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Abstract. When learning sequence representations, traditional pattern-
based methods often suffer from the data sparsity and high-
dimensionality problems while recent neural embedding methods often
fail on sequential datasets with a small vocabulary. To address these
disadvantages, we propose an unsupervised method (named Sqn2Vec)
which first leverages sequential patterns (SPs) to increase the vocabulary
size and then learns low-dimensional continuous vectors for sequences via
a neural embedding model. Moreover, our method enforces a gap con-
straint among symbols in sequences to obtain meaningful and discrimina-
tive SPs. Consequently, Sqn2Vec produces significantly better sequence
representations than a comprehensive list of state-of-the-art baselines,
particularly on sequential datasets with a relatively small vocabu-
lary. We demonstrate the superior performance of Sqn2Vec in several
machine learning tasks including sequence classification, clustering, and
visualization.

1 Introduction

Many real-world applications such as web mining, text mining, bio-informatics,
system diagnosis, and action recognition have to deal with sequential data. The
core task of such applications is to apply machine learning methods, for example,
K-means or Support Vector Machine (SVM) to sequential data to find insightful
patterns or build effective predictive models. However, this task is challenging
since machine learning methods typically require inputs as fixed-length vectors,
which are not applicable to sequences.
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A well-known solution in data mining is to use sequential patterns (SPs) as
features [6]. This approach first mines SPs from the dataset, and then represents
each sequence in the dataset as a feature vector with binary components indicat-
ing whether this sequence contains a particular sequential pattern. We can see
the dimension of the feature space is huge since the number of SPs is often large.
Consequently, this leads to the high-dimensionality and data sparsity problems.

To reduce the dimension of the feature space, many researchers have tried to
extract only interesting SPs under an unsupervised setting [5,9,17] or discrimi-
native SPs under a supervised setting [3,6,19]. The methods discover interesting
SPs, e.g., closed SPs [17], compressing SPs [9], and relevant SPs [5] without using
the sequence labels. Although these methods can reduce the number of generated
patterns, thus solving the high-dimensionality problem, they still suffer from the
data sparsity problem. The methods discover discriminative SPs using different
measures, e.g., information gain [6], support-cohesion [19], and behavioral con-
straint [3], which involve the sequence labels. Although these methods often show
good performances in sequence classification, they usually require the labels for
all training examples, which is often unrealistic in many real applications.

Recently, neural embedding approaches have been introduced to learn low-
dimensional continuous embedding vectors for sequences using neural networks
in a fully unsupervised manner. These methods primarily focus on text, where
they learn embedding vectors for documents [2,10] and show significant improve-
ments over non-embedding methods, e.g., Bag-of-Words, in several applications
such as document classification and sentiment analysis. However, they have two
limitations. First, they mostly learn embedding vectors based on atoms in data
(i.e., words), but do not consider sets of atoms (i.e., phrases). Second, they often
perform poorly on datasets with a relatively small vocabulary [8]. In our exper-
iments, the performances of document embedding methods dramatically reduce
on sequential datasets whose the vocabulary size is less than 300.

Our Approach. To overcome the disadvantages of traditional pattern-based
methods and recent embedding methods, we propose a novel unsupervised
method (named Sqn2Vec) for learning sequence embeddings. In particular, we
first extract a set of SPs which satisfy a gap constraint from the dataset. We
then adapt a document embedding model to learn a vector for each sequence
by predicting not only its belonging symbols but its SPs as well. By doing this,
we can learn low-dimensional continuous vectors for sequences, which solves the
weakness of pattern-based methods. We also take into account sets of atoms
(i.e., SPs) during the learning process, which solves the weakness of embedding
methods. More importantly, by considering both singleton symbols and SPs,
we can increase the vocabulary size, which results in our better embeddings
on sequential datasets with a small vocabulary. Moreover, since Sqn2Vec is
fully unsupervised, it can be directly used for learning sequence embeddings in
domains where labeled examples are difficult to obtain and the learned repre-
sentations are well-generalized to different tasks such as sequence classification,
clustering, and visualization.

To summarize, we make the following contributions:
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1. We propose Sqn2Vec, an unsupervised embedding method, for learning low-
dimensional continuous feature vectors for sequences.

2. We propose two models in Sqn2Vec, which learn sequence embeddings by
predicting its belonging singleton symbols and SPs. The learned embeddings
are meaningful and discriminative.

3. We demonstrate Sqn2Vec in both sequence classification and sequence clus-
tering tasks, where it significantly outperforms the state-of-the-art baselines
on 10 real-world sequential datasets.

