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Abstract. Neural networks are known to be very sensitive to the ini-
tial weights. There has been a lot of research on initialization that
aims to stabilize the training process. However, very little research
has studied the relationship between initialization and generalization.
We demonstrate that poorly initialized model will lead to lower test
accuracy. We propose a supervised pretraining technique that helps
improve generalization on binary classification problems. The experimen-
tal results on four UCI datasets show that the proposed pretraining leads
to higher test accuracy compared to the he normal initialization when
the training set is small. In further experiments on synthetic data, the
improvement on test accuracy using the proposed pretraining reaches
more than 30% when the data has high dimensionality and noisy fea-
tures. Code related to this paper is available at: https://github.com/
superRookie007/supervised pretraining.

Keywords: Neural network · Pretraining · Initialization
Generalization

1 Introduction

Neural networks have attracted a lot of attention from both academia and
industry due to their success in different machine learning tasks. Recurrent neu-
ral networks (RNNs) have been successfully applied to speech recognition and
natural language translation [13,17,18]. Convolutional neural networks (CNNs)
have been the winning models for many image understanding challenges [10–
12]. Fully-connected neural networks (FNNs) were shown to be very effective at
identifying exotic particles without features hand-engineered by physicists [9].

Apart from novel network architectures, the success of neural networks in so
many applications is a result of many advancements in the basic components such
as activation functions and initialization. During the training process deep neu-
ral networks are sensitive to the initial weights. A poor choice of initial weights
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can result in very slow training, “vanishing gradient”, “dead neurons” or even
numerical problems. A few initialization methods have been proposed to stabilize
the training process [1,5,6]. However, they do not aim to improve the general-
ization of neural networks. It is possible that even though these methods can
successfully improve the stability and speed of training, they are not necessar-
ily the best for improving the generalization of neural networks. Initialization of
neural networks is a very difficult problem to study due to the complex nature of
the cost surface and the optimization dynamics. However, more research needs
to be devoted to exploring the connection between the initialization and the
generalization of neural networks. We argue that the initialization affects the
generalization of neural networks. Intuitively speaking, the initial weights of a
neural network can be thought of as the prior of a model. If this intuition is
correct, the choice of initial weights will have a big effect on which model we get
after training, when there is a lack of labelled training data. Hence, studying
the effect of initialization on generalization is very valuable to domains where
labelled data is not easy and cheap to collect.

The main contribution of this paper is a supervised pretraining that
improves the generalization of fully-connected neural networks (FNNs) on binary
classification problems. We firstly demonstrate that poorly initialized models
lead to poorer generalization. We then propose a supervised pretraining method
that improves the generalization when labelled data is limited, by taking advan-
tage of unlabelled data. The proposed method trains a neural network to dis-
tinguish real data from shuffled data. The learned weights are reused as initial
weights when training on the labelled training data. The intuition is that during
the pretraining, the model has to learn joint distributions of the real data in
order to identify real data points from shuffled ones. And the learned weights
might be a better prior than standard initialization methods that sample val-
ues from normal or uniform distributions. The improvement in generalization by
using the proposed method is shown to be more obvious when there is a lack of
labelled data and the class separation is small. Experimental results also suggest
that the proposed pretraining works best when the data has high dimensionality
and contains noisy features. We only consider binary classification problems in
this work. We measure generalization using test accuracy in all our experiments.

The rest of the paper is organized as follows. In Sect. 2, we review related
works. In Sect. 3, we demonstrate that initialization of neural networks affects
generalization. In Sect. 4, we propose a supervised pretraining method to improve
the generalization of FNNs on binary classification problems. We conducted
experiments on both UCI datasets and synthetic datasets to evaluate the pro-
posed method in Sect. 5. In Sect. 6, we discuss some issues with the proposed
pretraining method. Finally, we conclude our work and propose future works in
Sect. 7.

