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Abstract. Optimal experimental design (OED) addresses the problem
of selecting an optimal subset of the training data for learning tasks. In
this paper, we propose to efficiently compute OED by leveraging the
geometry of data: We restrict computations to the set of instances lying
on the border of the convex hull of all data points. This set is called
the frame. We (i) provide the theoretical basis for our approach and
(ii) show how to compute the frame in kernel-induced feature spaces.
The latter allows us to sample optimal designs for non-linear hypothe-
sis functions without knowing the explicit feature mapping. We present
empirical results showing that the performance of frame-based OED is
often on par or better than traditional OED approaches, but its solution
can be computed up to twenty times faster.
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1 Introduction

Consider a supervised learning task with n unlabeled data points X . Obtaining
labels for all instances is prohibitive, but there is a budget k that allows to label
k � n points. The goal is to select the best subset of X of size k such that the
learned model is optimal with respect to some optimality measure. This problem
is known as Optimal Experimental Design (OED) [13].

In the classical setting of OED, the learning task is a linear regression y =
Xw + ε with target vector y, design matrix X ∈ R

n×d, parameters w, and i.i.d.
Gaussian noise ε ∼ N (0, σ2I). There are many optimality criteria that can be
employed for optimal designs. A common choice is to minimize the covariance
of the parameter estimation given by

Cov[w] = σ2

⎛
⎜⎜⎝

∑
x∈S

|S|=k

xx�

⎞
⎟⎟⎠

−1

.

Minimizing the above quantity is equivalent to maximizing the confidence of
the learned parameters. However, finding the subset S of size k that actually
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minimizes the covariance turns into a combinatorial problem that, depending on
n and k, is often infeasible. There are two scenarios to cope with the situation.
The first one builds upon the assumption that experiments can be repeated many
times such that the design matrix contains duplicate rows; hence, this approach
requires obtaining multiple outcomes for the same experiment. The second and
more relevant scenario does not allow for repeating the experiment.

Surrogates have been suggested to quantify the optimality of a subset. Popular
choices exploit the determinant (D-optimality), the spectral-norm (E-optimality),
or the trace (A-optimality) of the covariance matrix of the k points [23]. Never-
theless, intrinsically the problem remains combinatorial and very demanding and
the only remedy being a pre-selection of promising candidate points to reduce the
complexity of the task.

Fig. 1. Illustration of the frame.

In this paper, we exploit the geometry of the data and propose to use the
frame as such a candidate set of points. The frame is the smallest subset of
the data that realizes the same convex hull as all data points. Thus, the frame
consists of the extreme points of the data set. Figure 1 shows an example. We
show that restricting the optimization problem to the frame yields competitive
results in terms of optimality and predictive performance but comes with a much
smaller computational cost. To leverage OED for non-linear problems, we devise
a novel approach to compute the frame in kernel-induced feature spaces; this
allows us to sample random designs for non-linear regression models without
knowing the explicit feature mapping. Our approach of computing the frame
can be seen as a transposed LASSO that selects data points instead of features.
We discuss the relation to LASSO [27] in greater detail and also address the
connection to active learning.

The remainder is structured as follows: Sect. 2 contains the main contribution
of frame-based optimal experimental design and Sect. 3 reports on empirical
results. Section 4 reviews related work and Sect. 5 concludes.

2 Frame-Based Optimal Design

2.1 Preliminaries

We consider a discrete input set X = {x1, . . . ,xn} consisting of n data points
in d dimensions. The convex hull conv(X ) is the intersection of all convex sets
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containing X . Furthermore, conv(X ) is the set of all convex combinations of
points in X . A central concept of this paper is the frame that is introduced in
the following definition.

Definition 1. Let X be a discrete input set. The minimal cardinality subset
of X , which produces the same convex hull as X , is called the frame F , i.e.,
conv(F) = conv(X ).

Hence, the frame consists of the extreme points of X . Those points cannot be
represented as convex combinations of other points rather than themselves. By
q = |F|, we refer to the size of the frame and we call the portion of points in X
belonging to the frame F the frame density q/n.

