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Abstract. One-class support vector machine (OC-SVM) for a long time
has been one of the most effective anomaly detection methods and exten-
sively adopted in both research as well as industrial applications. The
biggest issue for OC-SVM is yet the capability to operate with large and
high-dimensional datasets due to optimization complexity. Those prob-
lems might be mitigated via dimensionality reduction techniques such as
manifold learning or autoencoder. However, previous work often treats
representation learning and anomaly prediction separately. In this paper,
we propose autoencoder based one-class support vector machine (AE-
1SVM) that brings OC-SVM, with the aid of random Fourier features to
approximate the radial basis kernel, into deep learning context by com-
bining it with a representation learning architecture and jointly exploit
stochastic gradient descent to obtain end-to-end training. Interestingly,
this also opens up the possible use of gradient-based attribution meth-
ods to explain the decision making for anomaly detection, which has ever
been challenging as a result of the implicit mappings between the input
space and the kernel space. To the best of our knowledge, this is the first
work to study the interpretability of deep learning in anomaly detec-
tion. We evaluate our method on a wide range of unsupervised anomaly
detection tasks in which our end-to-end training architecture achieves a
performance significantly better than the previous work using separate
training. Code related to this paper is available at: https://github.com/
minh-nghia/AE-1SVM.

1 Introduction

Anomaly detection (AD), also known as outlier detection, is a unique class of
machine learning that has a wide range of important applications, including
intrusion detection in networks and control systems, fault detection in indus-
trial manufacturing procedures, diagnosis of certain diseases in medical areas by
identifying outlying patterns in medical images or other health records, cyber-
security, etc. AD algorithms are identification processes that are able to single
out items or events that are different from an expected pattern, or those that
have significantly lower frequencies compared to others in a dataset [8,14].
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In the past, there has been substantial effort in using traditional machine
learning techniques for both supervised and unsupervised AD such as principal
component analysis (PCA) [6,7], one-class support vector machine (OC-SVM)
[12,22,29], isolation forests [18], clustering based methods such as k-means, and
Gaussian mixture model (GMM) [4,16,35], etc. Notwithstanding, they often
become inefficient when being used in high-dimensional problems because of high
complexity and the absence of an integrated efficient dimensionality reduction
approach. There is recently a growing interest in using deep learning techniques
to tackle this issue. Nonetheless, most previous work still relies on two-staged
or separate training in which a low-dimensional space is firstly learned via an
autoencoder. For example, the work in [13] simply proposes a hybrid architecture
with a deep belief network to reduce the dimensionality of the input space and
separately applies the learned feature space to a conventional OC-SVM. Robust
deep autoencoder (RDA) [34] uses a structure that combines robust PCA and
dimensionality reduction by autoencoder. However, this two-stage method is not
able to learn efficient features for AD problems, especially when the dimension-
ality grows higher because of decoupled learning stages. More similar to our
approach, deep clustering embedding (DEC) [31] is a state-of-the-art algorithm
that integrates unsupervised autoencoding network with clustering. Even though
clustering is often considered as a possible solution to AD tasks, DEC is designed
to jointly optimize the latent feature space and clustering, thus would learn a
latent feature space that is more efficient to clustering rather than AD.

End-to-end training of dimensionality reduction and AD has recently received
much interest, such as the frameworks using deep energy-based model [33],
autoencoder combined with Gaussian mixture model [36], generative adversarial
networks (GAN) [21,32]. Nonetheless, these methods are based on density esti-
mation techniques to detect anomalies as a by-product of unsupervised learning,
therefore might not be efficient for AD. They might assign high density if there
are many proximate anomalies (a new cluster or mixture might be established
for them), resulting in false negative cases.

