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Abstract. Methods for learning heterogeneous regression ensembles
have not yet been proposed on a large scale. Hitherto, in classical ML
literature, stacking, cascading and voting are mostly restricted to classifi-
cation problems. Regression poses distinct learning challenges that may
result in poor performance, even when using well established homoge-
neous ensemble schemas such as bagging or boosting. In this paper, we
introduce MetaBags, a novel stacking framework for regression. MetaBags
learns a set of meta-decision trees designed to select one base model (i.e.
expert) for each query, and focuses on inductive bias reduction. Finally,
these predictions are aggregated into a single prediction through a bag-
ging procedure at meta-level. MetaBags is designed to learn a model with
a fair bias-variance trade-off, and its improvement over base model per-
formance is correlated with the prediction diversity of different experts
on specific input space subregions. An exhaustive empirical testing of
the method was performed, evaluating both generalization error and
scalability of the approach on open, synthetic and real-world applica-
tion datasets. The obtained results show that our method outperforms
existing state-of-the-art approaches.
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1 Introduction

Ensemble refers to a collection of several models (i.e., experts) that are com-
bined to address a given task (e.g. obtain a lower generalization error for super-
vised learning problems) [24]. Ensemble learning can be divided in three differ-
ent stages [24]: (i) base model generation, where z multiple possible hypotheses
f̂i(x), i ∈ {1..z} to model a given phenomenon f(x) = p(y|x) are generated; (ii)
model pruning, where c ≤ z of those are kept and (iii) model integration, where
these hypotheses are combined, i.e. F̂

(
f̂1(x), ..., f̂c(x)

)
. Naturally, the process

may require large computational resources for (i) and/or large and representa-
tive training sets to avoid overfitting, since F̂ is also learned on the training
set, which was already used to train the base models f̂i(x) in (i). Since the
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pioneering Netflix competition in 2007 [1] and the introduction of cloud-based
solutions for data storing and/or large-scale computations, ensembles have been
increasingly used in industrial applications. For instance, Kaggle, the popular
competition website, where, during the last five years, 50+% of the winning
solutions involved at least one ensemble of multiple models [21].

Ensemble learning builds on the principles of committees, where there is
typically never a single expert that outperforms all the others on each and every
query. Instead, we may obtain a better overall performance by combining answers
of multiple experts [28]. Despite the importance of the combining function F̂ for
the success of the ensemble, most of the recent research on ensemble learning is
either focused on (i) model generation and/or (ii) pruning [24].

Model integration approaches are grouped in three clusters [30]: (a) voting
(e.g. bagging [4]), (b) cascading [18] and (c) stacking [33]. In voting, the outputs
of the ensemble is a (weighted) average of outputs of the base models. Cascading
iteratively combines the outputs of the base experts by including them, one at a
time, as another feature in the training set. Stacking learns a meta-model that
combines the outputs of all the base models. Voting relies on base models to
have complementary expertise, which is an assumption that is rarely true in
practice (e.g. check Fig. 1(b,c)). On the other hand, cascading is typically too
time-consuming to be put in practice, since it involves training of several models
in a sequential fashion.

Stacking relies on the power of the meta-learning algorithm to approximate
F̂ . Stacking approaches are of two types: parametric and non-parametric. The
first (and most common [21]) assumes a (typically linear) functional form for
F̂ , while its coefficients are either learned or estimated [7]. The second follows a
strict meta-learning approach [3], where a meta-model for F̂ is learned in a non-
parametric fashion by relating the characteristics of problems (i.e. properties of
the training data) with the performance of the experts. Notable approaches
include instance-based learning [32] and decision trees [30]. However, novel
approaches for model integration in ensemble learning are primarily designed
for classification and, if at all, adapted later on for regression [24,30,32]. While
such adaptation may be trivial in many cases, it is noteworthy that regression
poses distinct challenges.

