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Abstract. Angle-based outlier detection (ABOD) has been recently
emerged as an effective method to detect outliers in high dimensions.
Instead of examining neighborhoods as proximity-based concepts, ABOD
assesses the broadness of angle spectrum of a point as an outlier factor.
Despite being a parameter-free and robust measure in high-dimensional
space, the exact solution of ABOD suffers from the cubic cost O(n3)
regarding the data size n, hence cannot be used on large-scale data sets.

In this work we present a conceptual relationship between the ABOD
intuition and the L1-depth concept in statistics, one of the earliest meth-
ods used for detecting outliers. Deriving from this relationship, we propose
to use L1-depth as a variant of angle-based outlier factors, since it only
requires a quadratic computational time as proximity-based outlier fac-
tors. Empirically, L1-depth is competitive (often superior) to proximity-
based and other proposed angle-based outlier factors on detecting high-
dimensional outliers regarding both efficiency and accuracy.

In order to avoid the quadratic computational time, we introduce a
simple but efficient sampling method named SamDepth for estimating
L1-depth measure. We also present theoretical analysis to guarantee the
reliability of SamDepth. The empirical experiments on many real-world
high-dimensional data sets demonstrate that SamDepth with

√
n sam-

ples often achieves very competitive accuracy and runs several orders of
magnitude faster than other proximity-based and ABOD competitors.
Data related to this paper are available at: https://www.dropbox.com/
s/nk7nqmwmdsatizs/Datasets.zip. Code related to this paper is available
at: https://github.com/NinhPham/Outlier.

1 Introduction

Outlier detection is the process of detecting anomalous patterns that do not
conform to an expected behavior. According to Hawkins [8], an outlier would be
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Fig. 1. Variance of angles of different types of points. Outliers have small variances
whereas inliers have large variances.

“an observation which deviates so much from other observations as to arouse sus-
picions that it was generated by a different mechanism”. Detecting such outlier
patterns is a fundamental and well studied data mining task due to its several
application domains, such as fraud detection in finance, author verification for
forensic investigation, and detecting anomalous patterns for medical diagnosis.

One of the earliest methods to detect outliers is based the concept of depth
in statistics [11,18] due to the natural correlation between depth-based measure
and outlierness measure. The depth-based methods organize the data points in
many layers, with the expectation that the “deepest” layers with large depth
values contain points close to the center of the point cloud and outliers are likely
to appear in the shallow layers with small depth values. However, since most
outlier detection applications often arise in high-dimensional domains and most
of depth-based methods do not scale up with data dimensionality [9], depth-
based approaches suffer from a computational bottleneck for searching for high-
dimensional outliers.

Since then, several outlierness measures based on the notion of proximity
have been proposed to detect high-dimensional outliers. Due to the phenomenon
“curse of dimensionality”, proximity-based approaches in the literature which are
implicitly or explicitly based on the concept of proximity in Euclidean distance
metric between points in full-dimensional space do not work efficiently and effec-
tively. Traditional solutions to detect distance-based global outliers [4,13,19] and
density-based local outliers [5,16] often suffer from the high computational cost
due to their core operation, near(est) neighbor search in high dimensions. More-
over, the high-dimensional data is often very sparse and therefore the measures
like distances or nearest neighbors may not be qualitatively meaningful [1,3].

In order to alleviate the effects of the “curse of dimensionality”, Kriegel
et al. [14] proposed a novel outlier ranking approach based on the broadness
of angle spectrum of data. The approach named Angle-based Outlier Detection
(ABOD) evaluates the degree of outlierness on the variance of the angles (VOA)
between a point and all other pairs of points in the data set. The intuition of
ABOD, as shown in Fig. 1, is that the smaller the angle variance of the point has,
the more likely it is an outlier. Since angles are more stable than distances, the
ABOD approach does not substantially deteriorate in high-dimensional data. It
is worth noting that the proposed outlierness measure in [14], called ABOF, does
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not deal directly with the intuition of variance of angles. Indeed, ABOF assesses
the weighted variance of weighted cosine of angles where the both weights are
the corresponding distances between the assessed point and other pairs of points.
The variant notion ABOF with weight of distances is more robust than the
original intuition VOA in low-dimensional space since it allows distance affects
the outlierness measure.

Despite many advantages of alleviating the effects of the “curse of dimension-
ality” and being a parameter-free measure, there are two intrinsic drawbacks with
the ABOD approaches.

– There is no theoretical foundation connecting to the ABOD observation so it
is difficult to understand and explain the outlierness behaviors detected by
ABOD.