One-class support vector machine is one of the most popular techniques for
unsupervised AD. OC-SVM is known to be insensitive to noise and outliers in
the training data. Still, the performance of OC-SVM in general is susceptible to
the dimensionality and complexity of the data [5], while their training speed is
also heavily affected by the size of the datasets. As a result, conventional OC-
SVM may not be desirable in big data and high-dimensional AD applications. To
tackle these issues, previous work has only performed dimensionality reduction
via deep learning and OC-SVM based AD separately. Notwithstanding, separate
dimensionality reduction might have a negative effect on the performance of the
consequential AD, since important information useful for identifying outliers
can be interpreted differently in the latent space. On the other hand, to the
best of our knowledge, studies on the application of kernel approximation and
stochastic gradient descent (SGD) on OC-SVM have been lacking: most of the
existing works only apply random Fourier features (RFF) [20] to the input space
and treat the problem as a linear support vector machine (SVM); meanwhile,
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[5,23] have showcased the prospect of using SGD to optimize SVM, but without
the application of kernel approximation.

Another major issue in joint training with dimensionality reduction and AD
is the interpretability of the trained models, that is, the capability to explain
the reasoning for why they detect the samples as outliers, with respect to the
input features. Very recently, explanation for black-box deep learning models
has been brought about and attracted a respectable amount of attention from
the machine learning research community. Especially, gradient-based explana-
tion (attribution) methods [2,3,26] are widely studied as protocols to address
this challenge. The aim of the approach is to analyse the contribution of each
neuron in the input space of a neural network to the neurons in its latent space
by calculating the corresponding gradients. As we will demonstrate, this same
concept can be applied to kernel-approximated SVMs to score the importance
of each input feature to the margin that separates the decision hyperplane.

Driven by those reasoning, in this paper we propose AE-1SVM that is an end-
to-end autoencoder based OC-SVM model combining dimensionality reduction
and OC-SVM for large-scale AD. RFFs are applied to approximate the RBF
kernel, while the input of OC-SVM is fed directly from a deep autoencoder that
shares the objective function with OC-SVM such that dimensionality reduction
is forced to learn essential pattern assisting the anomaly detecting task. On top of
that, we also extend gradient-based attribution methods on the proposed kernel-
approximate OC-SVM as well as the whole end-to-end architecture to analyse
the contribution of the input features on the decision making of the OC-SVM.

The remainder of the paper is organised as follows. Section 2 reviews the
background on OC-SVM, kernel approximation, and gradient-based attribution
methods. Section 3 introduces the combined architecture that we have men-
tioned. In Sect. 4, we derive expressions and methods to obtain the end-to-end
gradient of the OC-SVM’s decision function with respect to the input features
of the deep learning model. Experimental setups, results, and analyses are pre-
sented in Sect. 5. Finally, Sect. 6 draws the conclusions for the paper.

2 Background

In this section, we briefly describe the preliminary background knowledge that
is referred to in the rest of the paper.

2.1 One-Class Support Vector Machine

OC-SVM [22] for unsupervised anomaly detection extends the idea of support
vector method that is regularly applied in classification. While classic SVM aims
to find the hyperplane to maximize the margin separating the data points, in
OC-SVM the hyperplane is learned to best separate the data points from the
origin. SVMs in general have the ability to capture non-linearity thanks to the
use of kernels. The kernel method maps the data points from the input feature
space in Rd to a higher-dimensional space in RD (where D is potentially infinite),
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where the data is linearly separable, by a transformation Rd → RD. The most
commonly used kernel is the radial basis function (RBF) kernel defined by a
similarity mapping between any two points x and x′ in the input feature space,
formulated by K(x, x′) = exp(−‖x−x′‖2

2σ2 ), with σ being a kernel bandwidth.
Let w and ρ denote the vectors indicating the weights of all dimensions in the

kernel space and the offset parameter determining the distance from the origin to
the hyperplane, respectively. The objective of OC-SVM is to separate all data
points from the origin by a maximum margin with respect to some constraint
relaxation, and is written as a quadratic program as follows:

min
w,ξ,ρ

1
2
‖w‖2 − ρ +

1
νn

n∑

i=1

ξi, (1)

subject to wT φ(xi) ≥ ρ − ξi, ξi ≥ 0.