2 Related Works

Glorot and Bengio [6] derived a way to initialize weights depending on the num-
ber of input units and output units of a layer. They derived this method by
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assuming only linear activation functions are used, and attempting to initialize
the weights in such a way that the variances of activation values and gradient
across all layers are the same at the beginning of training. Despite the unre-
alistic assumption of a linear activation function, this initialization works well
in practice. Using the same idea, He et al. [1] derived an initialization method
specifically for the ReLU activation function depending on the number of input
units of a layer. It draws weight values from a normal distribution with mean
value of 0 and the standard deviation sqrt(2/fan in), where fan in is the num-
ber of input units of a layer. We call this initialization method he normal. They
showed that he normal performed well even for really deep networks using ReLU
while the Glorot and Bengio method [6] failed.

Saxe et al. [4] recommended initializing weights to random orthogonal matri-
ces. However one needs to carefully choose the gain factor when a nonlinear
activation function is used. Mishkin and Matas [5] proposed a method called
layer-sequential unit-variance (LSUV) initialization. LSUV firstly initializes the
weights with orthonormal matrices, and then normalizes the activation values of
each layer to have variance of 1 through a few forward passes.

Unsupervised methods such as restricted Boltzmann machines and autoen-
coders were used as layer-wise pretraining to initialize deep neural networks [14–
16]. This was done to solve the “vanishing gradient” problem in training
deep neural networks, before piece-wise linear activation functions were widely
adopted. However, it was later discovered that unsupervised pretraining actually
improves generalization when labelled training data is limited [8]. When labelled
data for a task is limited, supervised pretraining on a different but related task
was found to improve the generalization on the original task [3].

3 Demonstration that Initialization Affects
Generalization

Most machine learning problems can be reduced to search problems, especially
when an iterative learning algorithm is used to find the final model. A search
problem usually consists of a search space, an initial state, a target state and a
search algorithm. Figure 1 describes training neural networks as a search process.
The area inside the ellipse represents the representation capacity of a neural net-
work. The larger the neural network, the bigger the representation capacity and
the larger the search space. The square represents the initial state of the model
and the triangle is the final state of the model. The circular dots are the model
states the learning algorithm has visited. The model search space can be discrete
or continuous. But in neural networks, the search space is usually continuous.
And the search space or representation capacity of a neural network is not com-
pletely independent of the search process. The bigger and more complex a neural
network is, the more difficult it is to train. So the representation capacity can
potentially affect where the the model will end up while holding the initial state
and learning algorithm constant.
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Fig. 1. Machine learning represented as a search process. The area inside the elliptical
boundary is the representation capacity of the model chosen. The circular dots are
different model (parameter) states a learning algorithm has visited. The square is the
initial state of the model while the triangle is the final state of the model.

Unlike many search problems where the target state is known, we usually
do not know the target state in machine learning. And in the case of neural
networks, we cannot analytically find the optimal model state due to the non-
convex loss function. So iterative optimization algorithms are used in training
neural networks. The most common learning algorithms in training neural net-
works are stochastic gradient descent and its variants. The first order derivatives
of the model parameters are used as a heuristic for determining the next step.
Obviously, different learning algorithms can result in different final models even
if both the search space and initial state are kept the same.

Another factor that affects the final state of the search space is the initial state
of the model. Different initial weights can lead a neural network to converging
to different states, as illustrated in Fig. 1. We argue that initialization affects the
generalization of neural networks, especially when the training data is limited.
The initial weights of a neural network can be seen as the prior of the model.
The choice of the initial weights does not affect the generalization much if there
is plenty of training data, as long as the initial weights do not lead to training
problems. However, when there is a lack of training data, the prior will have a
larger effect on the final state of the model. Figure 2 shows the plots of four fully
connected networks trained to fit the same two data points but with different
initial weights and activation functions. The two data points were (0.1, 0.1) and
(0.5, 0.5). All four of the models had 128 units in each of the first two layers
and one output unit. The initial weights were drawn from truncated normal
distribution with mean of 0 and different standard deviation values (0.004 and
0.4). Any value that was more than two standard deviations away from the
mean was discarded. All biases were set to 0. We used both rectified linear unit
(ReLU) and hyperbolic tangent (tanh) as activation functions. We trained the
model until the training loss became 0 and plotted the model. It can be seen that
when the standard deviation of the initial weights is small, the learned function
is relatively simple. When the standard deviation of the initial weights is big, the
final model is much more “complex” and less likely to generalize well on unseen
data.
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Fig. 2. Plots of a three-layer neural network trained on two data points (0.1, 0.1) and
(0.5, 0.5). The activation functions used are ReLU and tanh. The initial weights were
drawn from normal distributions with different mean and standard deviation values.
When the initial weights have a small standard deviation, the learned model is more
linear (“simpler”). The learned model becomes more complex and less likely to fit
unseen data well, when the initial weights have a higher standard deviation.