Formally, we formulate a regression problem as the problem of learning a
function

f̂θ : xi → R such that f̂(xi; θ) � f(xi) = yi,∀xi ∈ X, yi ∈ Y (1)

where f(xi) denotes the true unknown function which is generating the samples’
target variable values, and f̂(xi; θ) = ŷi denotes an approximation dependent
on the feature vector xi and an unknown (hyper)parameter vector θ ∈ R

n. One
of the key differences between regression and classification is that for regres-
sion the range of f is apriori undefined and potentially infinite. This issue raises
practical hazards for applying many of the widely used supervised learning algo-
rithms, since some of them cannot predict outside of the target range of their
training set values (e.g. Generalized Additive Models (GAM) [20] or CART [6]).
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Another major issue in regression problems are outliers. In classification, one
can observe either feature or concept outliers (i.e. outliers in p(x) and p(y|x)),
while in regression one can also observe target outliers (in p(y)). Given that the
true target domain is unknown, these outliers may be very difficult to handle
with common preprocessing techniques (e.g. Tukey’s boxplot or one-class SVM
[9]). Figure 1 illustrates these issues in practice on a synthetic example with dif-
ferent regression algorithms. Although the idea of training different experts in
parallel to subsequently combine them seems theoretically attractive, the above-
mentioned issues make it difficult in practice, especially for regression. In this
context, stacking is regarded as a complex art of finding the right combination of
data preprocessing, model generation/pruning/integration and post-processing
approaches for a given problem.

In this paper, we introduce MetaBags, a novel stacking framework for regres-
sion. MetaBags is a powerful meta-learning algorithm that learns a set of meta-
decision trees designed to select one expert for each query thus reducing inductive
bias. These trees are learned using different types of meta-features specially cre-
ated for this purpose on data bootstrap samples, whereas the final meta-model
output is the average of the outputs of the experts selected by each meta-decision
tree for a given query. Our contributions are threefold:

1. A novel meta-learning algorithm to perform non-parametric stacking for
regression problems with minimum user expertise requirements.

2. An approach for turning the traditional overfitting tendency of stacking into
an advantage through the usage of bagging at the meta-level.

3. A novel set of local landmarking meta-features that characterize the
learning process in feature subspaces and enable model integration for regres-
sion problems.

In the remainder of this paper, we describe the proposed approach, after dis-
cussing related work. We then present an exhaustive experimental evaluation of
its efficiency and scalability in practice. This evaluation employs 17 regression
datasets (including one real-world application) and compares our approach to
existing ones.

2 Related Work

Since its first appearance, meta-learning has been defined in multiple ways that
focus on different aspects such as collected experience, domain of application,
interaction between learners and the knowledge about the learners [23]. Brazdil
et al. [3] define meta-learning as the learning that deals with both types of bias,
declarative and procedural. The declarative bias is imposed by the hypothe-
sis space form which a base learner chooses a model, whereas the procedural
bias defines how different hypotheses should be preferred. In a recent survey,
Lemke et al. [23] characterize meta-learning as the learning that constitutes
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Fig. 1. Illustration of distinctive issues in regression problems on a synthetic example.

In all experiments, we generate 1k training examples for the function y = (x4
1 + x4

2)
1
2 .