– The cubic time complexity taken to compute angle-based measures is very
significant and problematic for many applications with large-scale data sets.

To avoid the cubic time complexity, Kriegel et al. [14] also proposed a heuris-
tic approximation variant of ABOF, called approxABOF, for efficient computa-
tions. Instead of computing ABOF over all other pairs in the point set, approx-
ABOF computes ABOF value over all pairs in the k-nearest neighbor (kNN)
set. Hence, approxABOF requires a quadratic time complexity used in sequen-
tial search for kNN. Moreover, there is no analysis on the approximation error
between approxABOF and ABOF and hence the reliability of detecting outliers
using approxABOF is not guaranteed.

Recently, Pham and Pagh [17] investigated the variance of angles (VOA) as
an ABOD outlierness measure and proposed an efficient algorithm for the ABOD
approach. They proved that VOA is well preserved under random projections
and introduced FastVOA, a near-linear time algorithm for estimating VOA for
the point set. Despite many advantages of the fast running time and the qual-
ity of approximation guarantee, FastVOA might introduce large approximation
errors. The large approximation errors result in detection performance degrada-
tion when the VOA gap between outliers and inliers is rather small. Furthermore,
large approximation error of estimation can be problematic when combining
VOA with other outlier factors to build outlier detection ensembles [2,24].

In this work, we investigate both mentioned drawbacks of the ABOD method.
We examine the first drawback via a well-established concept of data depth in
statistics [18,22]. In particular, we consider the L1-depth notion [21,23], which
intuitively measures how much additional probability mass needed for moving a
point in a set to the multivariate median of its point set. We study the notion
of L1-depth in details and provide a strong conceptual relationship between L1-
depth and the ABOD observation. Deriving from this relationship, we propose to
use L1-depth as a variant of angle-based outlier factor since it requires a quadratic
time computation as proximity-based outlier factors. Empirically, ABOD using
L1-depth is superior to using VOA and ABOF, i.e. the computational cost is
much smaller and the outlier detection accuracy is much higher.

To overcome the drawback of quadratic computational time, we intro-
duce a simple but efficient sampling method named SamDepth for estimating
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L1-depth measure. The empirical experiments on many real-world high-
dimensional data sets demonstrate that SamDepth often runs much faster, pro-
vide smaller approximation errors and therefore more accurate outlier rankings
than other ABOD competitors. Especially, SamDepth with

√
n samples where

n is the data size achieves very competitive accuracy and runs several orders
of magnitude faster than other proximity-based and ABOD methods on several
large-scale data sets.

2 Notation and Background

Given a point set S ⊆ Rd of size n and a point p ∈ S, we denote by P = S\ {p}
since most of outlier factors of p are evaluated on the set P . We also denote
by (a, b) a pair of any two different points in P . As we will elaborate later,
ABOD algorithms compute outlier factors of p by values dependent on p and
each pair (a, b). Hence, we will use the notation

∑
a,b for short to represent for

the summation on a, b ∈ P .
For a given pair (a, b), we denote by Θapb the angle between the difference

vectors p − a and p − b. Since we will show a conceptual relationship between
L1-depth measure and the variance of angles (VOA), an ABOD outlier factor, we
will describe VOA and discuss about the time complexity of a näıve algorithm
to compute exactly this measure.

Definition 1. The variance of angle of a point p is computed via the first
moment MOA1 and the second moment MOA2 of the angle Θapb between p
and each pair (a, b). That is

V OA(p) = Var [Θapb] = MOA2(p) − (MOA1(p))2

where MOA2(p) and MOA1(p) are defined as follows:

MOA2(p) =

∑
a,b Θ2

apb

(n − 1)(n − 2)
;MOA1(p) =

∑
a,b Θapb

(n − 1)(n − 2)
.

Note that the VOA definition is identical to the definition in [17] since we
take into account both Θapb and Θbpa. A näıve algorithm computing VOA for n
points takes O(n3) time since computing V OA(p) for each p takes O(n2) time.
Note that VOA values are often very small and this challenges approximation
methods to have good approximation errors in order to preserve the ABOD
ranking.

3 L1-Depth and Its Conceptual Relationship
with the ABOD Intuition

This section will study the L1-depth concept in statistics and provide a concep-
tual relationship between L1-depth concept and variance of angles of the ABOD
intuition. We also discuss some benefits derived from this relationship.
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3.1 L1-Depth as an ABOD Measure

Vardi and Zhang [23] studied the multivariate L1-median point (i.e. the point
that minimizes the weighted sum of the Euclidean distances to all points in
a high-dimensional cloud). Associating to the multivariate L1-median concept,
they also proposed a simple close-form formula for the data depth called L1-
depth function. The L1-depth function shares the same spirit with other pro-
posed data depth [18], that is deeper points with larger depth are relatively
closer to the center of the cloud (i.e. the L1-median).