Similar experiments cannot be applied to real datasets and larger networks,
because initial weights drawn from a normal distribution with a large stan-
dard deviation leads to various training problems such as “dead neurons” and
exploded activation values. Inspired by transfer learning [3], we decided to learn
inappropriate initial weights for the original classification task by pretraining
a model on randomly shuffled data. More specifically, we shuffled the attribute
values of the original data and randomly attached labels to the shuffled data
according to the uniform distribution. We obtained a set of weights by training
a model on this shuffled data. We expected this set of weights to be a very poor
prior for the original classification problem and thus would lead to lower test
accuracy. When training a model on the shuffled data, we used he normal as the
initialization method. These learned weights were then used as initial weights
when training on the original data. We then compared the model initialized with
these transferred weights against the model initialized using he normal [1].

We carried out the experiments on four different datasets: BanknoteID,
MAGIC, Waveform and Waveform noise. Details of these datasets can be found
in Sect. 5.1. We used a five-layer fully connected network for all the experiments.
Each layer has 1024 units except the last layer. The last layer is a softmax layer.
The activation function used was ReLU. We used the full-batch gradient descent
with a constant learning rate of 0.01. We chose the number of epochs to make



Supervised Pretraining for Binary Classification 415

sure both models had converged. The number of epochs we used for each dataset
can be found in the second column of Table 3. The training on the shuffled data
was run 10000 epochs for all the cases. We ran each experiment 10 times. Figure 3
shows the distribution of test accuracies obtained using the transferred initial
weights and he normal on four datasets. As can be seen, in all four cases, the
model initialized with the transferred weights performed worse.

Fig. 3. Comparison of the model initialized with transferred weights (red) against the
model initialized with he normal (blue) in terms of test accuracy. We ran each case 10
times. (Color figure online)

In this section, we demonstrated that a poorly initialized model does indeed
lead to lower test accuracy. In the next section, we propose a supervised pre-
training method that improves generalization, especially when labelled training
data is limited.

4 Supervised Pretraining

We propose a supervised pretraining method that takes advantage of unlabelled
data to improve the generalization of the original classification problem. The
underlying assumption of this method is that the weights learned during the
supervised pretraining are a good prior for the original classification problem.
This can happen if the pretrained model contains information about the joint
distributions of the attributes in the original data.
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The pretraining phase is basically a binary classification that attempts to
identify real data from shuffled data. Shuffled data does not provide us with
real patterns but instead are considered as noise. The learned weights are then
reused in the original classification problem.

Table 1. An example of how the pretraining data is generated. (a) is the original
unlabelled data and (b) is the labelled training data. (c) is the shuffled unlabelled
data. Note that no data point in the shuffled data is from the unlabelled data. (d) is
the pretraining data. The pretraining data is created by stacking the original unlabelled
data and shuffled data, and labelling them as 1 and 0 respectively.

We discuss the supervised pretraining method in detail here.