In (a), x1, x2 training values are sampled from a uniform distribution constrained to
∈ [0, 0.8], while the testing ones are ∈ [0, 1]. Panel (a) depicts the difference between
RMSE between the two tested methods, GAM and SVR, where the hyperparameters were
tuned using random search (60 points) and a 3-fold-CV procedure was used for error
estimation. SVR’s MSE is significantly larger than GAM’s one, and still, there are several
regions of the input space where GAM is outperformed (in light pink colors). Panels
(b,c) depict the regression surface of two models learned using tree-based Gradient
Boosting machines (GB) and Random Forests (RF), respectively, with 100 trees and
default hyperparameter settings. To show their sensitivity to target outliers, we artifi-
cially imputed one extremely high value (in black) in the target of one single example
(where the value is already expected to be maximum). In Panels (d, e), we analyze
the same effects with two stacking approaches using the models fitted in (a, b, c) as
base learners: Linear Stacking (LS) in (d) and Dynamic Selection (DS) with kNN in (e).
Please note how deformed the regression surfaces (in gray) are in all settings (b–d).
Panel (f) depicts the original surface. Best viewed in color. (Color figure online)
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three essential aspects: (i) the adaptation with experience, (ii) the consideration
of meta-knowledge of the data set (to be learned from) and (iii) the integration
of meta-knowledge from various domains. Under this definition, both ensemble
methods bagging [4] and boosting [14] do not qualify as meta-learners, since the
base learners in bagging are trained independently of each other, and in boost-
ing, no meta-knowledge from different domains is used when combining decisions
from the base learners. Using the same argument, stacking [33] and cascading
[18] cannot be definitely considered as meta-learners [23].

Algorithm recommendation, in the context of meta-learning, aims to propose
the type of learner that best fits a specific problem. This recommendation can be
performed after considering both the learner’s performance and the character-
istics of the problem [23]. Both aforementioned aspects qualify as meta-features
that assist in deciding which learner could perform best on a specific problem. We
note three classes of meta-features [3]: (i) meta-features of the dataset describing
its statistical properties such as the number of classes and attributes, the ratio
of target classes, the correlation between the attributes themselves, and between
the attributes and the target concept, (ii) model-based meta-features that can
be extracted from models learned on the target dataset, such as the number of
support vectors when applying SVM, or the number of rules when learning a
system of rules, and (iii) landmarkers, which constitute the generalization per-
formance of diverse set of learners on the target dataset in order to gain insights
into which type of learners fits best to which regions/subspaces of the studied
problem. Traditionally, landmarkers have been mostly proposed in a classifica-
tion context [3,27]. A notorious exception is proposed by Feurer et al. [12]. The
authors use meta-learning to generate prior knowledge to feed a bayesian opti-
mization procedure in order to find the best sequence of algorithms to address
predefined tasks in either classification and regression pipelines. However, the
original paper [13] focuses mainly on classification.

The dynamic approach of ensemble integration [24] postpones the integra-
tion step till prediction time so that the models used for prediction are chosen
dynamically, depending on the query to be classified. Merz [25] applies dynamic
selection (DS) locally by selecting models that have good performance in the
neighborhood of the observed query. This can be seen as an integration app-
roach that considers type-(iii) landmarkers. Tsymbal et al. [32] show how DS for
random forests decreases the bias while keeping the variance unchanged.

In a classification setting, Todorovski and Džeroski [30] combine a set of base
classifiers by using meta-decision trees which in a leaf node give a recommen-
dation of a specific classifier to be used for instances reaching that leaf node.
Meta-decision trees (MDT) are learned by stacking and use the confidence of the
base classifiers as meta-features. These can be viewed as landmarks that charac-
terizes the learner, the data used for learning and the example that needs to be
classified. Most of the suggested meta-features MDT are applicable to classification
problems only.
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MetaBags can be seen as a generalization of DS [25,32] that uses meta-features
instead. Moreover, we considerably reduce DS runtime complexity (generically,
O(N) in test time, even with state-of-the-art search heuristics [2]), as well as
the user-expertise requirements to develop a proper metric for each problem.
Finally, the novel type of local landmarking meta-features characterize the local
learning process - aiming to avoid overfitting.

3 Methodology

This Section introduces MetaBags and its three basic components: (1) First, we
describe a novel algorithm to learn a decision tree that picks one expert among
all available ones to address a particular query in a supervised learning context;
(2) then, we depict the integration of base models at the meta-level with bagging
to form the final predictor F̂ ; (3) Finally, the meta-features used by MetaBags
are detailed. An overview of the method is presented in Fig. 2.

