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Abstract. AdaBoost was introduced for binary classification tasks by
Freund and Schapire in 1995. Ever since its publication, numerous results
have been produced, which revealed surprising links between AdaBoost
and related fields, such as information geometry, game theory, and con-
vex optimization. This remarkably comprehensive set of connections sug-
gests that adaBoost is a unique approach that may, in fact, arise out
of axiomatic principles. In this paper, we prove that this is indeed the
case. We show that three natural axioms on adaptive re-weighting and
combining algorithms, also called arcing, suffice to construct adaBoost
and, more generally, the multiplicative weight update procedure as the
unique family of algorithms that meet those axioms. Informally speaking,
our three axioms only require that the arcing algorithm satisfies some
elementary notions of additivity, objectivity, and utility. We prove that
any method that satisfies these axioms must be minimizing the com-
position of an exponential loss with an additive function, and that the
weights must be updated according to the multiplicative weight update
procedure. This conclusion holds in the general setting of learning, which
encompasses regression, classification, ranking, and clustering.
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1 Introduction

In an axiomatic treatment, the goal is to formalize broad intuitive notions
into precise mathematical terms, called axioms. Often, a collection of axioms
would pinpoint unequivocally to a unique solution but, in some striking cases,
it could result in an impossibility theorem, where it is concluded that no solu-
tion could possibly satisfy all of the postulated axioms. In both instances, an in-
depth insight is provided by axiomatization. Unfortunately, despite the fact that
axiomatic methods are quite abundant in related fields, developing an axiomatic
basis for artificial intelligence, in general, and machine learning, in particular, is
not a common practice today.

Consider, for the sake of comparison, the closely-related field of information
theory. In information theory, the Shannon entropy alone has been characterized
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axiomatically via, at least, seven different approaches [2,11,22,33]. These differ-
ent axiomatizations are built on intuitive notions, such as continuity, additiv-
ity, monotonicity, recursivity and symmetry. Similarly, the maximum-entropy
method has been axiomatized in various ways [10,34,35]. Moreover, axiomatic
characterizations have been developed for the Kullback-Leibler divergence by
Kannappan and Ng, for the Rényi entropies by Daróczy, and for the broad class
of f -divergences by Csiszár [11,24].

In machine learning, on the other hand, only a few areas within such a broad
discipline have witnessed some axiomatic treatments. These include clustering,
rank aggregation, Bayesian inference, and collaborative filtering. Even more,
in some of those few axiomatic approaches, the conclusion turned out to be
implicitly imposed in the axioms themselves, thus significantly weakening the
implications of their results. For instance, [3] proposed an axiomatic approach
for defining relevance in feature subset selection. Because the two axioms of [3]
required that the mutual information between the instance and the target be
preserved and that the description length be minimized, it is not, perhaps, quite
surprising that the proposed definition of relevance was expressed in terms of
the mutual information itself. Similarly, the axiomatic basis of [17] for clustering
algorithms identified single-linkage as the only clustering method that met those
axioms. However, as pointed out by [1], this is arguably a consequence of the fact
that one of the axioms used in [17] was, implicitly, the optimization objective of
that particular clustering algorithm.

Nevertheless, there are celebrated stories of successful axiomatic characteri-
zations in machine learning. One of the most prominent examples is the axiom-
atization of Bayesian inference using Cox’s theorem. In 1946, Cox established
that the laws of probability were the only method of manipulating one’s degrees
of belief in a manner that was both consistent and agreed with common sense
[9]. Jaynes, in his posthumous book “Probability Theory: The Logic of Science”,
viewed this theorem as the cornerstone of the Bayesian interpretation of proba-
bility theory [18].