where ξi is a slack variable and ν is the regularization parameter. Theoretically,
ν is the upper bound of the fraction of anomalies in the data, and also the main
tuning parameter for OC-SVM. Additionally, by replacing ξi with the hinge loss,
we have the unconstrained objective function as

min
w,ρ

1
2
‖w‖2 − ρ +

1
νn

n∑

i=1

max(0, ρ − wT φ(xi)). (2)

Let g(x) = w.φ(xi) − ρ, the decision function of OC-SVM is

f(x) = sign(g(x)) =

{
1 if g(x) ≥ 0
−1 if g(x) < 0

. (3)

The optimization problem of SVM in (2) is usually solved as a convex opti-
mization problem in the dual space with the use of Lagrangian multipliers to
reduce complexity while increasing solving feasibility. LIBSVM [9] is the most
popular library that provides efficient optimization algorithms to train SVMs,
and has been widely adopted in the research community. Nevertheless, solving
SVMs in the dual space can be susceptible to the data size, since the function
K between each pair of points in the dataset has to be calculated and stored in
a matrix, resulting in an O(n2) complexity, where n is the size of the dataset.

2.2 Kernel Approximation with Random Fourier Features

To address the scalability problem of kernel machines, approximation algorithms
have been introduced and widely applied, with the most two dominant being
Nyströem [30] and random Fourier features (RFF) [20]. In this paper, we focus
on RFF since it has lower complexity and does not require pre-training. The
method is based on the Fourier transform of the kernel function, given by a
Gaussian distribution p(ω) = N (0, σ−2I), where I is the identity matrix and σ
is an adjustable parameter representing the standard deviation of the Gaussian
process.
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From the distribution p, D independent and identically distributed
weights ω1, ω2, ..., ωD are drawn. In the original work [20], two mappings
are introduced, namely the combined cosine and sine mapping as zω(x) =[
cos(ωT x) sin(ωT x)

]T and the offset cosine mapping as zω(x) =
√

2cos(ωT x +
b), where the offset parameter b ∼ U (0, 2π). It has been proven in [28] that
the former mapping outperforms the latter one in approximating RBF kernels
due to the fact that no phase shift is introduced as a result of the offset vari-
able. Therefore, in this paper, we only consider the combined sine and cosine
mapping. As such, the complete mapping is defined as follows:

z(x) =

√
1
D

[
cos(ωT

1 x) ... cos(ωT
Dx) sin(ωT

1 x) ... sin(ωT
Dx)

]T
, (4)

Applying the kernel approximation mappings to (2), the hinge loss can be
replaced by max(0, ρ−wT z(xi)). The objective function itself is then equivalent
to a OC-SVM in the approximated kernel space RD, and thus the optimization
problem is more trivial, despite the dimensionality of RD being higher than that
of Rd.

2.3 Gradient-Based Explanation Methods

Gradient-based methods exploit the gradient of the latent nodes in a neural
network with respect to the input features to rate the attribution of each input to
the output of the network. In the recent years, many research studies [2,19,26,27]
have applied this approach to explain the classification decision and sensitivity
of input features in deep neural networks and especially convolutional neural
networks. Intuitively, an input dimension xi has larger contribution to a latent
node y if the gradient of y with respect to xi is higher, and vice versa.

Instead of using purely gradient as a quantitative factor, various extensions
of the method has been developed, including Gradient*Input [25], Integrated
gradients [27], or DeepLIFT [24]. The most recent work [2] showed that these
methods are strongly related and proved conditions of equivalence or approxima-
tion between them. In addition, other non gradient-based can be re-formulated
to be implemented easily like gradient-based.

3 Deep Autoencoding One-Class SVM

In this section, we present our combined model, namely Deep autoencoding
One-class SVM (AE-1SVM), based on OC-SVM for anomaly detecting tasks in
high-dimensional and big datasets. The model consists of two main components,
as illustrated in Fig. 1 (Left). The first component is a deep autoencoder network
for dimensionality reduction and feature representation of the input space. The
second one is an OC-SVM for anomaly prediction based on support vectors
and margin. The RBF kernel is approximated using random Fourier features.
The bottleneck layer of the deep autoencoder network is forwarded directly into
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the Random features mapper as the input of the OC-SVM. By doing this, the
autoencoder network is pressed to optimize its variables to represent the input
features in the direction that supports the OC-SVM in separating the anomalies
from the normal class.