3.1 Meta-Decision Tree for Regression

Problem Setting. In traditional stacking, F̂ just depends on the base models
f̂i. In practice, as stronger models may outperform weaker ones (c.f. Fig. 1(a)),
they get assigned very high coefficients (assuming we combine base models with
a linear meta-model). In turn, weaker models may obtain near-zero coefficients.
This can easily lead to over-fitting if a careful model generation does not take
place beforehand (c.f. Fig. 1(d,e)). However, even a model that is weak in the
whole input space may be strong in some subregion. In our approach we rely
on classic tree-based isothetic boundaries to identify contexts (e.g. subregions of
the input space) where some models may outperform others, and by using only
strong experts within each context, we improve the final model.

Let the dataset D be defined as (xi, yi) ∈ D ⊂ R
n × R : i = {1, . . . , N} and

generated by an unknown function f(x) = y, where n is the number of features of
an instance x, and y denotes a numerical response. Let f̂j(x) : j = {1, ..,M} be a
set of M base models (experts) learned using one or more base learning methods
over D. Let L denote a loss function of interest decomposable in independent
bias/variance components (e.g. L2-loss). For each instance xi, let {zi,1, . . . , zi,Q}
be the set of meta-features generated for that instance.

Starting from the definition of a decision tree for supervised learning intro-
duced in CART [6], we aim to build a classification tree that, for a given instance
x and its supporting meta-features {z1, . . . , zQ}, dynamically selects the expert
that should be chosen for prediction, i.e., F̂ (x, z1, . . . , zQ; f̂1, . . . , ˆfM ) = f̂j(x).
As for the tree induction procedure, we aim, at each node, at finding the feature
zj and the splitting point zt

j that leads to the maximum reduction of impu-
rity. For the internal node p with the set of examples Dp ∈ D that reaches p,
the splitting point zt

j splits the node p into the leaves pl and pr with the sets
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Dpl
= {xi ∈ Dp|zij ≤ zt

j} and Dpr
= {xi ∈ Dp|zij > zt

j}, respectively. This can
be formulated by the following optimization problem at each node:

arg max
zt

j

ω(zt
j) (2)

s.t. ω(zt
j) = [I(p) − PlI(pl) − PrI(pr)] (3)

where Pl, Pr denote the probability of each branch to be selected, while I denotes
the so-called impurity function. In traditional classification problems, the func-
tions applied here aim to minimize the entropy of the target variable. Hereby,
we propose a new impurity function for this purpose denoted as Inductive Bias
Reduction. It goes as follows:

I(p) = IBR(p) = min
j∈{1...M}

E
[
B

(L(p, f̂j)
)2] (4)

where B(L) denotes the inductive bias component of the loss L.

Fig. 2. MetaBags: The learning phase consists of (i) the learning of base models and the
landmarkers, (ii) bootstrapping and finally (iii) the learning of the meta decision trees
from each bootstrap. The prediction for an unseen example is achieved by consulting
each meta decision tree and then aggregating their predictions.

Optimization. To solve the problem of Eq. (2), we address three issues: (i)
splitting criterion/meta-feature, (ii) splitting point and (iii) stopping criterion.
To select the splitting criterion, we start by constructing two auxiliary equally-
sized matrices a ∈ R

Q×φ and b : zimin ≤ bi,j ≤ zimax ,∀i, j, where φ ∈ N, Q
denote a user-defined hyperparameter and the number of meta-features used,
respectively. Then, the matrices are populated with candidate values by elabo-
rating over the Eq. (2, 3, 4) as

ai,j = ω(bi,j), bi,j ∼ U(zimin , zimax), (5)
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where bi,j is the jth splitting criterion for the ith meta feature.
First, we find the splitting criteria τ such that

τ = arg max
i ∈ {1..Q}

ai,j , ∀j ∈ {1..φ}. (6)

Secondly, we need to find the optimal splitting point according to the zτ criteria.
We can either take the splitting point already used to find τ or, alternatively,
fine-tune the procedure by exploring further the domain of zτ . For the latter
problem, any scalable search heuristic can be applied (e.g.: Golden-section search
algorithm [22]).