2 Related Work

2.1 Sequential Pattern Based Methods for Sequence Representation

SPs have been widely used to construct feature vectors for sequences [6], which
are essential inputs for different machine learning tasks. However, using SPs as
features often suffers from the data sparsity and high-dimensionality problems.
Recent SP-based methods have tried to extract only interesting or discrimina-
tive SPs. Several approaches have been proposed for mining interesting SPs.
For example, Lam et al. [9] discovered compressing SPs which can optimally
compress the dataset w.r.t an encoding scheme. In [5], a probabilistic approach
was developed to mine relevant SPs which are able to reconstruct the dataset.
Although interesting SPs can help to reduce the number of generated patterns
(i.e., the feature space), they still suffer from the data sparsity problem.

To discover discriminative SPs, existing approaches have used the sequence
labels during the mining process. For example, they use the label information to
compute information gain [6], support-cohesion [19], or behavioral constraint [3].
Although discriminative SPs are useful for classification, they require sequence
labels, making the mining process supervised. Related to sequence classification,
SPs have been also used to build a set of predictive rules for classification, often
called sequential classification rules. These rules represent the strong associations
between SPs and labels, which can be used directly for prediction (i.e., they are
used as rule-based classifiers) [19] or indirectly for prediction (i.e., they are used
as features in other classifiers) [4].

2.2 Embedding Methods for Sequence Representation

Most existing approaches for sequence embedding learning mainly focus on text,
where they learn embedding vectors for documents [2,10]. These methods have
shown impressive successes in many natural language processing tasks such as
document classification and sentiment analysis. They, however, are not suitable
for sequential data in bio-informatics, navigation systems, and action recognition
since different from text, these sequential datasets have a very small vocabulary
size (i.e., the small number of distinct symbols). For example, the human DNA
sequences only consist of four nucleotides A, C, G, and T. Related to sequence
classification, several deep neural network models (also called supervised embed-
ding methods) have been introduced such as long short term memory (LSTM)
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networks and bidirectional LSTM (Bi-LSTM) networks [16]. Since these meth-
ods require labels, their embeddings are not general enough to effectively apply
to unsupervised tasks such as sequence clustering.

As far as we know, learning embedding vectors for sequences based on SPs has
not been studied yet. In this paper, we propose the first approach which utilizes
information of both singleton symbols and SPs to learn sequence embeddings.
Different from discriminative pattern-based methods and supervised embedding
methods, our method is fully unsupervised. Moreover, our method leverages SPs
to capture the sequential relations among symbols as SP-based methods while
it learns dense representations as embedding methods.

3 Framework

3.1 Problem Definition

Given a set of symbols I = {e1, e2, ..., eM}, a sequential dataset D =
{S1, S2, ..., SN} is a set of sequences where each sequence Si is an ordered list of
symbols [18]. The symbol at the position j in Si is denoted as Si[j] and Si[j] ∈ I.

Our goal is to learn a mapping function f : D → R
d such that every sequence

Si ∈ D is mapped to a d -dimensional continuous vector. The mapping needs to
capture the similarity among the sequences in D, in the sense that Si and Sj are
similar if f(Si) and f(Sj) are close to each other on the vector space, and vice
versa. The matrix X = [f(S1), f(S2), ..., f(SN )] then contains feature vectors of
sequences, which can be direct inputs for many traditional machine learning and
data mining tasks, particularly classification and clustering.

3.2 Learning Sequence Embeddings Based on Sequential Patterns

To learn sequence embeddings, one direct solution is to apply document embed-
ding models [2,10] to the sequential dataset, where each sequence is treated as a
document and symbols are treated as words. However, as we discussed in Sect. 1,
existing document embedding methods are not suitable for sequential datasets
in bio-informatics or system diagnosis since these datasets have a relatively small
vocabulary (i.e., the very small number of symbols).

To improve the performances of document embedding models on such kind of
sequential data, we propose to learn sequence embeddings based on SPs instead
of singleton symbols. By doing this, we can increase the vocabulary size since
the number of SPs is much larger than the number of symbols.

Sequential Pattern Discovery. Following the notations in [18], we define a
sequential pattern as follows. Let I = {e1, e2, ..., eM} be a set of symbols and
D = {S1, S2, ..., SN} be a sequential dataset.