Of the various depth notions, L1-depth is computationally efficient, i.e. O(n)
for each point. It has been used in clustering and classification tasks for microar-
ray gene expression data [12] and novelty detection in taxonomic applications [7].
The definition of L1-depth (L1D) is as follows:

Definition 2 ([7, Eq. 3], [23, Eq. 4.3]). L1-depth

L1D(p) = 1 − 1
n − 1

∥
∥
∥
∥
∥

∑

a∈P

p − a

‖p − a‖

∥
∥
∥
∥
∥

It is clear that L1-depth shares the same spirit as VOA and ABOF on deal-
ing with the angle spectrum and being a parameter-free measure but has more
efficient computation, i.e. O(n) time for each point. In particular, the intuition
of L1-depth concept is very similar to the ABOD idea since it assesses the broad-
ness of directions of distance vectors, and the smaller L1D(p) is, the more likely
p is an outlier. Considering again Fig. 1, for inliers within the cluster, their L1D
values will be close to 1. However, the L1D value of the outlier tends to be close
to 0 since most the other points locate in some particular direction.

The following lemma shows that L1-depth can be derived from the sum of
cosine of angles between a point p and all other pairs of points. This lemma also
sheds the light on the conceptual relationship between L1-depth and variance of
angles in the ABOD methods.

Lemma 3.

(1 − L1D(p))2 =
1

n − 1
+

1
(n − 1)2

∑

a,b

cos Θapb

Proof. Using the extension
∥
∥
∥
∥
∥

∑

i

xi

∥
∥
∥
∥
∥

2

=
∑

i

‖xi‖2 +
∑

i�=j

〈xi,xj〉,
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we have:

(1 − L1D(p))2 =
1

(n − 1)2

∥
∥
∥
∥
∥

∑

a∈P

p − a

‖p − a‖

∥
∥
∥
∥
∥

2

=
1

(n − 1)2

⎛

⎝
∑

a∈P

∥
∥
∥
∥

p − a

‖p − a‖
∥
∥
∥
∥

2

+
∑

a ,b

〈
p − a

‖p − a‖ ,
p − b

‖p − b‖
〉

⎞

⎠

=
1

(n − 1)2

⎛

⎝(n − 1) +
∑

a ,b

cos Θapb

⎞

⎠ =
1

n − 1
+

1

(n − 1)2

∑

a ,b

cos Θapb

�	
Intuitively, since cos(x) is a strictly monotonically decreasing function in

the range [0, π], L1D will be correlated to the first moment of angles MOA1.
Hence, the outlier ranking produced by L1D is highly positively correlated to
MOA1’s one. Mathematically, we can exploit the Taylor series approximation
cos(x) ≈ 1 − x2/2 on Lemma 3 to show the relationship between L1D and the
second moment MOA2 as follows.

(1 − L1D(p))2 =
1

(n − 1)2

⎛

⎝(n − 1) +
∑

a,b

cos Θapb

⎞

⎠

≈ 1
(n − 1)2

⎛

⎝(n − 1) +
∑

a,b

(

1 − Θ2
apb

2

)⎞

⎠

=
1

(n − 1)2

⎛

⎝(n − 1)2 −
∑

a,b

Θ2
apb

2

⎞

⎠

= 1 − 1
(n − 1)2

∑

a,b

Θ2
apb

2

= 1 − (n − 1)(n − 2)MOA2(p)
2(n − 1)2

= 1 − n − 2
2(n − 1)

MOA2(p). (1)

When the Taylor series approximation cos(x) ≈ 1 − x2/2 provides a small
error, the outlier factor L1D is highly proportional to MOA2. Therefore, we can
use both VOA, the central second moment and MOA2, the second moment of
angles as angle-based outlier factors, and the smaller MOA2(p) or V OA(p) is,
the more likely p is an outlier.

3.2 An Empirical Study and Benefits from the Conceptual
Relationship

In order to confirm our theoretical finding, we compute the exact VOA, MOA1,
MOA2, and L1D values on a synthetic data set generated by a Gaussian mixture
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Fig. 2. Kendall’s rank correlation between L1D, MOA1, MOA2, VOA measures on the
synthetic data set.

as provided in the original ABOD paper [14]. The 100-dimensional synthetic data
set contains 1000 inliers generated by independent Gaussian distributions and 10
outliers generated by a uniform distribution. Figure 2 shows very high Kendall’s
rank correlation coefficients between L1D, MOA1, MOA2 and VOA on the data
set. We note that the Spearman’s rank correlation coefficients among them are
even higher and not reported here.