Thirdly, (iii) the stopping criteria to constraint Eq. (2). Here, like CART, we
propose to create fully grown trees. Therefore, it goes as follows:

ω
(
zt
τ

)
< ε ∨ |Dp| < υ : ε ∈ R

+, υ ∈ N (7)

where ε, υ are user-defined hyperparameters. Intuitively, this procedure consists
in randomly finding φ possible partitioning points on each meta-feature in a
parallelizable fashion in order to select one splitting criterion.

The pseudocode of this algorithm is presented in Algorithm 1.

3.2 Bagging at Meta-Level: Why and How?

Bagging [4] is a popular ensemble learning technique. It consists of forming
multiple d replicate datasets D

(B) ⊂ D by drawing s << N examples from
D at random, but with replacement, forming bootstrap samples. Next, d base
models ϕ(xi,D

(B)) are learned with a selected method on each D
(B), and the final

prediction ϕA(xi) is obtained by averaging the predictions of all d base models.
As Breiman demonstrates in Sect. 4 of [4], the amount of expected improvement
of the aggregated prediction ϕA(xi) depends on the gap between the terms of
the following inequality:

E
[L(

ϕ(xi,D
(B))

)]2 ≤ E
[L(

ϕ(xi,D
(B))

)2]
. (8)

In our case, ϕ(xi,D
(B)) is given by the f̂j(xi) selected by each meta-decision

tree induced in each D
(B). By design, the procedure to learn this specific meta-

decision tree is likely to overfit its training set, since all the decisions envisage
reduction of inductive bias alone. However, when used in a bagging context, this
turns to be an advantage because it causes instability of ϕ - as each tree may be
selecting different predictors to each instance xi.

3.3 Meta-Features

MetaBags is fed with three types of meta-features: (a) base, (b) performance-
related and (c) local landmarking. These types are briefly explained below, as
well as their connection with the state of the art.
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(a) Base Features. Following [30], we propose to include all base features also
as meta-features. This aims to stimulate a higher inequality in Eq. (8) due to
the increase of inductive variance of each meta-predictor.

(b) Performance-Related Features. This type of meta-features describes
the performance of specific learning algorithms in particular learning contexts
on the same dataset. Besides the base learning algorithms, we also propose the
usage of landmarkers. Landmarkers are ML algorithms that are computationally
relatively cheap to run either in a train or test setting [27]. The resulting models
aim to characterize the learning task (e.g. is the regression curve linear?). To
the authors’ best knowledge, so far, all proposed landmarkers and consequent
meta-features have been primarily designed for classical meta-learning applica-
tions to classification problems [3,27], whereas we focus on model integration for
regression. We use the following learning algorithms as landmarkers: LASSO [29],
1NN [10], MARS [15] and CART [6].

To generate the meta-features, we start by creating one landmarking model
per method over the entire training set. Then, we design a small artificial neigh-
borhood of size ψ of each training example xi as X ′

i = {x′
i,1, x

′
i,2..x

′
i,ψ} by

perturbing xi with gaussian noise as follows:

x′
i,j = xi,j + ξ : ξ ∼ Nn(0, 1),∀j ∈ {1, .., ψ} (9)

where ψ, is a user-defined hyperparameter. Then, we obtain outputs of each
expert as well as of each landmarker given X ′

i. The used meta-features are then
descriptive statistics of the models’ outputs: mean, stdev., 1st/3rd quantile. This
procedure is applicable both to training and test examples, whereas the land-
markers are naturally obtained from the training set.

(c) Local Landmarking Features. In the original landmarking paper,
Pfahringer et al. [27] highlight the importance on ensuring that our pool of land-
markers is diverse enough in terms of the different types of inductive bias that
they employ, and the consequent relationship that this may have with the base
learners performance. However, when observing performance on a neighborhood-
level rather than on the task/dataset level, the low performance and/or high
inductive bias may have different causes (e.g., inadequate data preprocessing
techniques, low support/coverage of a particular subregion of the input space,
etc.). These causes, may originate in different types of deficiencies of the model
(e.g. low support of leaf nodes or high variance of the examples used to make
the predictions in decision trees).

