce POI
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recommendations. This is a challenging task as users behave differently in dis-
tinct social media platforms. For example, we plan to extend our GeoDCF model
to generate POI recommendations for Foursquare users based on user data from
Twitter and Instagram [15,16].
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