A second area in machine learning that has received a fair amount of
axiomatic treatment is clustering. In [21], Kleinberg developed an impossibil-
ity theorem, showing that no clustering function could achieve scale-invariance
and richness, while also simultaneously satisfying a third condition, which he
called “consistency”. This negative result was interpreted as a formal proof of
the ill-defined nature of the clustering task. However, while the first two of
Kleinberg’s axioms were quite natural, the third axiom was, in fact, quite strong.
One, arguably, more natural approach would be to state the third axiom in terms
of the “refinement” of the partition under “transformations”, rather than requir-
ing the partitions to be identical, per se, or, at least, to fix the number of clus-
ters in advance. Indeed, using similar arguments, a different axiomatization was
derived in [1] that captured the same principles of Kleinberg while sidestepping
his impossibility result.

One particular axiomatic tool that has found many applications in machine
learning are the axioms of social choice theory. In [26], an analog to the
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celebrated Arrow’s impossibility theorem was derived for combining the pre-
dictions of weak learners in ensemble methods in the multiclass setting, and
axiomatic characterizations of weighted averaging and majority voting were pro-
vided as well. Similarly, [27] derived analogs of the axioms of social choice theory
for rank aggregation, while [25] derived analogs for collaborative filtering.

In this paper, we develop an axiomatic characterization of boosting algo-
rithms that operate via adaptive re-weighting and combining, which are also
called arcing methods [5]. By requiring that these procedures satisfy three ele-
mentary notions of additivity, objectivity and utility, we prove that adaBoost and
its variants are the unique family of boosting methods that meet those axioms.
More precisely, we prove that any boosting procedure that satisfies these axioms
must also be minimizing the composition of an exponential loss with an additive
function and that the weights must be updated according to the multiplicative
weight update procedure. This conclusion holds even in the general setting of
learning [32,36], which encompasses regression, classification, ranking, and clus-
tering, despite the fact that weak learnability is hard, if not impossible, to define
in such a broad setting. To the best of our knowledge, this is the first axiomatic
treatment of boosting in the literature.

Definition 1 (General Setting of Learning). In the general setting of learn-
ing, we have a hypothesis space H and a stochastic loss l : H → R. The learner is
provided with m realizations of the stochastic loss S = {l1, . . . , lm} drawn i.i.d.
from some unknown probability measure D. The goal is to select a hypothesis
h ∈ H according to the sample S such that the expected risk El∼D[l(h)] is small.

There are several families of boosting algorithms that have been proposed in
the literature. Two prominent families include gradient boosting [16,23], of which
anyBoost is a prominent example, and the adaptive re-weighting and combining
(arcing) procedure [5], which includes algorithms such as adaBoost [14], arc-x4
[5], and the averaging algorithm in [19]. In this paper, we focus on the latter
class of algorithms. We will show that while, in principle, many adaptive re-
weighting and combining schemes can be devised, as argued by Breiman in [5],
there exists a unique method that satisfies some natural axioms. This unique
approach coincides with adaBoost in the binary classification setting.

AdaBoost was introduced for binary classification by Freund and Schapire
in [14]. Ever since its publication, numerous results have been produced, which
revealed surprising links between AdaBoost and related fields, such as infor-
mation geometry, game theory, and convex optimization [29]. This remarkably
comprehensive set of connections suggests that adaBoost is a fundamental app-
roach that may, in fact, arise out of axiomatic principles. We establish in this
paper that this is indeed the case. In the literature, several variants of adaBoost
have been proposed that minimize different loss functionals, such as the logis-
tic loss, the hinge loss, the square loss, and so on [23,29,37,39]. Our axiomatic
characterization establishes in what sense do those algorithms essentially differ
from adaBoost.



594 I. Alabdulmohsin

AdaBoost is, in turn, a particular instance of a more general learning strat-
egy, called the Multiplicative Weight Update procedure [29]. The Multiplicative
Weight Update procedure arises in game theory as a learning algorithm in mixed
games with repeated play. Similarly, it arises in the online prediction setting as
a generalization of the Weighted Majority Algorithm. As will be clear later, the
axioms we present for AdaBoost can also serve as axioms for the Multiplicative
Weight Update procedure.

2 The Boosting Framework

Before we present an axiomatic characterization of adaBoost and related algo-
rithms, we need to define what a “boosting (arcing) procedure” is. We begin
with an informal description, first.