Hereby, we introduce a novel type of landmarking meta-features denoted
local landmarking. Local landmarking meta-features are designed to charac-
terize the landmarkers/models within the particular input subregion. More than
finding a correspondence between the performance of landmarkers and base mod-
els, we aim to extract the knowledge that the landmarkers have learned about a
particular input neighborhood. In addition to the prediction of each landmarker
for a given test example, we compute the following characteristics:
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– CART: depth of the leaf which makes the prediction; number of examples in
that leaf and variance of these examples;

– MARS: width and mass of the interval in which a test example falls, as well as
its distance to the nearest edge;

– 1NN: absolute distance to the nearest neighbor.

4 Experiments and Results

Empirical evaluation aims to answer the following four research questions:

(Q1) Does MetaBags systematically outperform its base models in practice?
(Q2) Does MetaBags outperform other model integration procedures?
(Q3) Do the local landmarking meta-features improve MetaBags performance?
(Q4) Does MetaBags scale on large-scale and/or high-dimensional data?

4.1 Regression Tasks

We used a total of 17 benchmarking datasets to evaluate MetaBags. They are
summarized in Table 1. We include 4 proprietary datasets addressing a particular
real-world application: public transportation. One of its most common research
problems is travel time prediction (TTP). The work in [19] uses features such
as scheduled departure time, vehicle type and/ or driver’s meta-data. This type
of data is known to be particularly noisy due to failures in the data collection,
which in turn often lead to issues such as missing data, as well as several types
of outliers [26].

Here, we evaluate MetaBags in a similar setting of [19], i.e. by using their four
datasets and the original preprocessing. This case study is an undisclosed large
urban bus operator in Sweden (BOS). We collected data on four high-frequency
routes/datasets R11/R12/R21/R22. These datasets cover a time period of six
months.

4.2 Evaluation Methodology

Hereby, we describe the empirical methodology designed to answer (Q1-Q4),
including the hyperparameter settings of MetaBags and the algorithms selected
for comparing the different experiments.

Hyperparameter Settings. Like other decision tree-based algorithms,
MetaBags is expected to be robust to its hyperparameter settings. Table 2
presents the hyperparameters settings used in the empirical evaluation (a sensi-
ble default). If any, s and d can be regarded as more sensitive parameters. Their
value ranges are recommended to be 0% < s << 100% and 100 ≤ d << 2000.
Please note that these experiments did not included any hyperparameter sensi-
tivity study neither a tuning procedure for MetaBags.
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Testing Scenarios and Comparison Algorithms. We put in place two test-
ing scenarios: A and B. In scenario A, we evaluate the generalization error of
MetaBags with 5-fold cross validation (CV) with 3 repetitions. As base learners,
we use four popular regression algorithms: Support Vector Regression (SVR) [11],
Projection Pursuit Regression (PPR) [17], Random Forest RF [5] and Gradient
Boosting GB [16]. The first two are popular methods in the chosen application
domain [19], while the latter are popular voting-based ensemble methods for
regression [21]. The base models had their hyperparameter values tuned with
random search/3-fold CV (and 60 evaluation points). We used the implementa-
tions in the R package caret for both the landmarkers and the base learners. We
compare our method to the following ensemble approaches: Linear Stacking LS
[7], Dynamic Selection DS with kNN [25,32], and the best individual model. All
methods used l2-loss as L.

In scenario B, we extend the artificial dataset used in Fig. 1 to assess the com-
putational runtime scalability of the decision tree induction process of MetaReg
(using a CART-based implementation) in terms of number of examples and
attributes. In this context, we compare our method’s training stage to Linear
Regression (used for LS) and kNN in terms of time to build k-d tree (DS). Addi-
tionally, we also benchmarked C4.5 (which was used in MDT [30]). For the latter,
we discretized the target variable using the four quantiles.