2.2 Optimal Experimental Design

In the classical setting of OED, the task is a linear regression

y = Xw + ε, (1)

where y is the vector of targets yi ∈ R, X ∈ R
n×d is the pool of n experiments

xi ∈ R
d, w ∈ R

d are the model parameters and ε ∼ N (0, σ2I) is a vector of
i.i.d. Gaussian noise. The maximum likelihood estimate of the parameters w has
a closed-form and is given by

w� = argmin
w

n∑
i=1

(w�xi − yi)2 = (X�X)−1X�y.

The goal of OED is to choose a subset S of size k out of the n points for
which the estimation of w is optimal in some sense. As common, we require
d ≤ k � n. Optimality can be measured in several ways. One idea is to increase
the confidence of learning the parameters by minimizing the covariance of the
parameter estimation For the regression problem stated above, the covariance
matrix is given by

CovS [w] = σ2

(∑
x∈S

xx�
)−1

,

where S ⊂ X is the selected subset with |S| = k. This leads to a combinatorial
optimization problem as follows

min
λ

f

(
n∑

i=1

λixix�
i

)
s. t.

n∑
i=1

λi ≤ k and λi ∈ {0, 1} ∀i. (2)

Here, f : S+d → R is an optimality criterion that assigns a real number to
every feasible experiment (positive semi-definite matrices). The setting can be
seen as maximizing the information we obtain from executing the experiment
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with fixed effort. The most popular choices for f are D-, E-, and A-optimality
[23] given by

fD(Σ) = (det(Σ))−1/d (D-optimality)

fE(Σ) = ‖Σ−1‖2 (E-optimality)

fA(Σ) = d−1 tr(Σ−1) (A-optimality)

Unfortunately, the combinatorial optimization problem in Eq. (2) cannot be
solved efficiently. A remedy is to use a continuous relaxation, which is efficiently
solvable:

min
λ

f

(
n∑

i=1

λixix�
i

)
s. t.

n∑
i=1

λi ≤ k and λi ∈ [0, 1] ∀i. (3)

The following lemma characterizes the solution of the optimization problem
above.

Lemma 2. Let λ� be the optimal solution of Problem (3). Then ‖λ�‖1 = k.

However, the support of λ� is usually much larger than k and the solution needs
to be sparsified in order to end up with k experiments. Approaches therefor
include pipage rounding schemes [1], sampling [28], regret minimization [2], and
greedy removal strategies [19,28].

2.3 Restricting Optimal Experimental Design to the Frame

D-optimal design minimizes the determinant of the error covariance matrix. Its
dual problem is known as Minimum Volume Confidence Ellipsoid [10]. Geomet-
rically, the optimal solution is an ellipsoid that encloses the data with minimum
volume. For E-optimality, the dual problem can be interpreted as minimizing the
diameter of the confidence ellipsoid [5]. In A-optimal design the goal is to find
the subset of points that optimizes the total variance of parameter estimation.
Figure 2 depicts the support of the optimal solution λ� for D-, E-, and A-optimal
designs as well as their confidence ellipsoids derived from their dual problems.
The right hand figure shows the frame of the same data. The confidence ellip-
soids clearly touch the points at the border of the data while the interior points
are enclosed. Hence, we propose to discard all interior points entirely in the opti-
mization and restrict the optimization to the frame, that is, to the points lying
on the border of the convex hull.

Non-linear regression can be done by applying a feature mapping φ : X →
X ′ to the data. The model then becomes yi = w�φ(xi), which is still linear
in parameters. Considering the dual of the regression problem we can employ
kernels that implicitly do a feature mapping. However, the regression is still a
linear model, but in feature space X ′. Knowing the frame in X ′ would allow us to
sample random designs rendering a naive version of non-linear or kernelized OED
possible. In Subsect. 2.5, we show how to compute the frame in kernel-induced
feature spaces.
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Fig. 2. Example of D-, E-, A-optimal designs and the frame on toy data.

2.4 Computing the Frame

As outlined in Definition 1, the frame F is the minimum cardinality subset of
the data which yields the same convex hull as the data X . Hence, it is given as
a solution of the following problem:

F = argmin
{z1,...,zm}⊆X

|{z1, . . . , zm}|

s. t. ∀x ∈ X : x =
∑

j

sjzj with s�1 = 1 and sj ≥ 0.
(4)

We briefly review prior work [18] employing quadratic programming to compute
a representation of every data point using only points from the frame. The
representation of xi is given by a convex combination of frame points as

solve
s

X�s = xi

s. t. sj ≥ 0 ∀j

s�1 = 1
sj �= 0 ⇒ xj ∈ F ∀j.