1. We start by randomly shuffling the attribute values of the unlabelled data
across rows. Each attribute is shuffled independently from other attributes.
This is to break the joint distributions of the original data, but to keep the
distributions of individual attributes unchanged. Table 1(a) shows an example
of unlabelled data and Table 1(c) shows an example of shuffled data. Note that
the shuffling is random, so there can be many different examples of shuffled
data generated from the same unlabelled data. In our implementation, we
ensured that there was no original real data points in the shuffled data due to
chance collision. Any data points in the shuffled data that could be found in
the original data were replaced by new shuffled data points. This was done to
avoid confusing the model during the pretraining process. Note that labelled
training data can be added to the unlabelled data after taking out the labels,
in order to create a larger set of unlabelled data. A shuffled dataset can then
be created from this enlarged unlabelled dataset.

2. The unlabelled data and shuffled data are stacked together. Then all the real
data points are assigned one label and all the shuffled data points are assigned
a different label. This is the pretraining data used in our method. The specific
values being used as labels do not matter, as long as all the real data points
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are assigned the same label and all the shuffled data points are assigned a
different label. This is because one hot encoding is used to encode the labels
in our models. In our implementation, the real data is labelled as 1 and the
shuffled data is labelled as 0. The pretraining data always has a balanced
class distribution. Table 1(d) shows an example of pretraining data.

3. The pretraining data is then split into a training set and a validation set using
stratified sampling. In our implementation, 70% of the pretraining data was
used as training data and the rest was used as a validation set.

4. During the pretraining, a neural network model is trained on the pretraining
data. The validation set is used to stop the pretraining early. For the pre-
training, the model was initialized using he normal in our implementation.

5. Finally, the weights learned in the pretraining are reused as initial weights
when training a model on the labelled training data shown in Table 1(b). This
is sometimes called transfer learning, where weights learned in one problem
are transferred to another problem [3]. In our implementation, all the layers
except the last one were transferred from the pretrained model. The last layer
was replaced with weights initialized using he normal. We did not freeze any
layers during training.

Note that the negative instances in the pretraining data are generated by
shuffling the attribute values of the original data. So the the distributions of the
attributes in the shuffled data are exactly the same as the original data, but the
joint distributions of the attributes are different. By training the model to distin-
guish real data from the shuffled data, we hypothesize that the model has to learn
the joint distributions between attributes. We also postulate that if the weights
learned during pretraining are a better prior than commonly used initialization
methods such as he normal, then they should lead to better generalization.

5 Experiments

In this section, we present the proposed supervised pretraining experiments for
binary classification. We evaluate the proposed method against he normal initial-
ization on UCI datasets in Sect. 5.1, and investigate when this method provides
an increase in generalization using synthetic data in Sect. 5.2. In our experiments,
we simulate a learning environment where labelled training data is limited but
there is plenty of unlabelled data. The source code and data can be found on
GitHub: github.com/superRookie007/supervised pretraining.

5.1 Evaluation on UCI Datasets

We conducted experiments on four UCI datasets to evaluate the proposed super-
vised pretraining against the he normal [1] initialization method. The goal of
the experiments is to test if the proposed supervised pretraining leads to better
test accuracy compared to the he normal initialization. All the datasets were
obtained from the UCI repository [2].

https://github.com/superRookie007/supervised_pretraining
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Table 2. Data information

Dataset # Training examples Class 1 Class 2 # Attributes

BanknoteID 288 55.5% 44.5% 4

BanknoteID small 10 55.5% 44.5% 4

MAGIC 3995 64.8% 35.2% 10

MAGIC small 10 64.8% 35.2% 10

Waveform 702 49.3% 50.7% 21

Waveform small 10 49.3% 50.7% 21

Waveform noise 695 50.0% 50.0% 40

Waveform noise small 10 50.0% 50.0% 40

Datasets. BanknoteID is a dataset for identifying genuine banknotes from
the forged banknotes. It has four continuous variables and 1372 data points
in total. MAGIC is a simulated dataset for discovering primary gammas from
the hadronic showers initiated by cosmic rays. It has 10 continuous variables and
19020 data points in total. Both Waveform and Waveform noise are datasets for
identifying different types of waves. Waveform has 20 attributes while Wave-
form noise has 19 additional noisy variables drawn from a standard normal
distribution. Both of them have 5000 examples in total. The original datasets
of Waveform and Waveform noise have three classes. We extracted two classes
(class 1 and class 2) from the original datasets and treated them as binary
classification problems. So the Waveform and Waveform noise datasets in our
experiments have 3343 and 3308 instances in total respectively.