It is very clear that the outlier ranking based on L1D is almost identical to
that of MOA1, MOA2 and very highly correlated to that of VOA. This means
that instead of using VOA, the central second moment of angle distribution, we
can use L1D, an approximation of the second moment with less computational
resource for outlier ranking in high-dimensional data sets.

Next we discuss about the two benefits from this observed relationship,
including an algorithmic benefit for approximating VOA and an application
benefit on using ABOD measures for other data analytics tasks.

Algorithmic Benefit: Note that the time complexity of computing L1D(p)
is O(n). Hence we can use L1D(p) to derive an approximation of the sec-
ond moment MOA2(p) (see Eq. 1), which can replace the main computational
resource in FastVOA [17]. Also note that FastVOA approximates the first
moment MOA1(p) in O(n log n) time. Combining these two approximations,
we can estimate VOA of all n points with high accuracy in quadratic time with-
out utilizing the AMS Sketches. In small data sets, this combination runs faster
and provides better outlier detection performance than FastVOA [17].

Application Benefit: Since L1-depth is a variant of ABOD measures and since
depth notions have been used in clustering and classification [10,12], we can use
other ABOD measures, including VOA and ABOF on these settings. For example
in classification tasks, instead of using kNN relationship, we can use ABOD
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measures to assign the label to the test data. The basic classification rule is
that a test data will be assigned into a class that maximizes its ABOD measure.
Therefore, it is necessary to reduce the cost of computing ABOD measures to
avoid the computational bottleneck for these data analytic tasks.

4 Sampling Algorithms for L1-Depth

Since computing exactly L1D for each point takes O(dn) time in a data set of size
n with d dimensions, we propose efficient sampling algorithms to approximate
L1D for speeding up the outlier detection process. We also show theoretical
analysis to guarantee the reliability of our sampling algorithms.

As can be seen from Lemma 3, we can approximate L1D from an accurate
estimate of the mean of cosine of angles μ =

∑
a ,b cosΘapb

(n−1)(n−2) . Our standard sampling
method called BasicSam is that, given a point p, we randomly sample a pair
(a, b) in P and define a random variable

X =
{

cos Θapb if a and b are chosen;
0 otherwise.

Then, we have E [X] = μ. Using Hoeffding’s inequality with t = O( 1
ε2 log 1

δ )
independent random sample pairs, we can guarantee an absolute approximation
error at most ε with probability at least 1 − δ. We note that for t random pairs
BasicSam takes O(dt) time since it needs to compute 2t difference vectors p−a
and p − b.

As can be seen from Definition 2, computing directly L1D(p) takes O(dn)
time. We now exploit this property to avoid sampling random pairs and propose
SamDepth, a more efficient sampling method for L1D, as shown in Algorithm 1.

Algorithm 1. SamDepth (n)
Input: A data set S of size n and a point p ∈ S

Output: An estimate of L1D(p)
1 Sample without replacement a subset S ⊂ S\{p} of t =

√
n points ;

2 Compute the norm m =
∥
∥
∥
∑

a∈S
p−a

‖p−a‖

∥
∥
∥

2

;

3 Output 1 −
√

1
n−1

+ n−2
n−1

(
m

t(t−1)
− 1

t−1

)

as an estimate of L1D(p) ;

Instead of sampling a random pair, we sample without replacement a subset
S ⊂ P of t points, and define a random variable Z =

∑
a,b Zab where

Zab =
{

cos Θapb/t(t − 1) if a and b are in S;
0 otherwise.
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Since Pr [a, b ∈ S] = Pr [a ∈ S|b ∈ S]Pr [b ∈ S] = t(t−1)
(n−1)(n−2) , we have E [Z] =

μ. Note that we can evaluate Z in O(dt) time due to Lemma 3 as follows

Z =

∑
a,b∈S cos Θapb

t(t − 1)
=

1
t(t − 1)

∥
∥
∥
∥
∥

∑

a∈S

p − a

‖p − a‖

∥
∥
∥
∥
∥

2

− 1
t − 1

.

Hence, we can estimate

L1D(p) ≈ 1 −

√
√
√
√
√

1
n − 1

+
n − 2
n − 1

⎛

⎝ 1
t(t − 1)

∥
∥
∥
∥
∥

∑

a∈S

p − a

‖p − a‖

∥
∥
∥
∥
∥

2

− 1
t − 1

⎞

⎠.