Definition 1 (Subsequence). Given two sequences S1 = {e1, e2, ..., en} and
S2 = {e′

1, e
′
2, ..., e

′
m}, S1 is said to be a subsequence of S2 or S1 is contained in



Sqn2Vec: Learning Sequence Representation via SPs 573

S2 (denoted S1 ⊆ S2), if there exists a one-to-one mapping φ : [1, n] → [1,m],
such that S1[i] = S2[φ(i)] and for any positions i, j in S1, i < j ⇒ φ(i) < φ(j).
In other words, each position in S1 is mapped to a position in S2, and the order
of symbols is preserved.

Definition 2 (Subsequence occurrence). Given a sequence S =
{
e′
1, e

′
2, ...,

e′
m

}
and a subsequence X = {e1, e2, ..., en} of S, a sequence of positions o =

{i1, ..., im} is an occurrence of X in S if 1 ≤ ik ≤ m and X[k] = S[ik] for each
1 ≤ k ≤ n, and ik < ik+1 for each 1 ≤ k < n.

Example 1. X = {g, t} (or X = gt for short) is a subsequence of S = gaagt.
There are two occurrences of X in S, namely o1 = {1, 5} and o2 = {4, 5}.

Definition 3 (Subsequence support). Given a sequential dataset D, the sup-
port of a subsequence X is defined as sup(X) = |{Si∈D|X⊆Si}|

|D| , i.e., the fraction
of sequences in D, which contain X.

Definition 4 (Sequential pattern). Given a minimum support threshold δ ∈
[0, 1], a subsequence X is said to be a sequential pattern if sup(X) ≥ δ.

A sequential pattern can capture the sequential relation among symbols,
but it does not pay attention on the gap among its elements. In bio-data
and text data, this gap is very important because SPs whose symbols are
far away from each other are often less meaningful than those whose sym-
bols are close in the sequences. For example, consider a text dataset with two
sentences S1 = “machine learning is a field of computer science” and S2 =
“machine learning gives computer systems the ability to learn”. Although two
SPs X1 = {machine, learning} and X2 = {machine, computer} are found in
both S1 and S2, X2 is less meaningful than X1 due to the large gap between
“machine” and “computer”. In other words, the two words “machine” and “com-
puter” are in two different contexts. We believe that if we restrict the distance
between two neighboring elements in a sequential pattern, then this pattern is
more meaningful and discriminative. We define a sequential pattern satisfying a
gap constraint as follows.

Definition 5 (Gap constraint and satisfaction). A gap is a positive integer,
� > 0. Given a sequence S = {e′

1, e
′
2, ..., e

′
m} and an occurrence o = {i1, ..., im}

of a subsequence X of S, if ik+1 ≤ ik + � (∀ik ∈ [1,m − 1]), then we say that
o satisfies the �-gap constraint. If there is at least one occurrence of X satisfies
the �-gap constraint, we say that X satisfies the �-gap constraint.

Example 2. Among two occurrences of X = gt in S = gaagt, namely o1 = {1, 5}
and o2 = {4, 5}, only o2 satisfies the 1-gap constraint (i.e., � = 1) since 5 ≤
4 + �. We say that X satisfies the 1-gap constraint because at least one of its
occurrences does.

Definition 6 (Sequential pattern satisfying a �-gap constraint). Given
a sequential dataset D, a gap constraint � > 0, and a minimum support threshold
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δ ∈ [0, 1], the support of a subsequence X in D with the �-gap constraint, denoted
sup(X,�), is the fraction of sequences in D, where X appears as a subsequence
satisfying the �-gap constraint. X is called a sequential pattern which satisfies
the �-gap constraint if sup(X,�) ≥ δ.

Note that we consider the subsequences with length 1 (i.e., they contain only
one symbol) satisfy any �-gap constraint. Hereafter, we call a subsequence X a
sequential pattern with the meaning that X is a sequential pattern satisfying a
�-gap constraint.

Example 3. Let consider an example sequential dataset as shown in Fig. 1(a).
Assume that � = 1 and δ = 0.7. The subsequence X = ag is contained in three
sequences S1, S2, and S4, and it also satisfies the 1-gap constraint in these three
sequences. Thus, its support is sup(X,�) = 3/4 = 0.75. We say that X = ag is
a sequential pattern since sup(X,�) ≥ δ. With � = 1 and δ = 0.7, there are
in total five SPs discovered from the dataset, as shown in Fig. 1(b), and each
sequence now can be represented by a set of SPs, as shown in Fig. 1(c).

Fig. 1. Two forms of a sequence: a set of single symbols and a set of SPs. Table (a)
shows a sequential dataset with four sequences where each of them is a set of symbols.
Table (b) shows five SPs discovered from the dataset (here, � = 1 and δ = 0.7). Table
(c) shows each sequence represented by a set of SPs.