4.3 Results

Table 3 presents the performance results of MetaBags against comparison algo-
rithms: the base learners; SoA in model integration such as stacking with a linear
model LS and kNN, i.e. DS, as well as the best base model selected using 3-CV i.e.
Best; finally, we also included two variants of MetaBags: MetaReg – a singular
decision tree, MBwLM – MetaBags without the novel landmarking features. Results
are reported in terms of RMSE, as well as of statistical significance (using the
using the two-sample t-test with the significance level α = 0.05, with the null
hypothesis that a given learner M wins against MetaBags after observing the
results of all repetitions). Finally, Fig. 3 summarizes those results in terms of
percentual improvements, while Fig. 4 depicts our empirical scalability study.

5 Discussion

The results, presented in Table 3, show that MetaBags outperforms existing SoA
stacking methods. MetaBags is never statistically significantly worse than any of
the other methods, which illustrates its generalization power.

Figure 3 summarizes well the contribution of introducing bagging at the meta-
level as well as the novel local landmarking meta-features, with average relative
percentages of improvement in performance across all datasets of 12.73% and
2.67%, respectively. The closest base method is GB, with an average percentage
of improvement of 5.44%. However, if we weight this average by using the per-
centage of extreme target outliers of each dataset, the expected improvement
goes up to 14.65% - illustrating well the issues of GB depicted earlier in Fig. 1(b).
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Table 1. Datasets summary. Fields denote number of #ATTributes and #INStances,
the Range of the Target variable, the number of #Target Outliers using Tukey’s
boxplot(ranges = 1.5,3), their ORIgin, as well as its TYPe (Proprietary/Open) and
Collection Process (Real/Artificial).

Properties Source and type

#ATT #INS RT #TO(1.5) #TO(3.0) ORI TYP CP

R11 12 17953 [1306,10520] 66 9 BOS P R

R12 12 16353 [1507,9338] 154 6 BOS P R

R21 12 16280 [1434,6764] 341 27 BOS P R

R22 12 16353 [884,6917] 146 10 BOS P R

Cal. housing 8 20460 [14999,500001] 1071 0 StatLib O R

Concrete 8 1030 [2332,82599] 4 0 UCI O R

2Dplanes 10 40768 [−999.709,999.961] 4 0 dcc.fc.up.pt [31] O A

Delta Ailerons 6 7129 [−0.0021,0,0022] 107 12 dcc.fc.up.pt [31] O R

Elevators 18 16559 [0.012,0,078] 842 344 dcc.fc.up.pt [31] O R

Parkinsons Tele. 26 5875 [0.022,0732] 206 17 UCI O R

Physicochemical 9 45730 [15.228,55.3009] 0 0 UCI O R

Pole 48 15000 [0,100] 0 0 dcc.fc.up.pt [31] O R

Puma32H 32 8192 [−0.085173,0.088266] 56 0 DELVE O R

Red wine quality 12 1599 [3,8] 28 0 UCI O R

White wine quality 12 4898 [3,9] 200 0 UCI O R

Computer activity

CPU-small 12 8192 [0,99] 430 294 DELVE O R

CPU-activity 21 8192 [0,99] 430 294 DELVE O R

Table 2. Hyperparameter settings used in MetaBags.

Value Description

φ 10 Number of random partitions performed on each meta-feature;

ε |I(tp) · 10−2| Min. abs. bias reduction to perform split;

υ N · 10−2 Min. examples in node to perform split;

ψ 100 Size of the artificial neighborhood generated to compute meta-features;

s 10% Percentage of examples usage to generate the bootstraps;

d 300 Number of generated meta-decision trees;

Figure 4 also depicts how competitive MetaBags can be in terms of scalabil-
ity. Although neither outperforming DS nor LS, we want to highlight that lazy
learners have their cost in test time - while this study only covered the training
stage. Moreover, many of its stages (learning of base learners, performance-
based meta-features, local landmarking) as well as subroutines of the MetaBags
are independent and thus, trivially parallelizable. Based in the above discussion,
(Q1-Q4) can be answered affirmatively.