Theoretical Analysis: For notational simplicity, let σ2 be the variance of cosine

of angles. Hence we have
∑

a ,b cos2 Θapb

(n−1)(n−2) = σ2 +μ2. For simplicity, we also assume
that cos Θapb ≥ 0 for any a, b,p ∈ S. The following theorem shows the upper
bound of variance of estimator provided by SamDepth.

Theorem 4.

Var [Z] ≤ (
σ2 + μ2

)
(

1
t − 1

− 1
n − 2

)

Proof. Due to limited space, we just sketch the proof. In order to bound Var [Z] =

E
[

Z2
]−μ2 where Z =

∑
a,b Zab, we decompose it into three terms corresponding

to
∑

a,b cos2 Θapb,
∑

a �=a′,b �=b′ cos Θapb cos Θa′pb′ , and
∑

a,b �=b′ cos Θapb cos Θapb′ .
Since

∑
a,b �=b′ cos Θapb cos Θapb′ ≤ (n − 3)

∑
a,b cos2 Θapb by Cauchy–Schwarz

inequality and the contribution of the second term is negative, we can bound
Var [Z] using only the first term, which leads to the result. �	

Discussion: It is worth noting that SamDepth with t = n − 1 provides an
exact L1D(p) while the basic sampling method can only give an estimate. When
t is large, SamDepth gives sufficiently small variance of estimator, and hence
results in negligible loss on outlier detection using L1D. For the general case
when any cos Θapb might be negative, we will consider random variables Yab =

1
t(t−1)

1+cosΘapb

2 instead. Applying Theorem 4, we can also bound the variance
of estimator provided by SamDepth. Due to limited space, we leave the detail
of the proof in the supplementary material1.

Parameter Setting and Reproducibility: In order to make SamDepth com-
pletely parameter-free and efficient, we simply set t =

√
n. Hence SamDepth

computes an unbiased estimate of L1D(p) in O(d
√

n) time, which is significantly
faster than O(dn) time required by standard proximity-based outlier detectors.
For reproducibility, we have released a C++ source code of SamDepth2. Our
1 https://www.dropbox.com/s/yzbam4heruglj4i/Supplementary.pdf.
2 https://github.com/NinhPham/Outlier.

https://www.dropbox.com/s/yzbam4heruglj4i/Supplementary.pdf
https://github.com/NinhPham/Outlier
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empirical experiments on 14 real-world high-dimensional data sets demonstrate
that SamDepth with

√
n samples often achieves very competitive accuracy and

runs several orders of magnitude faster than other proximity-based and ABOD
competitors.

5 Experiment

We implemented SamDepth and other competitors in C++ and conducted
experiments on a 3.40 GHz core i7 Windows platform with 32 GB of RAM. We
compared the performance of SamDepth with ABOD detectors using L1D, VOA
and ABOF and other proximity-based detectors on real-world high-dimensional
data sets. We used the area under the ROC curve (AUC) to evaluate the accuracy
of our unsupervised outlier detection methods since they deliver outlier rankings.
For measuring efficiency, we computed the total running time in seconds for each
detector. All results are over 5 runs of the algorithms.

Table 1. Data set properties: short names, number of points n, dimensionality d, and
number of outliers o.

Mam Shuttle Cover Cardio KDD Spam Opt Mnist Musk Arr Speech Isolet Mfeat Ads

n 11183 49097 286048 2126 60839 4207 5216 7603 3062 452 3686 945 440 1966

d 6 9 10 21 41 57 64 100 166 274 400 617 649 1555

o 260 3511 2747 471 246 1679 150 700 97 66 60 45 40 368

5.1 Experiment Setup

Due to the cubic time complexity of VOA and ABOF, we will compute these
exact values in some small data sets for comparison. For large-scale data
sets, we used FastVOA [17] and FastABOF [14] to approximate VOA and
ABOF, respectively. Below is the list of all implemented algorithms used in our
experiment.

– L1D: L1D (exact), BasicSam (basic sampling), SamDepth.
– VOA: VOA (exact), FastVOA [17].
– ABOF: ABOF (exact), FastABOF (k = �0.1 · n�) [14].
– Proximity-based factors: kNN [19], kNNW [4] with fixed parameter k = 10

and LOF [5] with fixed parameter k = 40.