Preprocessing. Thirty percent (30%) of the data was used as the test set. The
remaining data was split into labelled training data (21%) and unlabelled data
(49%). Additionally, we created a smaller training set with only 10 instances for
each of the four datasets by sampling the labelled training data. When sampling
the datasets, we used stratified sampling. Table 2 shows some data characteristics
of the training sets. When creating the pretraining data for our experiments, we
combined the training data (ignoring the labels) and unlabelled data, and then
applied the method described earlier in Sect. 4 to this combined data. This gave
us an even bigger pretraining dataset. The pretraining data was scaled to a range
[0, 1], then the same scaling parameters were applied to the test set.

Setup. We used a five-layer fully connected network for all the experiments.
Each layer has 1024 units except the last layer. The last layer is a softmax
layer. The activation function used was ReLU. We used the standard full-batch
gradient descent with a constant learning rate. Because the learning rate can
potentially affect the generalization of neural networks, we used the same con-
stant learning rate of 0.01 for all the experiments. We chose the number of
epochs to make sure both models had converged. We consider the model has
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Table 3. Comparison of the model initialized using the supervised pretraining method
(Pretrained) against the model initialized with he normal (Base). We ran each case 10
times. The training accuracy reached 100% for all the runs.

Data Epochs Method Train loss Test loss Test acc.

BanknoteID 10000 Base 9.78E−04± 2.57E−05 5.79E−02± 1.38E−03 99.32%± 0.28%

Pretrained 1.04E−02± 2.99E−04 4.30E−02± 5.53E−03 98.74%± 0.39%

BanknoteID small 5000 Base 1.93E−04± 5.40E−06 9.02E−01± 3.16E−02 82.18%± 0.80%

Pretrained 1.96E−02± 7.88E−04 6.13E−01± 2.67E−02 82.45%± 0.81%

MAGIC 100000 Base 4.15E−03± 4.88E−04 9.15E−01± 1.71E−02 85.42%± 0.23%

Pretrained 8.59E−03± 3.21E−03 7.12E−01± 2.54E−02 85.69%± 0.27%

MAGIC small 5000 Base 2.37E−04± 3.93E−06 1.22E+00± 5.87E−02 78.12%± 0.20%

Pretrained 2.04E−02± 7.59E−04 7.20E−01± 3.54E−02 78.62%± 0.51%

Waveform 20000 Base 5.71E−04± 3.82E−05 3.02E−01± 6.99E−03 94.10%± 0.25%

Pretrained 9.89E−03± 6.39E−03 2.36E−01± 1.24E−02 94.38%± 0.25%

Waveform small 10000 Base 8.97E−02± 2.83E−01 4.06E−01± 3.02E−02 88.48%± 0.58%

Pretrained 1.02E−02± 2.20E−04 4.13E−01± 2.96E−02 89.10%± 0.67%

Waveform noise 20000 Base 3.13E−04± 1.70E−05 3.15E−01± 9.78E−03 94.72%± 0.30%

Pretrained 1.38E−02± 6.81E−03 2.23E−01± 9.31E−03 94.54%± 0.34%

Waveform noise small 10000 Base 4.85E−05± 1.35E−06 6.33E−01± 4.43E−02 82.38%± 0.57%

Pretrained 1.01E−02± 4.17E−04 5.03E−01± 1.58E−01 86.97%± 3.33%

converged if the training loss stops decreasing and the training accuracy reaches
100%. In practice, a validation set is usually used to terminate the training early
to avoid overfitting. However, we trained the models until convergence because
we wanted a fair stopping criterion for both cases, and we wanted to eliminate
the generalization effect and uncertainty of early stopping in the results. The
number of epochs we used for each training set can be found in the second
column of Table 3. Furthermore, the pretraining data was split into a training
set (70%) and a validation set (30%). The pretraining stopped if the validation
accuracy stopped increasing for the subsequent 100 epochs, and the model with
the best validation accuracy was saved. We did not fine tune which layers to
reuse or freeze the reused weights for a few epochs before updating them. We
always transferred all the weights except the last layer and did not freeze any
layer during training. The same experiment was run 10 times on each dataset.
The experiments were all implemented using Keras [19] with the Tensorflow [20]
backend.