One possible drawback of MetaBags may be its space complexity - since
it requires to train/maintain multiple decision trees and models in memory.
Another possible issue when dealing with low latency data mining applications
is that the computation of some of the meta-features is not trivial, which may



MetaBags: Bagged Meta-Decision Trees for Regression 649

slightly increase its runtimes in test stage. Both issues were out of the scope of
the proposed empirical evaluation and represent open research questions.

Like any other stacking approach, MetaBags requires training of the base
models apriori. This pool of models need to have some diversity on their
responses. Hereby, we explore the different characteristics of different learn-
ing algorithms to stimulate that diversity. However, this may not be sufficient.

Fig. 3. Summary results of MetaBags using the percentage of improvement over its
competitors. Note the consistently positive mean over all methods.

Algorithm 1. InduceMetaDecisionTreeRegression
Input: p: root (or current internal node) of the meta decision tree.
Dp ⊂ Di: the subset of examples that reach the root (or internal node) p, Di is a bootstrap
sampled with replacement from D.

{f̂j |j ∈ {1..M}}: the set of base models.
{zu,v|xu ∈ Dp ∧ v ∈ {1, . . . , Q}}: the set of meta features for each instance in Dp.
/* check that the current node has the minimum number of supporting instances */

1 if |Dp| ≤ υ then
2 return

/* create the matrices A and B */

3 B = [bi,j ] ∈ R
Q×φ s.t. bi,j ∼ U(zimin , zimax )

4 A = [ai,j ] ∈ R
Q×φ s.t. ai,j = ω(bi,j) = [I(p) − PlI(pl) − PrI(pl)]

/* find the splitting criteria τ */
5 τ = argmin

i ∈ {1..Q}
ai,j , for all j ∈ {1, . . . , φ}

6 if ω
(
zt

τ

) ≥ ε then
/* create the right and left leaf nodes, pl and pr */

7 Dpl
= {xi ∈ Dp|ziτ ≤ zt

τ }
8 Dpr = {xi ∈ Dp|ziτ > zt

τ }
9 InduceMetaDecisionTree(pl,Dpl

, {f̂j}, {zu,v})
10 InduceMetaDecisionTree(pr,Dpr , {f̂j}, {zu,v})
11 return
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Formal approaches to strictly ensure diversity on model generation for ensemble
learning in regression are scarce [8,24]. The best way to ensure such diversity
within an advanced stacking framework like MetaBags is also an open research
question.

Table 3. Detailed predictive performance results, comparing base learners vs. MetaBags
(top) and SoA methods in model integration vs. MetaBags - including variations (bot-
tom). The results reported on the average and (std. error) of RMSE. The last rows
depict the wins and losses based on the two-sample t-test with the significance level
α = 0.05 and the null hypothesis that a given learner M wins against MetaBags (com-
puted after observing the results of all repetitions in a pair-wise manner).
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Fig. 4. Empirical runtime scalability analysis resorting to samples (left panel) and
features (right panel) size. Times in seconds.

6 Final Remarks

This paper introduces MetaBags: a novel, practically useful stacking framework for
regression. MetaBags uses meta-decision trees that perform on-demand selection
of base learners at test time based on a series of innovative meta-features. These
meta-decision trees are learned over data bootstrap samples, whereas the outputs
of the selected models are combined by average. An exhaustive empirical evalu-
ation, including 17 datasets and multiple comparison algorithms illustrates the
ability of MetaBags to address model integration problems in regression. As future
work, we aim to study which factors affect the performance of MetaBags, namely,
at model generation level, as well as its time and spatial complexity in test time.
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