For FastVOA, we used 100 random projections and fixed the size of AMS
Sketches s1 = 3200, s2 = 5 in all experiments. We used k = �0.1 · n� for
FastABOF as suggested in [14] since if k is small, approxABOF is simply the
local outlier factor of ABOF and cannot reflect well the original ABOF idea.
For consistency, we used k = 10 for kNN and kNNW as used in [19] and [4].
For LOF, we used k = 40 as suggested in [5]. We note that finding the best
parameter k for proximity-based methods is an extremely time-consuming task,
especially for large-scale data sets. The brute force procedure to find the best
parameter k requires O(κn log n) time for evaluating κ AUC scores where κ is
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the largest possible value of k. With the KDDCup99 data set of size n = 60839,
this process will need approximately 100 h to finish for κ = 1000 on our machine.

It is worth noting that in the realistic cases where we do not actually know
the outlier labels, incorrect settings in parameter-laden measures may cause
the algorithms to fail in finding the true anomaly patterns. Parameter-free out-
lier factors including L1D, VOA and ABOF would limit our ability to impose
our prejudices or presumptions on the problem, and “let the data speak for
themselves”.

5.2 Data Sets

We conducted experiments on real-world high-dimensional data sets, including
widely used data sets in literature and semantically meaningful data sets with
interpretation for outliers from popular resources, as shown in Table 1.

Fig. 3. Correlation coefficients between L1D and MOA1, MOA2, VOA and ABOF on
4 data sets: Arr, Cardio, Isolet and Mfeat.

– [20]3: Shuttle, Optdigits (Opt for short), Mnist, Musk, Arrhythmia (Arr
for short), Speech, Mammography (Mam for short), ForestCover (Cover for
short).

– [6]4: Cardiotocography (Cardio for short, 22% of outliers, not normal-
ized, duplicates), KDDCup99 (KDD for short, normalized, duplicates, idf
weighted), SpamBase (Spam for short, 40% of outliers, not normalized, with-
out duplicates), InternetAds (Ads for short, 19%, normalized, w.o. duplicates)

– [15]5: Isolet (classes C, D, E as inliers and random points in class Y as outliers)
and Multiple Features (Mfeat for short, classes 6 and 9 as inliers and random
points in class 0 as outliers).

5.3 Relationship Between L1D and ABOD Measures

This subsection conducted experiments on evaluating the correlation between
the proposed outlier factor L1D with other ABOD measures. We computed the
exact values of L1D, MOA1, MOA2, VOA and ABOF and evaluated the sta-
tistical relationships using correlation coefficients, including Pearson correlation
3 http://odds.cs.stonybrook.edu/.
4 http://www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI/.
5 https://archive.ics.uci.edu/ml/datasets.html.

http://odds.cs.stonybrook.edu/
http://www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI/
https://archive.ics.uci.edu/ml/datasets.html
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coefficients, Spearman’s rank correlation coefficients and Kendall’s rank correla-
tion coefficients. We computed these coefficients over 4 small data sets, including
Arr, Cardio, Isolet and Mfeat, and demonstrates the results in Fig. 3.

It is clear that the outlier rankings based on L1D are almost identical to
that of MOA1 and MOA2. L1D is also highly correlated to ABOF, except the
low-dimensional data set Cardio. This is due to the fact that the distance’s effect
is significant in ABOF for low-dimensional data.

The L1D’s rankings are also highly correlated to the VOA’s ones, except the
Isolet data set. In fact, on Isolet, the inlier classes C, D, and E have very similar
MOA1 values, whereas the average MOA1 of the outlier class Y significantly
deviates from the rest. Considering variance as a central second moment, we
know that the VOA’s ranking of outliers will change significantly compared to
the MOA1’s ranking, which leads to the situation where there is a negative corre-
lation between L1D (or MOA1, MOA2) and VOA. Besides, on Isolet, the L1D’s
ranking is also highly correlated to the ABOF’s one. This is due to the effect
of distances in ABOF measure, which can be observed in the next experiment
where the kNN detector shows the best performance on Isolet.

We also note that since L1D’s ranking is almost identical to MOA1, we
can use MOA1 as an ABOD outlier factor. The near-linear time approximation
algorithm to estimate MOA1 for all points proposed in [17] can be used to speed
up the outlier detection process.

Fig. 4. Relative approximation errors provided by SamDepth and BasicSam on the
Cardio, Isolet and Arr data sets when increasing the sample size.

5.4 Relative Approximation Errors

This subsection presents experiments to measure relative approximation errors of
SamDepth and BasicSam on previous data sets, including Cardio, Isolet and Arr.
For the sake of comparison, we used t random points for SamDepth and �t/2�
random pairs for BasicSam due to the fact that BasicSam needs two random
points for each random pair.