Sequence Embedding Learning. After associating each sequence with a set
of SPs, we follow the Paragraph Vector-Distributed Bag-of-Words (PV-DBOW)
model introduced in [10] to learn embedding vectors for sequences. Given a target
sequence St whose representation needs to be learned, and a set of SPs F(St) =
{X1,X2, ...,Xl} contained in St, our goal is to maximize the log probability of
predicting the SPs X1,X2, ...,Xl which appear in St:

max
l∑

i=1

log Pr(Xi | St) (1)

Furthermore, Pr(Xi | St) is defined by a softmax function:

Pr(Xi | St) =
exp(g(Xi) · f(St))∑

Xj∈F(D) exp(g(Xj) · f(St))
, (2)
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where g(Xi) ∈ R
d and f(St) ∈ R

d are the embedding vectors of the sequential
pattern Xi ∈ F(St) and the sequence St respectively, and F(D) is the set of all
SPs discovered from the dataset D.

Calculating the summation
∑

Xj∈F(D) exp(g(Xj) · f(St)) in Eq. 2 is very
expensive since the number of SPs in F(D) is often very large. To solve this
problem, we approximate it using the negative sampling technique [13]. The
idea is that instead of iterating over all SPs in F(D), we randomly select a rel-
atively small number of SPs which are not contained in the target sequence St

(these SPs are called negative SPs). We then attempt to distinguish the SPs con-
tained in St from the negative SPs by minimizing the following binary objective
function of logistic regression:

O1 = −
[

log σ(g(Xi) · f(St)) +
K∑

n=1

EXn∼P(X) log σ(−g(Xn) · f(St))

]

, (3)

where σ(x) = 1
1+e−x is a sigmoid function, P(X) is the set of negative SPs, Xn

is a negative sequential pattern draw from P(X) for K times, and g(Xn) ∈ R
d

is the embedding vector of Xn.
We minimize O1 in Eq. 3 using stochastic gradient descent (SGD) where the

gradients are derived as follows:

∂O1

∂g(Xn)
= −σ(g(Xn) · f(St) − IXi

[Xn]) · f(St)

∂O1

∂f(St)
= −

K∑

n=0

σ(g(Xn) · f(St) − IXi
[Xn]) · g(Xn), (4)

where IXi
[Xn] is an indicator function to indicate whether Xn is a sequential

pattern Xi ∈ F(St) (i.e., the negative sequential pattern appears in the target
sequence St) and when n = 0, then Xn = Xi.

3.3 Sqn2Vec Method for Learning Sequence Embeddings

When associating a sequence St with a set of SPs, St may not contain any SPs.
In this case, we cannot learn a meaningful embedding vector for St. To avoid
this problem, we propose two models which combine information of both single
symbols and SPs to learn embedding vectors for sequences. These two models
named Sqn2Vec-SEP and Sqn2Vec-SIM are presented next.

Sqn2Vec-SEP Model to Learn Sequence Embeddings. Given a sequence
St, we separately learn an embedding vector f1(St) for St based on its symbols
using the document embedding model PV-DBOW [10] and an embedding vector
f2(St) for St based on its SPs (see Sect. 3.2). We then take the average of two
embedding vectors to obtain the final embedding vector f(St) = f1(St)+f2(St)

2
for that sequence. The basic idea of Sqn2Vec-SEP is illustrated in Fig. 2.
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Fig. 2. Sqn2Vec-SEP model. Given a target sequence St, we learn the embedding
vector f1(St) to predict its belonging symbols and learn the embedding vector f2(St)
to predict its belonging SPs. We then take the average of f1(St) and f2(St) to obtain
the final embedding vector f(St) for St.

Sqn2Vec-SIM Model to Learn Sequence Embeddings. In the Sqn2Vec-
SEP model, the sequence embeddings only capture the latent relationships
between sequences and symbols and those between sequences and SPs separately.
To overcome this weakness, we further propose the Sqn2Vec-SIM model which
uses information of both single symbols and SPs of a sequence simultaneously.
The overview of this model is shown in Fig. 3. More specifically, given a sequence
St, our goal is to minimize the following objective function:

O2 = −
⎡

⎣
∑

ei∈I(St)

log Pr(ei | St) +
∑

Xi∈F(St)

log Pr(Xi | St)

⎤

⎦ , (5)

where I(St) is the set of singleton symbols contained in St and F(St) is the set
of SPs contained in St.