2.1 Informal Description

Boosting is an instance of a broad category of machine learning algorithms,
called ensemble methods, which combine weak learners into strong aggregated
rules. Ensemble methods differ in how they instantiate weak learning algorithms
and how they combine them afterward. For instance, in a bagging approach,
multiple weak learners are trained on bootstrap subsamples of the training set,
which, in turn, are aggregated by averaging or majority voting. The most well-
known example of this approach is the random forests algorithm introduced by
[6]. In a stacking approach, on the other hand, the predictions of weak learners
form a new representation of the data, and aggregation is carried out by training
a weak learner on the newly learned representation [12].

In a boosting approach, by contrast, a weak learner is supplied with both a
training sample and a set of weights on those training examples. At each stage of
the algorithm, the task of a weak learner is to do well with respect to a weighted
training set. The predictions of those weak learners are, then, combined using an
appropriate aggregation rule. As mentioned by [14,29] and studied empirically
in [5], this setting can be relaxed by subsampling from the training set according
to the weights. However, since subsampling can be considered as a part of the
weak learner’s algorithm, we adopt the convention of having weighted training
examples here for generality.

In our axiomatic approach, which holds in the general setting of learning (see
Definition 1), we will not formally define the notion of “weak learnability”1. In
fact, we will not even require it! Hence, we will refer to weak learners from now
on as base learners.

1 Weak learnability, informally speaking, only ensures that the learner performs better
than random guessing rather than mandating the learner to achieve an arbitrarily
optimal performance.
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2.2 Formal Definitions

In this section, we introduce our notation and some preliminary definitions. Let
H be a hypothesis space and let H be a space that is formed from H using an
appropriate aggregation rule. For example, H might be the space of all linear
combinations of hypotheses in H. We assume throughout this paper that H ⊆ H

and that H is a vector space on R (or C). That is, H is closed under addition and
scalar multiplication on R (or C). In particular, notions such as addition, scalar
multiplication and linear maps of hypotheses in H are meaningful. Examples of
hypothesis spaces that satisfy this assumption include the Euclidean plane R

d,
such as in linear classification or regression problems, and function spaces, such
as Hilbert spaces in kernel methods. Moreover, the probability simplex in R

m

will be denoted Pm.

Definition 2 (Span). Let H be a set of hypotheses that reside in some vector
space on R (or C). Then, the span of H is the set of all possible combinations
of finite elements in H. That is: Span(H) =

{
h : ∃h1, . . . , hK ∈ H : h =

∑K
k=1 hk

}
.

The goal of learning via boosting is to select an aggregated rule h ∈ H

that minimalizes some weighted loss
∑m

i=1 w1(i) li(·), for some fixed set of loss
functions li : H → R and some initial distribution w1 ∈ Pm. In the general
setting of learning, a loss function li(·) is often of the form l(·, zi), where zi ∈ Z
is the i-th training example. In the latter case, S = {l1, . . . , lm} is fixed in
all rounds of the boosting algorithm because the training sample (z1, . . . , zm)
is fixed. This is often referred to as the boosting-by-sampling setting [14,31].
Since, for a fixed sample S, only the weights on the loss functions determine
the outcome of a learning algorithm, one may view a base learner as a mapping
from the probability simplex Pm to the hypothesis space H. This brings us to
the following definition:

Definition 3 (Base Learner). For a fixed set of loss functions S =
{l1, . . . , lm}, a base learner fS is a (possibly randomized) mapping fS : Pm → H.
The set of all base learners will be denoted FS.

Informally, we interpret fS as follows. A base learner fS is supplied with a
distribution wt ∈ Pm on the loss functions in S. Then, the task of fS is to select
a hypothesis ht ∈ H whose weighted loss

∑m
i=1 wt(i) li(ht) is small. Note that

this is merely an informal interpretation since fS can be any arbitrary map.
Examples of base learners include the support vector machine (SVM), decision
stumps, and the classification and regression tree (CART) algorithm [7,8,29].