Fig. 1. (Left) Illustration of the Deep autoencoding One-class SVM architecture.
(Right) Connections between input layer and hidden layers of a neural network

Let us denote x as the input of the deep autoencoder, x′ as the reconstructed
value of x, and x as the latent space of the autoencoder. In addition, θ is the
set of parameters of the autoencoder. As such, the joint objective function of
the model regarding the autoencoder parameters, the OC-SVM’s weights, and
its offset is as follows:

Q(θ,w, ρ) = αL(x,x′) +
1
2
‖w‖2 − ρ +

1
νn

n∑

i=1

max(0, ρ − wT z(xi)) (5)

The components and parameters in (5) are described below

– L(x,x′) is the reconstruction loss of the autoencoder, which is normally cho-
sen to be the L2-norm loss L(x,x′) = ‖x − x′‖22.

– Since SGD is applied, the variable n, which is formerly the number of training
samples, becomes the batch size since the hinge loss is calculated using the
data points in the batch.

– z is the random Fourier mappings as defined in (4). Due to the random
features being data-independent, the standard deviation σ of the Gaussian
distribution has to be fine-tuned correlatively with the parameter ν.

– α is a hyperparameter controlling the trade-off between feature compression
and SVM margin optimization.

Overall, the objective function is optimized in conjunction using SGD with
backpropagation. Furthermore, the autoencoder network can also be extended
to a convolutional autoencoder, which is showcased in the experiment section.

4 Interpretable Autoencoding One-Class SVM

In this section, we outline the method for interpreting the results of AE-1SVM
using gradients and present illustrative example to verify its validity.
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4.1 Derivations of End-to-End Gradients

Considering an input x of an RFF kernel-approximated OC-SVM with dimen-
sionality Rd. In our model, x is the bottleneck representation of the latent space
in the deep autoencoder. The expression of the margin g(x) with respect to the
input x is as follows:

g(x) =
D∑

j=1

wjzωj (x) − ρ =

√
1

D

D∑

j=1

[
wjcos(

d∑

k=1

ωjkxk) + wD+jsin(
d∑

k=1

ωjkxk)
] − ρ.

As a result, the gradient of the margin function on each input dimension
k = 1, 2, ..., d can be calculated as

∂g

∂xk
=

√
1
D

D∑

j=1

ωjk

[ − wjsin(
d∑

k=1

ωjkxk) + wj+Dcos(
d∑

k=1

ωjkxk)
]
. (6)

Next, we can derive the gradient of the latent space nodes with respect
to the deep autoencoder’s input layer (extension to convolutional autoencoder
is straightforward). In general, considering a neural network with M input
neurons xm,m = 1, 2, ...,M , and the first hidden layer having N neurons
un, n = 1, 2, ..., N , as depicted in Fig. 1 (Right). The gradient of un with respect
to xm can be derived as

G(xm, un) =
∂un

∂xm
= wmnσ′(xmwmn + bmn)σ(xmwmn + bmn), (7)

where σ(xmwmn + bmn) = un, σ(.) is the activation function, wmn and bmn are
the weight and bias connecting xm and un. The derivative of σ is different for
each activation function. For instance, with a sigmoid activation σ, the gradient
G(xm, un) is computed as wmnun(1 − un), while G(xm, un) is wmn(1 − u2

n) for
tanh activation function.

To calculate the gradient of neuron yl in the second hidden layer with respect
to xm, we simply apply the chain rule and sum rule as follows:

G(xm, yl) =
∂yl

∂xm
=

N∑

n=1

∂yl

∂un

∂un

∂xm
=

N∑

n=1

G(un, yl)G(xm, un). (8)

The gradient G(un, yl) can be obtained in a similar manner to (7). By main-
taining the values of G at each hidden layer, the gradient of any hidden or output
layer with respect to the input layer can be calculated. Finally, combining this
and (6), we can get the end-to-end gradient of the OC-SVM margin with respect
to all input features. Besides, state-of-the-art machine learning frameworks like
TensorFlow also implements automatic differentiation [1] that simplifies the pro-
cedures for computing those gradient values.