Results. The metric we used to measure generalization was accuracy on the test
set. We have evaluated all the models with F1-score, AUC-ROC and Kappa coef-
ficient, but they always moved in line with the test accuracy in this experiment.
They did not add interesting information to the results, so they are not reported.
The experimental results are shown in Table 3. The higher mean test accuracy
is shown in bold, but the difference is not necessarily statistically significant. As
expected, the test accuracy is generally higher when the training set is larger.
And the standard deviation of the test accuracy tends to be larger when limited
training data is available. The base models tend to have much lower training
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loss while the pretrained models tend to have lower test loss. When there is not
a lack of labelled training data, there is no clear improvement on generalization
using the supervised pretraining. On BanknoteID and Waveform noise, the pre-
training actually hurt the generalization. However, when the training set is very
small, only 10 instances in this case, the mean test accuracy for BanknoteID
and Waveform noise of the pretrained model became higher than that of the
base model. It is interesting that the improvement in generalization by using
the pretraining was big on Waveform noise small, but this was not the case on
Waveform small. Recall the difference between Waveform noise and Waveform
is that Waveform noise has 19 additional noisy features drawn from the stan-
dard normal distribution. It is not very clear if the difference in the results
was due to the increased dimensionality or the characteristics of the additional
noisy features. We conducted further experiments on synthetic data in order to
investigate when the supervised pretraining helps improve generalization. These
experiments are presented in the next section.

5.2 When to Use the Supervised Pretraining

The experiments discussed here investigate the circumstances, where the pro-
posed pretraining holds an advantage over the he normal initialization in terms of
test accuracy. More specifically, we test the effect of data dimensionality, different
types of noisy features, size of labelled training data and distance between class
clusters on the performance of the proposed pretraining. All the experiments
were conducted on synthetic datasets generated using the make classification
API in sklearn library. This is an adapted implementation of the algorithm used
to generate the “Madelon” dataset [7].

Firstly, we test how data dimensionality, noisy features and redundant
features affect the effectiveness of the supervised pretraining compared to
he normal. We generated 6 different datasets. All of the datasets have only two
classes and have balanced class distribution. Each of the raw datasets had 10000
instances. The class sep parameter was set to 0.01 for all datasets (the smaller
the class sep, the more difficult the classification). We applied the same pre-
processing as the previous experiment. But in this experiment, we sampled a
training set with 50 instances for each dataset. All the other experiment setups
were exactly the same as described in Sect. 5.1. The characteristics of the 6
datasets are described below.

– Informative 10 has 10 attributes and all of the attributes are informative for
the classification task.

– Informative 20 has 20 attributes and all of the them are informative.
– Redundant 20 has 20 attributes, but 10 of them are the exact copy of the

other 10 informative attributes.
– In Std normal 20, 10 of the 20 attributes are random values drawn from the

standard normal distribution (mean 0, standard deviation 1), while the other
10 are informative.
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– In Normal 20, 10 of the attributes are drawn from normal distributions whose
means and standard deviations are kept the same as the other 10 informative
attributes.

– In Shuffled 20, instead of drawn randomly from normal distributions, the 10
noisy attributes are simply shuffled informative attributes (the distribution
of each of the noisy attributes is the same as the corresponding informative
attribute).

Table 4. Investigating the effect of dimensionality, noisy and redundant features on
the performance of the supervised pretraining. We ran each case 10 times and all of
the models were trained for 10000 epochs.

Data Method Train loss Train acc. Test loss Test acc.