Definition 4 (Boosting Procedure). For a fixed sample S = {l1, . . . , lm}, a
boosting (arcing) procedure is a mapping g : Pm × FS → H, which operates as
follows. Initially, g is provided with a distribution w1 ∈ Pm and a base learner
fS. Then, g operates sequentially in T rounds. At round t, it assigns ht = fS(wt)
and updates the weight wt → wt+1 according to (h1, . . . , ht). The final output is
h ∈ H, which is an aggregation of all the base hypotheses (h1, . . . , hT ).
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According to Definition 4, a boosting procedure generates several base
hypotheses in sequence via adaptive re-weighting. Finally, it combines them into
an aggregated rule. Needless to mention, several possible aggregation methods
exist, such as by using majority voting, averaging, random sampling, or by sim-
ply selecting the single hypothesis obtained in the final round2.

3 Axiomatic Characterization

As shown in Definition 4, boosting procedures, which operate via adaptive re-
weighting and combining, can vary according to how they update the weights wt

and how they combine hypotheses afterwards. In fact, they also vary depending
on the choice of the loss functions S = {l1, . . . , lm} that they minimalize. Indeed,
many boosting algorithms that have been proposed in the past can be categorized
along these lines.

For example, Breiman introduced a boosting algorithm, called arc-x4, in
which the weight of a training example at a given round is proportional to 1+ε(i),
where ε(i) is the number of times the i-th training example had been misclassified
by hypotheses in previous rounds [5]. This is similar in spirit to adaBoost; it
forces the classifier to focus on the training examples that are harder to predict
correctly. Similarly, Ji and Ma proposed a different scheme, in which training
examples are partitioned into “cares” and “don’t-cares”, according to whether
or not they are classified correctly by the combined classifier [19]. Needless to
mention, other possibilities also exist. For instance, [20] studied adaptive re-
weighting schemes, where wt(i) ∝ (1 + ε(i)n) for different choices of n ∈ N, and
so on.

The fact that many adaptive re-weighting schemes can be (and have been)
proposed raises the following fundamental question: What natural axioms should
a boosting procedure satisfy? And, do such axioms lead to a unique approach?
We will answer these questions in the remainder of the paper. We will show
that once three natural axioms are imposed, the range of possibilities is greatly
reduced. Essentially, the only boosting algorithm that operates via adaptive re-
weighting and combining and also satisfies the postulated axioms will turn out
to be a slight generalization of adaBoost. Surprisingly, this holds even though
(1) we operate in the general setting of learning and (2) we do not impose any
constraints on the base learner fS and the base hypotheses (h1, . . . , hT ).

3.1 The Axioms

Our axioms are three: additivity, objectivity and utility. We describe each
axiom in details next.

2 The main results of this paper can be extended to the setting where the base learner
fS is different at each round t. However, we assume in this paper, with no loss of
generality, that fS is fixed to simplify the discussion and notation.
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Axiom 1 (Additivity). Let wT = gT (h1, . . . , hT−1) be the adaptive weights
selected by the boosting procedure g at round T when h1, . . . , hT−1 are the base
hypotheses provided by the base learner fS : Pm → H at all preceding rounds.
Let ht = fS(wt) for all rounds t ≥ 1. Then, the aggregated rule is

∑T
t=1 ht.

Our first axiom states that the boosting procedure is a stagewise additive
model; at each round, it improves its prediction rule by reweighting the sample
and adding a new hypothesis to the aggregated rule. These additive models
have a long history in statistics and signal processing (see for instance [15] and
the references therein). Note that in the case of binary classification problems,
where the target set is Y = {−1,+1} and sign(h(·)) : X → Y is the prediction
rule, the aggregation rule in Axiom 1 reduces to majority voting. For regression
problems, the aggregation rule in Axiom 1 reduces to averaging. Hence, it has a
wide applicability.

Axiom 2 (Objectivity). For any T ≥ 1 and any i ∈ {1, . . . ,m}, we have
wT (i) → 0 as w1(i) → 0. More precisely: ∀(

ε ≥ 0, i ∈ {1, . . . , m}, T ≥ 1
)

: ∃δT ≥
0 : w1(i) ≤ δT ⇒ wT (i) ≤ ε.