(5)

Equation (5) can be rewritten as a non-negative least-squares problem with an
additional condition that only points on the frame are allowed to contribute to
the solution s. Mair et al. [18] also show that the NNLS algorithm of Lawson
and Hanson [15] solves the resulting optimization problem. After computing the
representation s for every point, the frame is recovered by unifying the support of
every s. This yields the full frame since every frame point can only be represented
by itself.

2.5 Computing the Frame in Kernel-Induced Feature Spaces

Let φ : Rd → R
D be a feature mapping, Φ ∈ R

D×n be the mapped design matrix,
and K be the kernel matrix induced by a kernel k(x, z) = φ(x)�φ(z). As before,
the idea is to solve a linear system subject to the constraints that the solution s
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is non-negative, sums up to one, and uses only points from the frame; however,
this time, we aim to solve the problem in feature space spanned by φ. We obtain

solve
s

Φs = φ(xi)

s. t. sj ≥ 0 ∀j

1�s = 1
sj �= 0 ⇒ φ(xj) ∈ F ∀j.

The constraint 1�s = 1 can be incorporated into the system of linear equations
by augmenting Φ with a row of ones and φ(x) with a static 1. Let ψ(x) =
(φ(x)�, 1)� and Ψ = (ψ(x1), . . . , ψ(xn)) ∈ R

(D+1)×n, we obtain

solve Ψs = ψ(xi) s. t. sj ≥ 0 ∧ sj �= 0 ⇒ φ(xj) ∈ F .

The approach can be kernelized by multiplying from the left with Ψ�:

Ψ�Ψs = Ψ�ψ(xi) s. t. sj ≥ 0 ∧ sj �= 0 ⇒ φ(xj) ∈ F .

Since there is always a solution [18], we can equivalently solve the non-negative
least squares problem

argmin
s≥0

1
2
‖Ψ�Ψs − Ψ�ψ(xi)‖22

s. t. sj �= 0 ⇒ φ(xj) ∈ F .

(6)

A kernel can now be applied by exploiting the relationship between Ψ , Φ, and
K as follows

Ψ�Ψ = Φ�Φ + 1nn = K + 1nn =: L (7)

Ψ�ψ(xi) = Φ�φ(xi) + 1n1 = K·i + 1n1 = L·i, (8)

where 1nm ∈ R
n×m denotes the matrix of ones. The resulting problem becomes

argmin
s≥0

1
2
‖Ls − L·i‖22

s. t. si �= 0 ⇒ φ(xi) ∈ F .

(9)

A standard non-negative least squares problem can be solved, for example, by the
algorithm of Lawson and Hanson [15]. Bro and De Jong [6] increase the efficiency
by caching the quantities in Eq. (7). This renders the problem in Eq. (9) feasible.
To demonstrate this, we first show that whenever an inner product between two
points is maximized, one of the points is an extreme point and thus belongs to
the frame of the data.

Lemma 3. Let X be a finite set of discrete points, then

∀x ∈ X : argmax
x′∈X

〈x,x′〉 ∈ F .
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Algorithm 1. Kernel-Frame
Data: kernel matrix K
Result: indices of ext. points E
L = K + 1nn

E = ∅
for i = 1, 2, . . . , n do

si = bro-dejong(L,L[:, i])
Pi = { j ∈ {1, 2, . . . , n} | (si)j > 0 }
E = E ∪ Pi

Proof. Linearity and convexity of the inner product imply that its maximum is
realized by an extreme point of the domain. Since the domain is X , the maximum
belongs to its frame F . �

Theorem 4. The active-set method from Bro and De Jong [6] solves the prob-
lem in Eq. (9).