Figure 4 displays the average relative approximation errors provided by
SamDepth and BasicSam when varying the number of sample points t in range
�

√
n
i � where i = { 1

4 , 1
3 , · · · , 3, 4}. It is clear that the average relative errors and its

variances of both sampling methods decrease dramatically when increasing the
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sample size. Particularly, SamDepth with
√

n samples provides average relative
errors less than ε = 0.1 on the three data sets. Since the errors of SamDepth
are significantly smaller than that of BasicSam, SamDepth will achieve higher
accuracy than BasicSam on detecting outliers using L1-depth.

5.5 Outlier Detection Performance

In this subsection, we compare the outlier detection performance of sampling
methods using the AUC value (i.e. the area under the ROC curve). The AUC
value for an ideal outlier ranking is 1 when all outliers are top-ranked points.
The AUC value of a “less than perfect” outlier detection algorithm is typically
less than 1.

We again used 3 data sets, Arr and Isolet as high-dimensional data sets and
Cardio as a low-dimensional data set to measure AUC values of L1D measure
provided by the exact and sampling solutions. We studied the performance of
sampling methods where we varied the sample size as described in the previ-
ous subsections. Figure 5 reveals the AUC values of BasicSam and SamDepth
compared to the exact solution (L1D) on the data sets.

Fig. 5. Comparison of AUC values of SamDepth, BasicSam and L1D when varying
number of samples on 3 data sets.

It is clear that the AUC values of sampling methods converge to the AUC
value of the exact solution and the deviations of sampling methods are signif-
icantly reduced when increasing the sample size. SamDepth provides superior
performance compared to BasicSam regarding both AUC values and its devi-
ation on the 3 data sets. Since SamDepth outperforms BasicSam on detecting
outliers, we will use SamDepth with L1D to compare the outlier detection per-
formance with other proximity-based and ABOD-based outlier factors.

In order to quantify ABOD measures, we compare L1D, VOA, and ABOF
with proximity-based measures, including kNN, kNNW and LOF. For L1D, we
study the exact method and SamDepth with sample size

√
n. Since VOA and

ABOF require O(n3) time for exact values, we computed exact values for small
data sets and used approximation methods, including FastVOA and FastABOF,
for large data sets. Table 2 shows the AUC values and Table 3 depicts the running
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time in seconds on all used data set, except the 4 large-scale data sets Mam,
Shuttle, Cover and KDD.

Table 2. Comparison of AUC values of several outlier detectors on high-dimensional
data sets. The top-2 AUCs are in boldface on each data set.

kNN kNNW LOF L1D SamDepth VOA FastVOA ABOF FastABOF

Cardio 0.62 0.61 0.63 0.79 0.78 0.78 0.77 0.57 0.55

SpamBase 0.71 0.68 0.51 0.49 0.49 – 0.44 – 0.54

OptDigits 0.41 0.40 0.54 0.56 0.55 – 0.62 – 0.47

Mnist 0.82 0.80 0.72 0.84 0.82 – 0.57 – 0.86

Musk 0.64 0.24 0.41 0.91 0.89 0.79 0.79 0.1 0.06

Arrhythmia 0.81 0.80 0.81 0.80 0.79 0.68 0.56 0.81 0.79

Speech 0.48 0.52 0.49 0.47 0.47 0.40 0.50 0.47 0.51

Isolet 0.96 0.94 0.26 1 1 0.44 0.32 1 0.83

Mfeat 0.41 0.41 0.37 0.95 0.92 0.90 0.79 0.49 0.45

InternetAds 0.70 0.72 0.67 0.69 0.68 0.44 0.57 0.68 0.69

Avg AUC 0.66 0.61 0.54 0.75 0.74 – 0.59 – 0.58

Table 3. Comparison of running time (in seconds) of several outlier detectors on high-
dimensional data sets. The smallest running time values are in boldface on each data
set.

kNN kNNW LOF L1D SamDepth FastVOA FastABOF

Cardio 0.3 0.3 0.4 0.4 0.03 17.6 3.1

SpamBase 1.6 1.6 2.1 3.4 0.2 36.1 47.3

OptDigits 2.9 2.7 3.6 5.3 0.2 45.6 102.2

Mnist 8.2 8.3 10.0 17.4 0.6 66.0 460.0

Musk 2.1 2.1 2.4 4.7 0.2 26.9 51.2

Arrhythmia 0.06 0.08 0.09 0.16 0.02 3.6 0.3

Speech 6.8 6.8 7.0 15.9 0.8 31.5 196.1

Isolet 0.6 0.6 0.7 1.6 0.1 8.2 5.8

Mfeat 0.14 0.14 0.17 0.34 0.05 3.6 0.7

InternetAds 6.9 7.1 7.3 17.0 1.0 16.7 125.6

Avg Time 3.0 3.0 3.4 6.6 0.3 25.6 99.2

In general, L1D provides superior performance compared to other outlier
factors regarding the AUC with the highest average value of 75%. In particular,
L1D significantly outperforms VOA and ABOF for all 7 small data sets regarding
both accuracy and efficiency. Its AUC values are in the top-2 of 7 over 10 used
data sets. While AUC scores of SamDepth, kNN and kNNW are in the top-2 of 4
data sets, FastVOA and FastABOF show slightly less detection performance due
to the approximation errors. Among the proximity-based factors, kNN shows the
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Table 4. Comparison of AUC values and running time in seconds of representative
outlier detectors on 4 large-scale data sets.