Fig. 3. Sqn2Vec-SIM model. Given a target sequence St, I(St) = {e1, e2, ..., ek} is the
set of symbols contained in St and F(St) = {X1, X2, ..., Xl} is the set of SPs contained
in St. We learn the embedding vector f(St) for St to predict both its belonging symbols
and SPs.
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Equation 5 can be simplified to:

O2 = −
∑

pi∈I(St)∪F(St)

log Pr(pi | St), (6)

where pi ⊆ St is a symbol or a sequential pattern.
Following the same procedure in Sect. 3.2, we learn the embedding vector

f(St) for St, and the embedding vectors of two sequences Si and Sj are close to
each other if they contain similar symbols and SPs.

4 Experiments

4.1 Sequence Classification

The first experiment focuses on sequence classification, in which we compare our
method with 11 baselines using sequential data from four application domains:
text mining, action recognition, navigation analysis, and system diagnosis.

Datasets. We use eight benchmark datasets which are widely used for sequence
classification. Their characteristics are summarized in Table 1. The reuters
dataset is the four largest subsets of the Reuters-21578 dataset, consisting of
news stories [19]. The three datasets aslbu, aslgt, and auslan2 are derived from
the videos of American and Australian Sign Language expressions [6]. The con-
text dataset presents different locations of mobile devices carried by end-users
[12]. The two datasets pioneer and skating are used in action recognition, which
were introduced in [6]. The final dataset unix contains the command-line histo-
ries in a Unix system of nine end-users [19]. All datasets were used to evaluate
the accuracy of sequence classification in [4–6,9,19].

Table 1. Statistics of eight sequential datasets.

Dataset # sequences # symbols min. len max. len avg. len # classes

reuters 1,010 6,380 4 533 93.84 4

aslbu 424 250 2 54 13.05 7

aslgt 3,464 94 2 176 43.67 40

auslan2 200 16 2 18 5.53 10

context 240 94 22 246 88.39 5

pioneer 160 178 4 100 40.14 3

skating 530 82 18 240 48.12 7

unix 5,472 1,697 1 1,400 32.34 4
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Baselines. For a comprehensive comparison, we employ 11 state-of-the-art up-
to-date baselines which can be categorized into four main groups:

– Unsupervised SP-based methods: We compare our method – Sqn2Vec
with two state-of-the-art methods GoKrimp [9] and ISM [5]. We adopt their
classification performances from their corresponding papers. We also employ
another unsupervised baseline which constructs a binary feature vector for
each sequence, with components indicating whether this sequence contains
a sequential pattern with a �-gap constraint (see Sect. 3.2). We name this
baseline SP-BIN.

– Supervised SP-based methods: We select three representative and up-to-
date baselines, namely BIDE-DC [6], SCIP [19], and MiSeRe [4]. We adopt
the classification results of BIDE-DC reported in its supplemental appendix1,
those of SCIP from Table 10 in [19] and Fig. 12 in [4], and those of MiSeRe
from Fig. 8 in [4].

– Unsupervised embedding methods: By considering a sequence as a doc-
ument and symbols as words, we apply two recent state-of-the-art document
embedding models for learning sequence embeddings, which are PV-DBOW
[10] and Doc2Vec-C [2]. We also learn embedding vectors for sequences based
on SPs (see Sect. 3.2), which we name Doc2Vec-SP.

– Supervised embedding methods: We implement two deep recurrent neu-
ral network models for sequence classification, LSTM and Bi-LSTM [16].

Our method Sqn2Vec has two different models which use different combinations
of symbols and SPs. The Sqn2Vec-SEP model learns sequence embedding vec-
tors from symbols and SPs separately (see Sect. 3.3) while the Sqn2Vec-SIM
model learns sequence embedding vectors from symbols and SPs simultaneously
(see Sect. 3.3).

Evaluation Metrics. After the feature vectors of sequences are constructed or
learned, we feed them to an SVM with linear kernel [1] to classify the sequence
labels. We use the linear-kernel SVM (a simple classifier) since we focus on the
sequence embedding learning, not on a classifier, and this classifier was also used
in [4,5,9,19]. The hyper-parameter C of SVM is set to 1, the same setting used in
previous studies [5,9,19]. Each dataset is randomly split into 9 folds for training
and 1 fold for testing. We repeat the classification process on each dataset 10
times and report the average classification accuracy. The standard deviation is
not reported since all methods are very stable (their standard deviations are less
than 10−1).