Proof. The algorithm selects points that contribute to the solution s by maxi-
mizing the negative gradient of the objective. The selection is implemented by
the criterion j = argmaxj [L·i − Ls]j , where j is the index of the selected point.
Thus, the selection process is maximizing a linear function and Lemma 3 assures
that this point belongs to the frame. �

Solving problem (6) for the i-th data point xi yields either its index i in case xi

is a point on the frame or, if xi is an interior point, the solution is the index set
Pi of points on the frame that recover xi as a convex combination. The entire
frame is recovered by solving Eq. (6) for all points in X as stated in Corollary 5
and depicted in Algorithm 1.

Corollary 5. Let k(x, z) = φ(x)�φ(z) be a kernel and X = {x1, . . . ,xn} be a
data set. Then Algorithm1 yields the frame of {φ(x1), . . . , φ(xn)}.
Proof. Algorithm 1 computes the solution si for every mapped data point φ(xi).
Theorem 4 ensures that the positive positions of every si (i = 1, 2, . . . , n) refers
to points on the frame. Hence, taking the union of those positions recovers the
frame indices E . �

Note first that the frame in kernel-induced feature space can be found without
knowing the explicit feature map φ and second that the for -loop in Algorithm1
can be trivially parallelized.

2.6 Frame Densities for Common Kernels

To analyze the frame sizes in kernel-induced feature spaces, we focus on rbf and
polynomial kernels. The former is given by k(x, z) = exp(−γ‖x − z‖22), where
γ > 0 is a scaling parameter. The induced feature mapping φ of the rbf kernel
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has an infinite dimensionality. Corollary 6 shows, that this kernel always yields
a full frame, that is: every point belongs to the frame and the frame density is
consequently equal to one.

Corollary 6. Let X be the data set of distinct points and k be the rbf kernel
with parameter γ �= 0. Then every point belongs to the frame F in feature space.

Proof. Gaussian gram matrices have full rank [24]. Hence, the images φ(x1), . . . ,
φ(xn) in feature space are linearly independent. Thus, every image can only be
represented by itself and, every point belongs to the frame F . �

The polynomial kernel is given by k(x, z) = (x�z + c)p with degree p ∈ N and
constant c ∈ R

+
0 . A feature of the polynomial kernel is an explicit representation

of the implicit feature mapping φ. E.g., for the homogeneous polynomial kernel
with c = 0, we have

φm(x) =

√
p!∏n

i=1 mi!

n∏
i=1

xmi
i

for all multi-indices m = (m1, . . . ,mn) ∈ N
n satisfying

∑n
i=1 mi = p. That

is, new features consist of monomials of the input features xi, while the multi-
indices m denote their respective degrees. The condition

∑n
i=1 mi = p assures

that all possible combinations are uniquely accounted for and leads to a feature
space dimension of size

D =
(

p + d − 1
p

)
=

(p + d − 1)!
p!(d − 1)!

.

For the explicit mapping corresponding to the heterogeneous kernel (where c �= 0)
that realizes a feature space with dimensionality

D =
(

p + d

p

)
,

as well as for more details, we refer to [24,25]. For the polynomial kernel we
obtain a full frame if the dimension D of the feature space exceeds the number
of data points n.

Corollary 7. Let X be the normalized and distinct data set of size n in d
dimensions and k be the polynomial kernel with degree p and offset c = 0. If
n ≤ (p+d−1)!

p!(d−1)! , then every point belongs to the frame F in feature space.

Proof. The polynomial feature map yields linearly independent feature vectors
of size (p+d−1)!

p!(d−1)! for a data set with unique observations. Hence, if the number of
data points is lower than the dimensionality of the mapping, all points belong
to the frame F . �
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Fig. 3. Frame density for various polynomial degrees on synthetic data of size n = 2500
in d = 5 dimensions. The initial frame density is 1%. The data set is introduced in
Sect. 3.

Although a formal proof regarding the influence of the degree p of the homo-
geneous polynomial kernel is missing, we would like to provide some intuition:
We empirically apply a homogeneous polynomial kernel to a synthetic data set
with n = 2500 points in d = 5 dimensions with an initial frame density of 1%.
Figure 3 shows the resulting frame densities. For odd degrees, the frame density
is growing with increasing values of p. This is due to the increasing dimension-
ality in feature space. However, for even degrees the frame is always full. We
conclude with the following conjecture:

Conjecture 8. Let X be the normalized and distinct data set of size n in d
dimensions and k be the polynomial kernel with degree p and offset c = 0. If p
is even, then every point belongs to the frame F in feature space.