Informally, our second axiom requires that the boosting procedure aims at min-
imalizing its original objective function only. More precisely, if a loss function
li(·) has an initial weight of zero, such as when it is not in the training sample to
begin with, then its weight wt(i) at all rounds t ≥ 1 will remain zero. Formally,
Axiom 2 requires that for any fixed t ≥ 1, we have wt(i) → 0 as w1(i) → 0.
In particular, we note that the formal specification of Axiom 2 implies that
wt(i) = 0 for all t ≥ 1 if w1(i) = 0 as described earlier3.

Axiom 3 (Utility). At any round T ≥ 1 and for any hT ∈ H, we have∑m
i=1 wT (i) li(hT ) ∝ ∑m

i=1 w1(i) li(
∑T

t=1 ht), with a proportionality constant that
is independent of hT .

The last axiom can be intuitively understood in light of the aggregation rule
h =

∑T
t=1 ht stipulated by Axiom 1. Prior to round T , the aggregated hypothesis

is
∑T−1

t=1 ht. At round T , the task of the base learner fS is to select a hypothesis
hT ∈ H that performs well according to the objective function

∑m
i=1 wT (i)li(·).

This hypothesis hT will, then, be added to the aggregated rule, which, ideally,
should result in a better aggregated hypothesis with respect to the original
objective function

∑m
i=1 w1(i)li(h). Axiom 3 states that the better hT is for

the learning problem at round T , the better it is for the original optimization
problem.

To recall, the base hypotheses (h1, . . . , hT ) selected by the base learner
fS : Pm → H can be entirely arbitrary. As mentioned earlier, we have not
imposed any notion of goodness on fS , such as weak learnability. However, in
3 Axiom 2 can also be interpreted as a stability constraint on the boosting procedure.

It can be argued that the main advantage of ensemble methods is their ability
to improve stability, which results in a reduced over-fitting risk and an improved
generalization [4,5,32].
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order for the boosting algorithm to be of any utility, the performance of the base
hypothesis ht at round t should factor into the performance of the overall boost-
ing procedure. In particular, we should impose a condition, which qualitatively
states that having a “better” hypothesis at round t would be more “helpful” to
the overall boosting algorithm. This is achieved by Axiom 3.

3.2 Proof of Independence

Next, we show that the three axioms are mutually independent.

Proposition 1. Any two of the three axioms additivity, objectivity, and
utility can be satisfied without satisfying the third axiom. In other words, the
three axioms are independent of each other.

Proof. First, we show that additivity and objectivity can be satisfied with-
out satisfying the utility axiom. Let li(h) = 〈zi, h〉 be a linear cost function.
The objective is to minimalize

∑m
i=1 w1(i) 〈zi, h〉 in some hypothesis space H.

Let g be the boosting procedure, which always sets wt(i) = w1(i) and com-
bines hypotheses according to Axiom 1. Then, g satisfies the additivity and
objectivity axioms trivially. However:

m∑

i=1

wT (i)li(hT ) =
m∑

i=1

w1(i)〈zi, hT 〉 =
m∑

i=1

w1(i)〈zi,

T∑

t=1

ht〉 + β,

where β = −∑m
i=1 w1(i)〈zi,

∑T−1
t=1 ht〉. Hence, Axiom 3 is not satisfied unless

β = 0, but the value of β is determined by the base learner fS , not the boosting
procedure g.

Second, consider the boosting procedure g that always selects wt(i) = w1(i)
and uses hT as the final aggregated hypothesis. In other words, H = H and
the boosting procedure aggregates the hypotheses (h1, . . . , hT ) by selecting hT

only. This is a boosting algorithm that trivially satisfies the objectivity and
utility axioms, but not additivity.