Informative 10 Base 6.50E−04± 2.46E−05 100.00% 5.79E−01± 6.89E−02 84.48%± 1.37%

Pretrained 1.02E−02± 1.41E−04 100.00% 1.43E−01± 2.69E−02 96.24%± 0.77%

Informative 20 Base 3.56E−04± 1.76E−05 100.00% 1.82E+00± 7.84E−02 63.61%± 0.72%

Pretrained 1.03E−02± 2.87E−04 100.00% 4.71E−01± 1.02E−01 87.19%± 2.64%

Redundant 20 Base 6.07E−04± 2.50E−05 100.00% 5.86E−01± 4.82E−02 84.41%± 0.93%

Pretraineda 1.10E−02± 7.33E−04 100.00% 4.64E−01± 4.32E−02 85.48%± 1.35%

Std normal 20 Base 3.87E−04± 2.01E−05 100.00% 2.40E+00± 7.50E−02 59.94%± 0.64%

Pretrained 1.02E−02± 2.83E−04 100.00% 2.13E−01± 3.53E−02 94.18%± 1.09%

Normal 20 Base 4.12E−04± 1.43E−05 100.00% 1.24E+00± 5.77E−02 65.40%± 0.92%

Pretrained 1.02E−02± 1.60E−04 100.00% 1.84E−01± 2.92E−02 94.93%± 0.87%

Shuffled 20 Base 3.42E−04± 1.35E−05 100.00% 2.42E+00± 8.56E−02 57.95%± 0.39%

Pretrained 1.02E−02± 1.15E−04 100.00% 1.74E−01± 2.34E−02 95.19%± 0.55%
aWhen running the pretrained model of Redundant 20, 4 out of 10 runs failed to converge, the results shown

here were collected from the 6 converged runs.

The results are shown in Table 4. The base models for Informative 10 and
Redundant 20 performed very similarly. This is not too surprising considering
Redundant 20 basically concatenated two copies of the features in Informative 10
together. Compared to Informative 10, Redundant 20 neither has any additional
information nor lacks any useful information. The improvement on generalization
using the supervised pretraining was around 11% on Informative 10. But for
Redundant 20, the pretrained model failed to converge in 4 out of 10 runs. And
there is no obvious improvement on test accuracy when pretraining is used. The
generalization gain on Informative 20 was more than 20%, while the gain on
the Std normal 20 was around 34%. The biggest gain (around 37%) occurred in
Shuffled 20 dataset. The results suggest that both the increased dimensionality
and the noisiness of the additional features both contribute to the generalization
improvement we observed on Waveform noise small in the previous experiment.

Next, we investigated how the size of labelled training data and the class
separation would affect the generalization advantage of the proposed pretraining
over the he normal initialization. The experimental setup was exactly the same as
the previous experiments, except the datasets used. When testing the effect of the
size of labelled training data, we held all other factors constant including the class
separation (class sep = 0.01) and unlabelled data. The data had 10 attributes
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Fig. 4. Comparison of the model trained with supervised pretraining (red) against the
model initialized with he normal (blue) in terms of test accuracy. The plots show the
distributions of test accuracy. Each experiment was run 10 times. (Color figure online)

and all of them were informative. We tested six labelled training sets with 10,
50, 100, 500, 1000 and 5000 instances respectively. We ran each experiment
10 times. The results can be found in Fig. 4(a). The results show that as the
size of labelled training data increases, the advantage of the pretraining gets
smaller. And as expected, as the training set gets larger, the standard deviation
of test accuracy shrinks. Finally, we tested the effect of class separation. Class
separation in this case means the distance between classes. The smaller the class
separation, the harder the classification. We created three datasets with three
different levels of class separation by setting the class sep parameter to 0.01, 1,
1.5, 2 and 5 respectively. All of the datasets had only 10 informative attributes.
The labelled training sets had 50 instances for these experiments. Again, all the
other experiment setups were the same as described earlier. Figure 4(b) shows
the results of these experiments. The pretraining had the biggest gain in test
accuracy over he normal when the class separation is 0.01. However, as the class
separation gets larger the advantage becomes smaller. Both of these experiments
support the hypothesis that what we are learning during pretraining is a good
prior for the model. The advantage of a good prior is larger when the data size
is small and when the classification problem is difficult.