Parameter Settings. Our method Sqn2Vec has three important parameters:
the minimum support threshold δ, the gap constraint � for discovering SPs and
the embedding dimension d for learning sequence embeddings. Since we develop
Sqn2Vec in a fully unsupervised learning fashion, the values for δ, �, and d

1 https://sites.google.com/site/dfradkin/kais2014-separateAppendix.pdf.

https://sites.google.com/site/dfradkin/kais2014-separateAppendix.pdf
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are assigned without using sequence labels. We set d = 128 (a common value
used in embedding methods [7,14]), set � = 4 (a small gap which is able to
capture the context of each symbol [15]), and set δ following the elbow method
in [15]. Figure 4 illustrates the elbow method. From the figure, we can see that
when the δ value decreases, the number of SPs slightly increases until a δ value
where it significantly increases. This δ value, highlighted in red in the figure and
chosen by the elbow method without considering the labels of sequences, is used
in our experiments. In Sect. 4.1, we analyze the potential impact of selecting
three parameters δ, �, and d on the classification performance.

Fig. 4. The number of SPs dis-
covered from the reuters dataset
per δ (here, � = 4). The red dot
indicates the δ value selected via
the elbow method. (Color figure
online)

For a fair comparison, we use the same mini-
mum support thresholds and gap constraints for
our method and the baseline SP-BIN. We also
set the embedding dimension required by three
baselines PV-DBOW, Doc2Vec-C, and Doc2Vec-
SP to 128, the same as one used in our method.
For Doc2Vec-C, we use the source code2 pro-
vided by the author with the same parameter
settings except d = 128. We implement LSTM
and Bi-LSTM with the following details3: the
dimension of symbol embedding is 128, the num-
ber of LSTM hidden units is 100, the number of
epochs is 50, the mini batch size is 64, the drop-
out rate for symbol embedding and LSTM is 0.2,
and the optimizer is Adam.

Results and Discussion. From Table 2, we can see two models in our method
Sqn2Vec clearly results in better classification on all datasets compared with
unsupervised embedding methods. Sqn2Vec-SEP achieves 2–97%, 5–232%, and
1–17% improvements over PV-DBOW, Doc2Vec-C, and Doc2Vec-SP respec-
tively. As discussed in Sect. 1, two document embedding methods PV-DBOW
and Doc2Vec-C perform poorly on sequential datasets with the small number
of symbols, namely aslbu, aslgt, auslan2, context, pioneer, and skating. Espe-
cially, on the dataset auslan2 whose the vocabulary size is only 16, their per-
formances dramatically reduce, where they are 97–232% and 106–247% worse
than Sqn2Vec-SEP and Sqn2Vec-SIM respectively. In contrast, on unix and
the text dataset reuters, where the vocabulary size is large enough, their per-
formances are quite good. Doc2Vec-C even achieves the second best result on
reuters.

On all the datasets with the small vocabulary size, Doc2Vec-SP signifi-
cantly outperforms PV-DBOW and Doc2Vec-C. This demonstrates that learning
sequence embeddings from SPs is more effective than learning sequence embed-
dings from symbols, as discussed in Sect. 3.2. Two our models (Sqn2Vec-SEP
and Sqn2Vec-SIM) are always superior than Doc2Vec-SP. This proves that our
2 https://github.com/mchen24/iclr2017.
3 We use the parameter settings suggested by Keras (https://keras.io) for LSTM.

https://github.com/mchen24/iclr2017
https://keras.io
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proposal to incorporate the information of both singleton symbols and SPs into
the sequence embedding learning is a better strategy than learning the sequence
embeddings from SPs only (see Sect. 3.3).

For most cases, our method Sqn2Vec is better than unsupervised pattern-
based methods. On three datasets auslan2, skating, and unix, Sqn2Vec-SIM
outperforms these approaches by large margins (achieving 7–17%, 12–32%, and
33–34% gains over SP-BIN, GoKrimp, and ISM). Interestingly, our developed
baseline SP-BIN, which uses SPs with a �-gap constraint, is generally better
than two state-of-the-art methods GoKrimp and ISM. This verifies our intuition
in Sect. 3.2 that SPs satisfying a �-gap constraint are more meaningful and
discriminative since they can capture the context of each symbol.

Compared with supervised pattern-based methods and supervised embedding
methods, our Sqn2Vec produces comparable performances on most datasets. It
outperforms BIDE-DC, SCIP, and deep recurrent neural networks (LSTM and
Bi-LSTM) on all datasets except aslgt and unix. Note that these methods lever-
age the labels of sequences when they construct/learn sequence representations,
an impractical condition which actually benefits the supervised methods.