Finally, we show that additivity and utility can be satisfied without sat-
isfying the objectivity axiom. As will be proved later, AdaBoost satisfies the
three axioms. Let g be the boosting procedure that coincides with adaBoost
except that if lj(h) = lk(h) for some j, k ∈ {1, . . . , m} and all h ∈ H, then the
boosting procedure always sets wt(j) = wt(k) for all t ≥ 2. In other words, it
distributes the weight equally between the two loss functions if they are identi-
cal. More precisely, let ŵt(j) and ŵt(k) be the weights assigned by the adaBoost
procedure at round t and let the corresponding weights assigned by the new
boosting procedure g be wt(j) = wt(k) = (ŵt(j) + ŵt(k))/2. Then, g satisfies
the additivity and utility axioms but without satisfying the objectivity
axiom because wt(k) → 0 as w1(k) → 0 only if w1(j) = 0. Therefore, the three
axioms are independent. 
�
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4 Implications of the Axioms

Before we present our main uniqueness theorem, we elaborate on an important
definition first. Suppose that in the fixed set of loss functions S = {l1, . . . , lm},
two of those functions were, in fact, identical. That is, suppose that there exists
i, j ∈ {1, . . . , m} with i �= j such that li(·) = lj(·). Then, it is clear that no
algorithm can make a meaningful distinction between the weights wt(i) and
wt(j) for all t ≥ 1. Similar conclusions hold when a loss function li(·) can be
written as a linear combination of the others. Therefore, linearly dependent loss
functions pose an inherent source of ambiguity. This brings us to the following
definition [28].

Definition 5 (Linear Independence). A set of loss functions {l1, . . . , lm},
with li : H → R, are called linearly independent on H if and only if there exists
h1, . . . , hm ∈ H such that the column vectors vj = (l1(hj), l2(hj), . . . , lm(hj))T

for all j = 1, . . . , m are linearly independent.

Informally, the set of loss functions are linearly independent if the training
examples are sufficiently different. We analyze the implications of our axioms on
linearly independent loss functions, next.

Lemma 1. Let S = {l1, . . . , lm} comprises of m linearly independent functions
on H. Let wT = gT (h1, . . . , hT−1) be the adaptive weights selected by the boosting
procedure g at round T when h1, . . . , hT−1 are the base hypotheses provided by
the base learner fS : Pm → H at all preceding rounds. Let ht = fS(wt) for all
rounds t ≥ 1. Then, the additivity, objectivity, and utility axioms are
satisfiable only if wT (i) = ζi(

∑T−1
t=1 ht) for some function ζi : Span(H) → [0, 1].

Proof. First, the statement trivially holds when T = 1. Suppose that T > 1.
Then, by the utility and additivity axioms, we have:

m∑

i=1

wT (i) li(hT ) = c ·
m∑

i=1

w1(i) li(
T∑

t=1

ht), (1)

with a proportionality constant c that is independent of hT . Since wT (i) is
independent of hT and the loss functions in S are linearly independent, there
exists m hypotheses h̃1, h̃2, . . . , h̃m such that the matrix:

L =

⎡

⎢
⎢
⎣

l1(h̃1) l2(h̃1) · · · lm(h̃1)
l1(h̃2) l2(h̃2) · · · lm(h̃2)

· · · · · · · · · · · ·
l1(h̃m) l2(h̃m) · · · lm(h̃m)

⎤

⎥
⎥
⎦

is non-singular. Consequently, Eq. (1) implies that:
⎡

⎢
⎢
⎣

wT (1)
wT (2)

· · ·
wT (m)

⎤

⎥
⎥
⎦ = cL−1 ·

⎡

⎢
⎢
⎣

∑m
i=1 w1(i) li(

∑T−1
t=1 ht + ĥ1)∑m

i=1 w1(i) li(
∑T−1

t=1 ht + ĥ2)
· · ·∑m

i=1 w1(i) li(
∑T−1

t=1 ht + ĥm)

⎤

⎥
⎥
⎦
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Therefore, the weights wT (i) are determined by the sequence of base hypotheses
(h1, . . . , hT−1) only via the aggregated rule

∑T−1
t=1 ht. 
�

Lemma 1 shows that a boosting procedure that satisfies the three axioms is a
Markov chain; the future of the boosting procedure is conditionally independent
of the sequence of base hypotheses given the aggregated rule. Now, we are ready
to state the main uniqueness theorem. To recall, a mapping M is called additive if
it satisfies M(x+y) = M(x)+M(y). For example, linear mappings are additive.