We proposed a new supervised pretraining method to help improve gener-
alization for binary classification problems. The experiments on both UCI and
synthetic datasets suggest that the proposed pretraining method provides more
generalization gain when there is a lack of labelled training data. Further experi-
ments on synthetic data suggest that this method works best when the input has
high dimensionality and contains noisy attributes. Finally, the proposed method
has bigger advantage over he normal in terms of test accuracy when the class
separation is small.

6 Discussion

By inspecting the results closely, we noticed that the standard deviation of the
test accuracy for the pretrained model was bigger than the base model without
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pretraining for a few cases. This is contradictory to the findings in unsupervised
pretraining. Unsupervised pretraining was shown to help lower the variance of
test accuracy [8]. And the results in Table 3 are not statistically significant. One
possible explanation for this might be the weights learned during the pretrain-
ing across different runs were very different. Recall that we used a pretraining
validation set to stop the pretraining. Another way to do this is to run the
pretraining using different epochs and choose the epoch that gives the best val-
idation accuracy on the original classification problem. Then we can run the
experiments multiple times using this fixed number of epochs. This may be a
more stable method. Another possible explanation for the large standard devi-
ation is the small size of the training data. The standard deviation of the test
accuracy tends to be larger when training data is small. The difficulty of the
classification problem may also affect the statistical significance of the results.
As the experiments on synthetic data indicate, the advantage of the proposed
pretraining method disappears when the clusters are far apart from each other.
The complexity of the target decision boundary that separates different classes
may also affect the effectiveness of the pretraining method. Lastly, we also expect
label noise in the data to reduce the advantage provided by the pretraining. The
exact reasons why the proposed method works better on certain datasets need
to be explored further.

The pretraining phase means more training time. However, the proposed
supervised pretraining only adds a small amount of additional training time.
For instance, the pretraining phase for the MAGIC dataset took on average
241 s, about 4.67% of the average total training time of 5061 s. Note that the
exact training time in practice depends on the dataset, tuning of training param-
eters and the number of epochs used. We just want to show that despite of the
additional pretraining phase the proposed method is still practical.

Note that in all of our experiments, we did not fine tune the pretraining or
the weight transferring process. One can possibly improve the results further by
carefully and tediously choosing when to stop the pretraining, which layers to
reuse and whether to freeze some layers for a certain number of epochs. Our goal
here is mainly to show that the proposed method can help improve generalization
when only limited training data is available, instead of achieving state-of-the-art
result on a particular dataset. We used the same experimental setup across all
the experiments (except number of epochs) to not bias any particular setting.

7 Conclusion and Future Works

Current default initialization methods such as he normal are designed to stabilize
the training, especially for deep neural networks. However, they are not neces-
sarily optimal for generalization. When labelled data is limited, the choice of
initial weights becomes very important in deciding what final model we will end
up with. We demonstrated that inappropriate initial weights of neural networks
do indeed lead to lower test accuracy. We then proposed a supervised pretraining
method to improve the generalization in binary classification problems. During
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the pretraining, a model is learned to identify real data from shuffled data. Then
the learned weights are reused in the original problem. Based on the experimen-
tal results on four UCI datasets and synthetic datasets, the supervised pretrain-
ing leads to better test accuracy than he normal initialization, when there is a
lack of labelled training data and the class separation is small. The experiments
using synthetic datasets showed that this supervised pretraining works best on
datasets with higher dimensionality and noisy features.

A very important future work is to understand why this supervised pretrain-
ing works in some of the cases and why it fails in other situations. We only
focused on binary classification problems in this work, we would like to evaluate
how well the proposed method works on multi-class problems. Lastly, it would
be interesting to explore how to apply the same idea to image and text data.
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