Using the obtained values, the decision making of the AD model can be
interpreted as follows. For an outlying sample, the dimension which has higher
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gradient indicates a higher contribution to the decision making of the ML model.
In other words, the sample is further to the boundary in that particular dimen-
sion. For each mentioned dimension, if the gradient is positive, the value of the
feature in that dimension is lesser than the lower limit of the boundary. In con-
trast, if the gradient holds a negative value, the feature exceeds the level of the
normal class.

4.2 Illustrative Example

Figure 2 presents an illustrative example of interpreting anomaly detecting
results using gradients. We generate 1950 four-dimensional samples as normal
instances, where the first two features are uniformly generated such that they
are inside a circle with center C(0.5, 0.5). The third and fourth dimensions are
drawn uniformly in the range [−0.2, 0.2] so that the contribution of them are
significantly less than the other two dimensions. In contrast, 50 anomalies are
created which have the first two dimensions being far from the mentioned circle,
while the last two dimensions has a higher range of [−2, 2]. The whole dataset
including both the normal and anomalous classes are trained with the proposed
AE-1SVM model with a bottleneck layer of size 2 and sigmoid activation.

The figure on the left shows the representation of the 4D dataset on a 2-
dimensional space. Expectedly, it captures most of the variability from only the
first two dimensions. Furthermore, we plot the gradients of 9 different anoma-
lous samples, with the two latter dimensions being randomized, and overall,
the results have proven the aforementioned interpreting rules. It can easily be
observed that the contribution of the third and fourth dimensions to the decision
making of the model is always negligible. Among the first two dimensions, the
ones having the value of 0.1 or 0.9 has the corresponding gradients perceptibly
higher than those being 0.5, as they are further from the boundary and the sam-
ple can be considered “more anomalous” in that dimension. Besides, the gradient

Fig. 2. Illustrative example of gradient-based explanation methods. (Left) The encoded
2D feature space from a 4D dataset. (Right) The gradient of the margin function with
respect to the four original features for each testing point. Only the coordinates of first
two dimensions are annotated.



Scalable and Interpretable OC-SVMs with Deep Learning 165

of the input 0.1 is always positive due to the fact that it is lower than the normal
level. In contrast, the gradient of the input 0.9 is consistently negative.

5 Experimental Results

We present qualitative empirical analysis to justify the effectiveness of the AE-
1SVM model in terms of accuracy and improved training/testing time. The
objective is to compare the proposed model with conventional and state-of-the-
art AD methods over synthetic and well-known real world data1.

5.1 Datasets

We conduct experiments on one generated datasets and five real-world datasets
(we assume all tasks are unsupervised AD) as listed below in Table 1. The
descriptions of each individual dataset is as follows:

– Gaussian: This dataset is taken into account to showcase the performance
of the methods on high-dimensional and large data. The normal samples are
drawn from a normal distribution with zero mean and standard deviation
σ = 1, while σ = 5 for the anomalous instances. Theoretically, since the two
groups have different distributional attributes, the AD model should be able
to separate them.

– ForestCover: From the ForestCover/Covertype dataset [11], class 2 is
extracted as the normal class, and class 4 is chosen as the anomaly class.

– Shuttle: From the Shuttle dataset [11], we select the normal samples from
classes 2, 3, 5, 6, 7, while the outlier group is made of class 1.

– KDDCup99: The popular KDDCup99 dataset [11] has approximately 80%
proportion as anomalies. Therefore, from the 10-percent subset, we randomly
select 5120 samples from the outlier classes to form the anomaly set such that
the contamination ratio is 5%. The categorical features are extracted using
one-hot encoding, making 118 features in the raw input space.