2.7 Computing the Frame and LASSO

LASSO [27] solves regression tasks by combining a squared loss with an 
1-
regularizer on the parameters. Thus, LASSO simultaneously performs a regres-
sion and variable selection such that the influence of redundant variables is set to
zero and a sparse parameter vector is obtained. The corresponding optimization
problem for a regression scenario as in Eq. (1) is given by

min
w

‖Xw − y‖22 + λ‖w‖1,

where λ ≥ 0 is a trade-off parameter. A special case is obtained by restricting
the parameters to be positive, yielding a non-negative LASSO :

min
w≥0

‖Xw − y‖22 + λ‖w‖1 ⇐⇒ min
w≥0

‖Xw − y‖22 + λ1�w.

Computing the frame can be seen as a transposed version of the LASSO problem
in which not variables but data points are selected. The following proposition
shows that the problem in Eq. (9) is equivalent to a non-negative LASSO, if one
ignores the constraint that elicits only frame points to contribute to the solution.
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Proposition 9. Problem (9) solved with the active-set method from Bro and De
Jong is equivalent to a non-negative LASSO with trade-off parameter λ = n.

Proof. By using the identities L = K + 1nn and L·i = K·i + 1 = k + 1, we
rewrite the objective of the optimization problem in Eq. (9) as follows:

‖Ls − L·i‖22 = ‖(K + 1)s − (k + 1)‖22 = ‖Ks − k‖22 + ‖1s − 1‖22
= ‖Ks − k‖22 + n‖1�s − 1‖22 = ‖Ks − k‖22 + n1�s − n

≡ ‖Ks − k‖22 + n1�s = ‖Ks − k‖22 + n‖s‖1.

Hence, the objective is an 
1-regularized least-squares problem. In combination
with the non-negativity constraint, we obtain a non-negative LASSO. �

3 Experiments

In this section, we empirically investigate frame-based optimal experimental
design. Throughout this section, we compare the performance of the following
different approaches. Uniform-data samples the subset S uniformly at random
without replacement from all data points X . A second approach uniform-frame
uses the same strategy but samples points from the frame F instead of X . If
the size of |S| exceeds the size of the frame, uniform-frame always draws the
full frame and randomly selects the remaining points from X \ F . The greedy
baseline chooses the points in S one after another according to their contribu-
tion to the objective of D-optimal design. The baselines {D,E,A}-optimal use
the continuous relaxations of the {D,E,A}-optimal design criteria, respectively.
After solving the optimization problem, we sample the subset S according to
a strategy outlined by Wang et al. [28]. Analogously, {D,E,A}-optimal-frame
restricts the computation of the previous three baselines to the frame. Finally,
the Fedorov baseline selects S according to the Fedorov Exchange algorithm [13]
and optimizes D-optimality. We initialize this baseline using random samples
from X , random samples from F , and with the output of greedy.

The continuous relaxations are optimized using sequential quadratic program-
ming [20]; the number of iterations is limited to 250. We report on average per-
formances over 100 repetitions, error bars indicate one standard deviation and
a vertical line denotes the frame size when included. The greedy algorithm is
executed once and we conduct only 10 repetitions for every Fedorov Exchange
initialization due to its extensive runtime. We want to shed light on the following
list of questions.

Is the restriction to the frame competitive in terms of performance?
The first experiment thus studies the performance of optimal designs of the
proposed approaches on the real-world data set Concrete [29]. Concrete consists
of a design pool of n = 1030 instances with d = 8 dimensions and has a frame
density of 48%. The task is to predict the compressive strength of different types
of concrete.
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Fig. 4. Results for D-optimal designs on concrete.

Fig. 5. Results for A-optimal designs on concrete.

We measure the performance in terms of the D-optimality criterion as well
as the mean squared error (MSE), given by MSE = 1

n‖y−Xw‖22. For the latter,
we train an ordinary least squares regression on the selected points and evaluate
on the remaining n − k points.