Theorem 1. If S = {l1, . . . , lm} comprises of m linearly independent functions
on H and 0 ∈ H, then the additivity, objectivity, and utility axioms are
satisfiable simultaneously for all initial distributions w1 ∈ Pm if and only if the
following two conditions hold:

1. We have li(h) ∝ exp{Λi(h)+λi} for some additive mapping Λi : Span(H) →
R and some constant λi ∈ R.

2. The weights are updated according to the multiplicative weight update proce-
dure:

wT (i) ∝ wT−1(i) · exp{Λi(hT−1)}
Proof. [Proof of Necessity]: Lemma 1 implies that there exists some func-
tions ζi : Span(H) → [0, 1] such that:

wT (i) = ζi

( T−1∑

t=1

ht

)
, (2)

for all T ≥ 1. In other words, the weights at round T depend on the sequence of
hypotheses (h1, . . . , hT−1) only via their aggregated rule.

In addition, Axiom 3 states that for any h ∈ H and any round T ≥ 1:

m∑

i=1

wT (i) li(h) ∝
m∑

i=1

w1(i) li
(
h +

T−1∑

t=1

ht

)
(3)

However,
∑T−1

t=1 ht is arbitrary, so we denote it by u ∈ Span(H). Therefore,
by (2), we conclude that for any u ∈ Span(H) and any h ∈ H, the following
equality must hold for some constant c > 0, which is independent of h:

m∑

i=1

ζi(u) li(h) = c ·
m∑

i=1

w1(i) · li
(
h + u

)
(4)

Because c is independent of h and 0 ∈ H, we set h = 0 to conclude that:

c =
∑m

i=1 ζi(u) li(0)
∑m

i=1 w1(i) · li(u))

Hence, (4) may be rewritten as:
∑m

i=1 ζi(u) li(h)
∑m

i=1 ζi(u) li(0)
=

∑m
i=1 w1(i) · li

(
h + u

)
∑m

i=1 w1(i) · li(u)
(5)
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Since we require that the axioms hold simultaneously for all initial probability
distributions w1 ∈ Pm, consider the following initial distribution:

w
(i)
1 (k) =

{
1 − ε, if k = i

ε
m−1 , otherwise

By Axiom 2, we know that ζi(u) → 1 as ε → 0+. In the latter case, (5) reduces
to the functional equation:

li(h + u) =
li(h) · li(u)

li(0)
(6)

Since we require the axioms to hold simultaneously for all initial weights, the
above functional equation must hold as well for all loss functions li(·). Now,
consider the function Λi : Span(H) → R defined by Λi(u) = log li(u) − log li(0).
Then, Λi(·) satisfies Λi(u + h) = Λi(u) + Λi(h). Hence, Λi(·) is an additive
function on Span(H), which implies that li(·) must be equal to exp{Λi(w)+λi}
for some additive mapping Λi : Span(H) → R and some constant λi ∈ R.

Now, (4) can be rewritten as:

∀h ∈ H :
m∑

i=1

ζi(u) li(h) = c ·
m∑

i=1

w1(i) · li(u)
li(0)

li(h), (7)

where c does not depend on h. This defines a system of linear equations on
ζi(u) for different choices of h ∈ H. Because the set of loss functions are
linearly independent on H, the above condition is satisfiable if and only if
∀i ∈ {1, . . . , m} : ζi(u) = cw1(i) · li(u)/li(0). However, ζi(u) is a probabil-
ity distribution so c is absorbed in the normalization constant, which we can
ignore. We have:

ζi(u) ∝ w1(i) · li(u)
li(0)

(8)

= w1(i) eΛi(h1)
T−1∏

t=2

exp{Λi(ht)} ∝ wT−1 · exp{Λi(ht)}, (9)

where the last line holds by induction and the fact that Λi(·) is an additive
function. This proves that the conditions are necessary.