Table 2. Accuracy of our Sqn2Vec and 11 baselines on eight sequential datasets.
Bold font marks the best performance in a column. The last row denotes the δ values
used by our method for each dataset; they are determined using the elbow method (see
Fig. 4). “–” means the accuracy is not available in the original paper.

Method reuters aslbu aslgt auslan2 context pioneer skating unix

SP-BIN 94.85 63.49 78.76 28.00 90.83 100.00 31.70 82.06

GoKrimp – 59.86 81.90 29.50 82.08 100.00 25.80a 74.33

ISM – 60.20 75.70 24.60 78.30 100.00 25.60 –

BIDE-DC – 59.03 82.30 30.67 51.53 97.92 28.11 57.74

SCIP 96.63 59.00 65.00 32.00 00.00 97.00 26.00 88.96

MiSeRe – 63.00 74.00 32.00 81.00 100.00 31.00 –

PV-DBOW 95.84 46.51 70.98 16.00 86.25 84.38 26.79 90.75

Doc2Vec-C 97.62 37.21 49.25 9.50 37.50 62.50 16.98 86.35

Doc2Vec-SP 97.13 60.93 78.67 30.50 87.08 98.75 31.32 83.18

LSTM 90.40 50.70 69.74 25.00 71.25 93.75 27.74 90.86

Bi-LSTM 91.39 56.74 72.74 29.50 78.75 94.38 32.83 91.79

Sqn2Vec-SEP 98.02 62.56 81.18 31.50 91.67 99.38 36.60 90.78

Sqn2Vec-SIM 94.95 62.09 78.90 33.00 87.50 100.00 33.96 89.40

δ (%) 3% 2% 5% 3% 20% 4% 10% 7%
a As GoKrimp uses another version of skating, its result for skating is copied from [5].

Parameter Sensitivity. We examine how the different choices of three param-
eters δ, �, and d affect the classification performance of Sqn2Vec-SEP on five
datasets reuters, aslbu, aslgt, auslan2, and pioneer. Figure 5 shows the classifi-
cation results as a function of one chosen parameter when the others are set to
their default values. From Fig. 5(a), we can see our method is very stable on
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two datasets reuters and aslgt, where its classification performance just slightly
changes with different δ values. On three datasets aslbu, auslan2, and pioneer,
our prediction performance shows an increasing trend as δ is decreased. Another
observation is that the values for δ selected by the elbow method often lead to
the best or close to the best accuracy.

From Fig. 5(b), we also observe the performance of our Sqn2Vec-SEP is
consistent on reuters and aslgt, where the gap constraint � is gain of relatively
little relevant to the predictive task. On contrary, there is a first-increasing and
then-decreasing accuracy line on two datasets aslbu and pioneer. One possible
explanation is that if we set � large, the generated SPs are less meaningful as
we discussed in Sect. 3.2. On auslan2, the increase of accuracy converges when
� reaches 4.

Figure 5(c) suggests that the predictive performance increases on two datasets
aslgt and auslan2 when d is increased whereas there is a first-increasing and then-
decreasing accuracy line on aslbu and pioneer. This finding differs from those in
document embedding methods, where the embedding dimension generally shows
a positive effect on document classification [2]. Again, our predictive performance
is steady on reuters, which is shown by a straight accuracy line.

Fig. 5. Parameter sensitivity in sequence classification on five datasets reuters, aslbu,
aslgt, auslan2, and pioneer. The minimum support thresholds δ selected via the elbow
method and used in our experiments are indicated by red markers. (Color figure online)

4.2 Sequence Clustering

The second experiment illustrates how the latent representations learned by our
proposed method can help the sequence clustering task, wherein we compare its
performance with those of four baselines using text data.

Datasets. We use two text datasets for sequence clustering, namely webkb [15]
and news [19]. webkb contains the content of webpages collected from computer
departments of various universities. news is a subset of the dataset 20newsgroup,
which is generated by selecting the five largest groups of documents. These two
datasets are normalized (i.e., stop words are removed and the remaining words
are stemmed), and can be downloaded from this website4. Their properties are
summarized in Table 3.
4 http://ana.cachopo.org/datasets-for-single-label-text-categorization.

http://ana.cachopo.org/datasets-for-single-label-text-categorization
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Table 3. Statistics of two text datasets.