Figure 4 (left) shows the results with respect to the D-optimality criterion.
Sampling uniformly from the frame (uniform-frame) performs consistently better
than sampling from all data (uniform-data). Thus, exploiting the frame allows
to sample better designs without solving any optimization problem other than
computing the frame. The situation changes once the designs are optimized in
addition. Frame-based approaches (*-optimal-frame) are close to their competi-
tors computed on all data (*-optimal) but no longer better. Interior points thus
do contribute, if only marginally, to the optimization.

However, Fig. 4 (right) shows that the slight improvement in the objective
function does not carry over for the predictive performance. By contrast, the
frame-based approaches (*-optimal-frame) consistently outperform the other
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Fig. 6. Results for D-optimal designs on airfoil.

approaches and lead to significantly lower MSEs. For comparison, the MSE
trained and evaluated on all data points is shown as a dashed horizontal line.
Training only on a few points of the frame already leads to more accurate models
than using all available data.

We obtain similar pictures for evaluating against the A- and E-optimality
criteria. Due to their similar performance we only report on the results for
A-optimal designs in Fig. 5. Once again, the frame-based optimization is only
sightly worse in terms of the optimization objective (left) but clearly outper-
forms the traditional approaches in predictive performance (right).

We additionally experiment on the Airfoil data [7]. The task is to predict the
self-noise of airfoil blades of different designs and the data comes with n = 1503
experiments describing tests in a wind tunnel with d = 5 attributes and the data
has a frame density of 31%.

Fig. 7. Timing results on airfoil. Fig. 8. Results on California Housing.
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The results for D-optimal designs are shown in Fig. 6. Once again, the frame-
based approaches perform slightly worse or on par in terms of the optimality
criterion. However, the predictive performance measured in MSE is no longer
superior. The errors are similar to those using uniform samples of the data. Thus,
the dataset shows that even though the optimality criterion is well approximated,
an error reduction is not guaranteed. However, this does not pose as a limitation
to our approach as D-optimal design does not guarantee a reduction either.

Is the restriction to the frame efficient? We now report on the efficiency of
our approach on Airfoil. Figure 7 illustrates the relative time of the frame-based
approaches in comparison to their traditional analogues that are computed on all
data. The y-axis thus shows time(frame)/time(all). We can report a drastically
faster computation taking only 2–5% of the time of the traditional variants. We
credit this finding to Airfoil’s frame density of 31%. That is, restricting the data
to the frame already discards 69% of the data and the resulting optimization
problems are much smaller.

Naturally, the smaller the frame size the faster the computation as we leave
out more and more interior points. We thus experiment on the California Housing
data [22] where the task is to estimate the median housing prices for different
census blocks. This data comes with n = 20, 640 instances in d = 8 dimensions
but possesses a frame density of only 8%.

Figure 8 depicts the result with respect to the D-optimal criterion. The figure
again shows that naively sampling from the frame (uniform-frame) is signifi-
cantly better than a drawing random samples from all data (uniform-data). All
other tested algorithms perform even better and realize almost identical curves.
The D-optimal baseline could not be computed in a reasonable amount of time
due to the size of the data. Only restricting the computations to the frame
rendered the computation feasible.

Fig. 9. Effect of the frame size on syn-
thetic data.

Fig. 10. Results on synthetic data using
a polynomial kernel of degree p = 3.
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What is the impact of the frame density? We already mentioned that the
frame density q/n influences the efficiency of frame-based approaches. A frame
density of z implies that the (1 − z)-th part of the data are interior points and
can thus be ignored in subsequent computations.

To show this influence empirically, we control the frame density on synthetic
data from López [17]. The data we use consists of n = 2, 500 instances in d = 5
dimensions and comes in five different sets realizing frame densities of 1%, 15%,
25%, 50% and 75% respectively. Figure 9 shows the resulting D-optimality crite-
ria for the different frame densities. Up to a frame density of 50%, randomly sam-
pling from the frame (uniform-frame) performs on par with all other approaches,
thus showing the efficiency of our proposal. For higher frame densities the perfor-
mance of uniform-frame diverges towards uniform-data. Nevertheless, restricting
D-OED to the frame stays on par with its peers. This experiment suggests, that
the smaller the frame density the better the competitiveness of frame-based
OED.