– USPS: We select from the U.S Postal Service handwritten digits dataset [15]
950 samples from digit 1 as normal data, and 50 samples from digit 7 as
anomalous data, as the appearance of the two digits are similar. The size of
each image is 16 × 16, resulting in each sample being a flatten vector of 256
features.

– MNIST: From the MNIST dataset [17], 5842 samples of digit ‘4’ are chosen
as normal class. On the other hand, the set of outliers contains 100 digits
from classes ‘0’, ‘7’, and ‘9’. This task is challenging due to the fact that
many digits ‘9’ are remarkably similar to digit ‘4’. Each input sample is a
flatten vector with 784 dimensions.

1 All code for reproducibility is available at https://github.com/minh-nghia/AE-
1SVM.

https://github.com/minh-nghia/AE-1SVM
https://github.com/minh-nghia/AE-1SVM
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Table 1. Summary of the datasets used for comparison in the experiments.

Dataset Dimensions Normal instances Anomalies rate (%)

Gaussian 512 950 5.0

ForestCover 54 581012 0.9

Shuttle 9 49097 7.2

KDDCup99 118 97278 5.0

USPS 256 950 5.0

MNIST 784 5842 1.7

5.2 Baseline Methods

Variants of OC-SVM and several state-of-the-art methods are selected as base-
lines to compare the performance with the AE-1SVM model. Different modifi-
cations of the conventional OC-SVM are considered. First, we take into account
the version where OC-SVM with RBF kernel is trained directly on the raw input.
Additionally, to give more impartial justifications, a version where an autoen-
coding network exactly identical to that of the AE-1SVM model is considered.
We use the same number of training epochs to AE-1SVM to investigate the abil-
ity of AE-1SVM to force the dimensionality reduction network to learn better
representation of the data. The OC-SVM is then trained on the encoded feature
space, and this variant is also similar to the approach given in [13].

The following methods are also considered as baselines to examine the
anomaly detecting performance of the proposed model:

– Isolation Forest [18]: This ensemble method revolves around the idea that
the anomalies in the data have significantly lower frequencies and are different
from the normal points.

– Robust Deep Autoencoder (RDA) [34]: In this algorithm, a deep autoen-
coder is constructed and trained such that it can decompose the data into two
components. The first component contains the latent space representation of
the input, while the second one is comprised of the noise and outliers that
are difficult to reconstruct.

– Deep Clustering Embeddings (DEC) [31]: This algorithm combines
unsupervised autoencoding network with clustering. As outliers often locate
in sparser clusters or are far from their centroids, we apply this method into
AD and calculate the anomaly score of each sample as a product of its dis-
tance to the centroid and the density of the cluster it belongs to.

5.3 Evaluation Metrics

In all experiments, the area under receiver operating characteristic (AUROC)
and area under the Precision-Recall curve (AUPRC) are applied as metrics to
evaluate and compare the performance of AD methods. Having a high AUROC is
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necessary for a competent model, whereas AUPRC often highlights the difference
between the methods regarding imbalance datasets [10]. The testing procedure
follows the unsupervised setup, where each dataset is split with 1:1 ratio, and
the entire training set including the anomalies is used for training the model.
The output of the models on the test set is measured against the ground truth
using the mentioned scoring metrics, with the average scores and approximal
training and testing time of each algorithm after 20 runs being reported.

5.4 Model Configurations

In all experiments, we employ the sigmoid activation function and implement the
architecture using TensorFlow [1]. We discover that for the random Fourier fea-
tures, a standard deviation σ = 3.0 produces satisfactory results for all datasets.
For other parameters, the network configurations of AE-1SVM for each individ-
ual dataset are as in Table 2 below.

Table 2. Summary of network configurations and training parameters of AE-1SVM
used in the experiments.