Methods AUC Time (s)

Mam Shuttle Cover KDDCup99 Mam Shuttle Cover KDDCup99

kNN 0.85 0.76 0.85 0.85 8 138 4837 387

SamDepth 0.84 0.99 0.85 0.99 0.2 3 265 10

FastVOA 0.79 0.71 0.74 0.99 123 625 15413 1637

FastABOF 0.62 0.66 0.81 0.57 30 330 12956 3557

superior performance and LOF shows the inferior performance in average. Hence
we used KNN as a representative algorithm for the proximity-based methods on
large-scale experiments.

Regarding both effectiveness and efficiency, SamDepth illustrates substantial
advantages with the second highest average AUC 74% but runs up to several
orders of magnitude faster than other methods. In average, SamDepth runs
approximately 10× faster than proximity-based methods, 22× faster than exact
L1D, 85× faster than FastVOA, and 330× faster than FastABOF.

We conclude the empirical evaluation by depicting the performance of detec-
tors on 4 large-scale data sets, including Mam, Shuttle, Cover and KDD. For
each type of outlier factors, we used its representative algorithm, including kNN,
SamDepth, FastVOA and FastABOF. Since the data set’s size is very large,
FastABOF with k = �0.1 ·n� would not finish after 10 h. Hence we set k = �√n�
for FastABOF. Table 4 reveals the AUC values and running time in seconds on 4
large-scale data sets. Again, SamDepth provides superior performance compared
to the other methods. It almost obtains the highest AUC values and runs several
orders of magnitude faster than other competitors.

6 Conclusions

The paper investigates the parameter-free angle-based outlier detection (ABOD)
in high-dimensional data. Exploiting the conceptual relationship between the
ABOD intuition and the L1-depth notion (L1D), we propose to use L1D as a
robust variant of ABOD measures, which only requires a quadratic computa-
tional time. Empirical experiments on many real-world high-dimensional data
sets show that L1D is superior to other ABOD measures, such as ABOF and
VOA, and very competitive to other proximity-based measures, including kNN,
kNNW and LOF on detecting high-dimensional outliers regarding ROC AUC
scores.

In order to avoid the high computational complexity of L1D measures, we
propose SamDepth, a simple but efficient sampling algorithm which often runs
faster and achieves very comparable outlier detection performance compared to
the exact method. Especially, SamDepth with

√
n samples shows the superior

performance compared to widely used detectors regarding both effectiveness and
efficiency on many real-world high-dimensional data sets.
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Methods. SIT, pp. 25–38. Birkhäuser Basel, Basel (2002). https://doi.org/10.1007/
978-3-0348-8201-9 3

22. Tukey, J.W.: Mathematics and picturing data. In: Proceedings of the International
Congress of Mathematicians Vancouver, pp. 523–531 (1974)

23. Vardi, Y., Zhang, C.-H.: The multivariate L1-median and associated data depth.
Proc. Natl. Acad. Sci. U. S. A. 97(4), 1423–1426 (2000)

24. Zimek, A., Campello, R.J.G.B., Sander, J.: Ensembles for unsupervised outlier
detection: challenges and research questions a position paper. SIGKDD Explor.
15(1), 11–22 (2013)

https://doi.org/10.1007/978-3-0348-8201-9_3
https://doi.org/10.1007/978-3-0348-8201-9_3

	L1-Depth Revisited: A Robust Angle-Based Outlier Factor in High-Dimensional Space
	1 Introduction
	2 Notation and Background
	3 L1-Depth and Its Conceptual Relationship with the ABOD Intuition
	3.1 L1-Depth as an ABOD Measure
	3.2 An Empirical Study and Benefits from the Conceptual Relationship

	4 Sampling Algorithms for L1-Depth
	5 Experiment
	5.1 Experiment Setup
	5.2 Data Sets
	5.3 Relationship Between L1D and ABOD Measures
	5.4 Relative Approximation Errors
	5.5 Outlier Detection Performance

	6 Conclusions
	References