Does sampling in kernel-induced feature spaces work? In our last set of
experiments, we consider sampling random designs on synthetic data for non-
linear regression problems. We use synthetic data as described above with a
frame density of 1%. We employ a homogeneous (c = 0) polynomial kernel with
a degree of p = 3 that allows for obtaining the explicit feature mapping φ which
is needed for all approaches except uniform-*.

Figure 10 illustrates the results. Approaches optimizing the D-optimal design
criterion (D-* ) perform equally well, irrespectively of whether they sample from
the frame or not. This result confirms the competitiveness of restricting OED to
the frame. However, both approaches rely on the explicit feature map.

Strategies that are purely based on sampling (uniform-* ) do not need an
explicit mapping. Sampling at random from all data (uniform-data) trivially
does not rely on anything but a list of indexes. Finally, sampling from the frame
(uniform-frame) uses the proposed kernel frame algorithm (Algorithm 1) to sam-
ple in feature space. The figure shows that our approach samples much better
designs from the frame which is only 23% in feature space. The larger the sample
size, the less relevant becomes an explicit mapping.

4 Related Work

Optimal Experimental Design is a well-studied problem in statistics [13,23].
Recent work focuses on efficiency and performance and aims to devise approx-
imation guarantees for relaxations of the combinatorial problems. For example,
Wang et al. [28] consider A-optimal designs and propose sampling strategies (for
the settings with and without replacement) with statistical efficiency bounds
as well as a greedy removal approach. Allen-Zhu et al. [2] propose a regret-
minimization strategy for the setting without replacement which works for most
optimality criteria. Mariet and Sra [19] use elementary symmetric polynomials
(ESP) for OED and introduce ESP-design, a interpolation between A- and D-
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optimal design that includes both as special cases. They provide approximation
guarantees for sampling and greedy removal strategies.

OED has close ties to many other problems. D-optimality, for example, is
related to volume sampling [3,9,16] and determinantal point processes [14]; both
are used in many applications to sample informative and diverse subsets.

The problem setting we consider is moreover related to active learning [8,26].
Common active learning strategies sequentially select data points based on some
uncertainty criterion or heuristic. Data points are for instance selected based on
the confidence of the model to an assigned label or according to the maximal model
update in the worst case. Usually active learning iteratively selects instances and
then re-trains to include the newly gained label into the model generation. In con-
trast to such iterative active learning scenarios with feedback, OED corresponds
to selecting a single optimal batch prior to labeling and learning.

The frame can be straight forwardly obtained by convex hull algorithms.
However, many of them are motivated and limited to two- or three-dimensional
settings. Quickhull [4] works in higher dimensionalities but quickly becomes
infeasible. If the enumeration of vertices is dropped, convex hull algorithms can
be turned into methods that directly (and only) compute the frame. Common
approaches for examples include linear programming to test whether a point is
part of the frame or not [11,12,21]. Recent methods use quadratic programming
to efficiently compute the frame [18].

5 Conclusion

We proposed to leverage the geometry of the data to efficiently compute optimal
designs. Our contribution was motivated by the observation that traditional
OED variants optimize enclosing ellipsoids that are supported by extreme data
points. Hence, we proposed to restrict the computations to the frame which is
the smallest subset of the data that yields the same convex hull as all data.
We devised an optimization problem to compute the frame to sample random
designs in kernel-induced feature spaces and provided a theoretical foundation
for the eligibility of different kernel functions. Our contribution can be viewed
as a transposed version of LASSO that selects data points instead of features.

Empirically, we showed that restricting optimal design to the frame yields
competitive designs with respect to D-, E-, and A-optimality criteria on sev-
eral real-world data sets. Interior data points are ignored by our frame-based
approaches and we observed computational speed-ups of up to a factor of twenty.
Our contribution rendered OED problems feasible on data at large scales for
moderate frame densities.
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9. Dereziński, M., Warmuth, M.K.: Subsampling for ridge regression via regularized
volume sampling. arXiv preprint arXiv:1710.05110 (2017)

10. Dolia, A.N., De Bie, T., Harris, C.J., Shawe-Taylor, J., Titterington, D.M.: The
minimum volume covering ellipsoid estimation in kernel-defined feature spaces. In:
Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI),
vol. 4212, pp. 630–637. Springer, Heidelberg (2006). https://doi.org/10.1007/
11871842 61
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