Dataset Encoding layers ν α RFF Batch size Learning rate

Gaussian {128, 32} 0.40 1000 500 32 0.01

ForestCover {32, 16} 0.30 1000 200 1024 0.01

Shuttle {6, 2} 0.40 1000 50 16 0.001

KDDCup99 {80, 40, 20} 0.30 10000 400 128 0.001

USPS {128, 64, 32} 0.28 1000 500 16 0.005

MNIST {256, 128} 0.40 1000 1000 32 0.001

For the MNIST dataset, we additionally implement a convolutional autoen-
coder with pooling and unpooling layers: conv1(5 × 5 × 16), pool1(2 × 2),
conv2(5 × 5 × 9), pool2(2 × 2) and a feed-forward layer afterward to continue
compressing into 49 dimensions; the decoder: a feed-forward layer afterward of
49× 9 dimensions, then deconv1(5× 5× 9), unpool1(2× 2), deconv2(5× 5× 16),
unpool2(2 × 2), then a feed-forward layer of 784 dimensions. The dropout rate
is set to 0.5 in this convolutional autoencoder network.

For each baseline methods, the best set of parameters is selected. In par-
ticular, for different variants of OC-SVM, the optimal values for parameter ν
and the RBF kernel width are exhaustively searched. Likewise, for Isolation for-
est, the fraction ratio is tuned around the anomalies rate for each dataset. For
RDA, DEC, as well as OC-SVM variants that involves auto-encoding network
for dimensionality reduction, the autoencoder structures exactly identical to AE-
1SVM are used, while the λ hyperparameter in RDA is also adjusted as it is the
most important factor of the algorithm.
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5.5 Results

Firstly, for the Gaussian dataset, the histograms of the decision scores obtained
by different methods are presented in Fig. 3. It can clearly be seen that AE-1SVM
is able to single out all anomalous samples, while giving the best separation
between the two classes.

Fig. 3. Histograms of decision scores of AE-1SVM and other baseline methods.

For other datasets, the comprehensive results are given in Table 3. It is obvi-
ous that AE-1SVM outperforms conventional OC-SVM as well as the two-staged
structure with decoupled autoencoder and OC-SVM in terms of accuracy in all
scenarios, and is always among the top performers. As we restrict the number of
training epochs for the detached autoencoder to be same as that for AE-1SVM,
its performance declines significantly and in some cases its representation is even
worse than the raw input. This proves that AE-1SVM can attain more efficient
features to support AD task given the similar time.

Other observations can also be made from the results. For ForestCover, only
the AUROC score of Isolation Forest is close, but the AUPRC is significantly
lower, with three time less than that of AE-1SVM, suggesting that it has to
compensate a higher false alarm rate to identify anomalies correctly. Similarly,
Isolation Forest slightly surpasses AE-1SVM in AUROC for Shuttle dataset,
but is subpar in terms of AUPRC, thus can be considered less optimal choice.
Analogous patterns can as well be noticed for other datasets. Especially, for
MNIST, it is shown that the proposed method AE-1SVM can also operate under
a convolutional autoencoder network in image processing contexts.

Regarding training time, AE-1SVM outperforms other methods for Forest-
Cover, which is the largest dataset. For other datasets that have high sample size,
namely KDDCup99 and Shuttle, it is still one of the fastest candidates. Further-
more, we also extend the KDDCup99 experiment and train AE-1SVM model on
a full dataset, and acquire promising results in only about 200 s. This verifies the
effectiveness and potential application of the model in big-data circumstances.
On top of that, the testing time of AE-1SVM is a notable improvement over other
methods, especially Isolation Forest and conventional OC-SVM, suggesting its
feasibility in real-time environments.
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Table 3. Average AUROC, AUPRC, approximal train time and test time of the base-
line methods and proposed method. Best results are displayed in boldface.