[Proof of Sufficiency]: Next, we prove that the conditions are sufficient.
First, from the multiplicative weight update mechanism, it is clear that Axiom
2 is satisfied. Moreover, (9) shows that the weights can be determined at any
round T using only the aggregated rule

∑T−1
t=1 ht. In particular, we have:

wT (i) ∝ w1(i) · eΛi(h1)
T−1∏

t=2

exp{Λi(ht)} = w1(i) · exp
{
Λi(

T−1∑

t=1

ht)
}

Hence, Axiom 1 is satisfied. Finally, by plugging the functional equation in (6)
and the expression in (8) into (5), we deduce that Axiom 3 is satisfied as well.
Therefore, the conditions are also sufficient for the three axioms to hold. 
�
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Theorem 1 reveals an axiomatic characterization of adaBoost and related
algorithms, such as the extension of adaBoost to confidence-rated predictions
[30], the RankBoost algorithm [13], the Real-AdaBoost for probabilistic classi-
fiers [15], and the Multi-class AdaBoost method [38]. In particular, the addi-
tivity, objectivity and utility axioms are satisfied if and only if the loss
functions were of the exponential type and the weights were updated according
to the multiplicative weight update mechanism. Therefore, even though many
possible adaptive re-weighting methods could be (and have been) proposed, such
as the methods studied in [5,19,20], the adaptive re-weighting method employed
by adaBoost and its variants can be uniquely constructed axiomatically. This
sheds some insight on the rich set of connections that have been established
between adaBoost and related fields, such as information geometry, game the-
ory, and convex optimization [29]4.

As mentioned earlier, the additivity, objectivity, and utility axioms
can also serve as axioms for the more general Multiplicative Weight Update pro-
cedure. This follows from the fact that the axioms are satisfied if and only if the
multiplicative weight update procedure is used without imposing any additional
conditions on the base learners. That is, the base learners are entirely arbitrary.

5 Concluding Remarks

Boosting procedures, which operate via adaptive re-weighting and combining,
can vary according to the choice of the loss function they minimalize and how
they adaptively update the weights. Not surprisingly, different algorithms for
adaptive re-weighting have been proposed in the literature, such as the arc-
x4 algorithm [5], its generalization to higher order polynomials [20], and the
partitioning scheme in [19]. This raises the fundamental questions: What natural
axioms should an adaptive re-weighting and combining procedure satisfy? And,
do such axioms lead to a unique solution?

In this work, we address these questions. We establish that three natural
axioms on boosting algorithms are satisfied if and only if the boosting algorithm
minimalizes the sum of exponential-additive loss functions and the weights are
updated according to the multiplicative weight update procedure. Surprisingly,
this conclusion holds even though (1) we operate in the general setting of learn-
ing, which encompasses regression, classification, ranking, and clustering, and (2)
we do not impose any constraints on the base learner and the base hypotheses.

The fact that the loss functions have to be of the form specified in Theorem1
might appear to be overly restrictive at first sight. For instance, it is not imme-
diately obvious how one might define a loss function for regression tasks, while
also being a composition of the exponential with additive functions. However,

4 The assumption of linear independence in Theorem 1 is required to eliminate an
inherent source of ambiguity. Without this assumption, no uniqueness theorem can
be established. However, this result does not imply that a boosting algorithm must
guarantee linear independence. Rather, it states that up to this inherent source of
ambiguity, adaBoost and its variants arise uniquely out of three natural axioms.
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this function class is by no means restrictive. For instance, if the hypothesis
space is a subset of Rd, then the Fourier theorem states that any desired func-
tion in a compact domain can be approximated arbitrarily well using a sum of
exponential-additive functions. Hence, the general class of exponential-additive
functions is quite rich. Indeed, many extensions of adaBoost have been pro-
posed that also satisfy the efficiency, stability and linear utility axioms,
including the extension of adaBoost to confidence-rated predictions [30], the
RankBoost algorithm [13], the Real-AdaBoost for probabilistic classifiers [15],
and the Multi-class AdaBoost method [38].
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