Dataset # sequences # symbols min. len max. len avg. len # classes

webkb 4,168 7,770 1 20,628 134.35 4

news 4,976 27,881 1 6,779 140.07 5

Baselines. We compare our Sqn2Vec with state-of-the-art embedding methods
in text (PV-DBOW, Doc2Vec-C, and Doc2Vec-SP) and an unsupervised pattern-
based method SP-BIN. We choose SP-BIN because it always outperforms other
unsupervised pattern-based methods in sequence classification. These baselines
are introduced in Sect. 4.1. We exclude supervised methods since they require
sequence labels during the learning process, thus inappropriate for our unsuper-
vised learning task – clustering.

Evaluation Metrics. To evaluate the clustering performance, the embedding
vectors provided by each method are input to a clustering algorithm. Here, we
use K-means (a simple clustering method) to group data and assess the clustering
results in terms of mutual-information (MI) and normalized mutual-information
(NMI). We conduct clustering experiments 10 times. We then report the average
and standard deviation of clustering performance.

Parameter Settings. We use the same parameter settings as in sequence clas-
sification for four baselines and our method Sqn2Vec, except that the values
for δ are selected using the elbow method (see Fig. 4).

Results and Discussion. From Table 4, we can see Sqn2Vec outperforms
all the competitive baselines in terms of both MI and NMI. Compared with
state-of-the-art document embedding methods, Sqn2Vec-SEP outperforms
PV-DBOW, Doc2Vec-C, and Doc2Vec-SP by 24–32%, 38–40%, and 5–8% when
clustering the webkb dataset. Similar improvements can be observed when clus-
tering the news dataset, where the gains obtained by Sqn2Vec-SEP over PV-
DBOW, Doc2Vec-C, and Doc2Vec-SP, around 8–14%, 72–77%, and 34–40%.
Compared with the pattern-based method, the improvements are more signif-
icant, where Sqn2Vec-SEP outperforms SP-BIN by 163–184% on webkb and
767–1,090% on news.

4.3 Sequence Visualization

Figure 6 visualizes the document reprsentations learned by SP-BIN, PV-DBOW,
Doc2Vec-C, Doc2Vec-SP, and our Sqn2Vec-SEP on the news dataset. We
can see the documents from the same categories are clearly clustered using the
embeddings generated by PV-DBOW and Sqn2Vec-SEP. On the other hand,
SP-BIN, Doc2Vec-C, and Doc2Vec-SP do not distinguish different categories
clearly.
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Table 4. MI and NMI scores of our method Sqn2Vec and four baselines on two text
datasets. The MI score is a non-negative value while the NMI score lies in the range
[0, 1]. Bold font marks the best performance in a column.

Dataset webkb news

Method MI NMI MI NMI

SP-BIN 0.19 (0.06) 0.16 (0.05) 0.10 (0.04) 0.09 (0.03)

PV-DBOW 0.41 (0.12) 0.34 (0.10) 1.04 (0.11) 0.72 (0.06)

Doc2Vec-C 0.39 (0.02) 0.30 (0.01) 0.69 (0.05) 0.44 (0.03)

Doc2Vec-SP 0.50 (0.14) 0.40 (0.10) 0.85 (0.12) 0.58 (0.07)

Sqn2Vec-SEP 0.54 (0.10) 0.42 (0.07) 1.19 (0.15) 0.78 (0.06)

Sqn2Vec-SIM 0.51 (0.11) 0.41 (0.08) 1.08 (0.22) 0.71 (0.12)

δ (%) 3% 3%

Fig. 6. Visualization of document embeddings on news using t-SNE [11]. Different
colors represent different categories. (Color figure online)

5 Conclusion

We have introduced Sqn2Vec – an unsupervised method for learning sequence
embeddings from information of both singleton symbols and SPs. Our method is
capable of capturing both the sequential relation among symbols and the seman-
tic similarity among sequences. Our comprehensive experiments on 10 standard
sequential datasets demonstrated the meaningful and discriminative representa-
tions learned by our approach in both sequence classification and sequence clus-
tering tasks. In particularly, Sqn2Vec significantly outperforms several state-
of-the-art baselines including pattern-based methods, embedding methods, and
deep neural network models. Our approach can be applied to different real-world
applications such as text mining, bio-informatics, action recognition, and system
diagnosis. One of our future works is to integrate SPs into deep neural network
models, e.g., LSTM and Bi-LSTM, to improve the classification performance.

Acknowledgment. Dinh Phung and Tu Dinh Nguyen gratefully acknowledge the
partial support from the Australian Research Council (ARC).



584 D. Nguyen et al.

References

1. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

2. Chen, M.: Efficient vector representation for documents through corruption. In:
ICLR (2017)

3. De Smedt, J., Deeva, G., De Weerdt, J.: Behavioral constraint template-based
sequence classification. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C.,
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