Dataset Method AUROC AUPRC Train Test

Forest Cover OC-SVM raw input 0.9295 0.0553 6× 102 2× 102

OC-SVM encoded 0.7895 0.0689 2.5× 102 8× 101

Isolation Forest 0.9396 0.0705 3× 101 1× 101

RDA 0.8683 0.0353 1× 102 2× 100

DEC 0.9181 0.0421 2× 101 4× 100

AE-1SVM 0.9485 0.1976 2× 101 7× 10−1

Shuttle OC-SVM raw input 0.9338 0.4383 2× 101 5× 101

OC-SVM encoded 0.8501 0.4151 2× 101 2.5× 100

Isolation Forest 0.9816 0.7694 2.5× 101 1.5× 101

RDA 0.8306 0.1872 3× 102 2× 10−1

DEC 0.9010 0.3184 6× 100 1× 100

AE-1SVM 0.9747 0.9483 1× 101 1× 10−1

KDDCup OC-SVM raw input 0.8881 0.3400 6× 101 2× 101

OC-SVM encoded 0.9518 0.3876 5× 101 1× 101

Isolation Forest 0.9572 0.4148 2× 101 5× 100

RDA 0.6320 0.4347 1× 102 5× 10−1

DEC 0.9496 0.3688 1× 101 2× 100

AE-1SVM 0.9663 0.5115 3× 101 4.5× 10−1

AE-1SVM (Full dataset) 0.9701 0.4793 2× 102 4× 100

USPS OC-SVM raw input 0.9747 0.5102 2× 10−2 1.5× 10−2

OC-SVM encoded 0.9536 0.4722 6× 100 5× 10−3

Isolation Forest 0.9863 0.6250 2.5× 10−1 6× 10−2

RDA 0.9799 0.5681 1.5× 100 1.5× 10−2

DEC 0.9263 0.7506 4× 100 2.5× 10−2

AE-1SVM 0.9926 0.8024 1× 101 5× 10−3

MNIST OC-SVM raw input 0.8302 0.0819 2× 100 1× 100

OC-SVM encoded 0.7956 0.0584 1× 102 1× 10−1

Isolation Forest 0.7574 0.0533 4.5× 100 1.5× 100

RDA 0.8464 0.0855 1× 102 2.5× 10−1

DEC 0.5522 0.0289 3.5× 101 1.5× 10−1

AE-1SVM 0.8119 0.0864 1.5× 102 7× 10−1

CAE-1SVM 0.8564 0.0885 3.5× 103 1.5× 100

5.6 Gradient-Based Explanation in Image Datasets

We also investigate the use of gradient-based explanation methods on the image
datasets. Figure 4 illustrates the unsigned gradient maps of several anomalous
digits in the USPS and MNIST datasets. The MNIST results are given by the
version with convolutional autoencoder. Interesting patterns proving the correct-
ness of gradient-based explanation approach can be observed from Fig. 4 (Left).
The positive gradient maps revolve around the middle part of the images where
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the pixels in the normal class of digits ‘1’ are normally bright (higher values),
indicating the absence of those pixels contributes significantly to the reasoning
that the samples ‘7’ are detected as outliers. Likewise, the negative gradient
maps are more intense on the pixels matching the bright pixels outside the cen-
ter area of its corresponding image, meaning that the values of those pixels in
the original image exceeds the range of the normal class, which is around the
zero (black) level. Similar perception can be acquired from Fig. 4 (Right), as it
shows the difference between each samples of digits ‘0’, ‘7’, and ‘9’, to digit ‘4’.

Fig. 4. (Left) The USPS experiment. (Right) The MNIST experiment. From top to
bottom rows: original image, positive gradient map, negative gradient map, and full
gradient map.

6 Conclusion

In this paper, we propose the end-to-end autoencoding One-class Support Vector
Machine (AE-1SVM) model comprising of a deep autoencoder for dimensionality
reduction and a variant structure of OC-SVM using random Fourier features for
anomaly detection. The model is jointly trained using SGD with a combined loss
function to both lessen the complexity of solving support vector problems and
force dimensionality reduction to learn better representation that is beneficial
for the anomaly detecting task. We also investigate the application of apply-
ing gradient-based explanation methods to interpret the decision making of the
proposed model, which is not feasible for most of the other anomaly detection
algorithms. Extensive experiments have been conducted to verify the strengths
of our approach. The results have demonstrated that AE-1SVM can be effective
in detecting anomalies, while significantly enhance both training and response
time for high-dimensional and large-scale data. Empirical evidence of interpret-
ing the predictions of AE-1SVM using gradient-based methods has also been
presented using illustrative examples and handwritten image datasets.
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