
Chapter 3
Selected Design and Analysis Techniques
for Contemporary Symmetric Encryption

Vasily Mikhalev, Miodrag J. Mihaljević, Orhun Kara,
and Frederik Armknecht

Abstract In this chapter we provide an overview of selected methods for the
design and analysis of symmetric encryption algorithms that have recently been
published. We start by discussing the practical advantages, limitations and security
of the keystream generators with keyed update functions which were proposed for
reducing the area cost of stream ciphers. Then we present an approach to enhancing
the security of certain encryption schemes by employing a universal homophonic
coding and randomized encryption paradigm.

3.1 Introduction

The concept of ubiquitous computing brings new challenges to the designers of
cryptographic algorithms by introducing scenarios where classical crypto primitives
are infeasible due to their costs (such as hardware price, computational time, and
power and energy consumption). In this chapter we provide an overview of selected
recent approaches which deal with such challenges.

An approach [27] which allows one to realize secure stream ciphers with state
size beyond the bound which was previously considered to be the minimum is
summarized in Sect. 3.2. The main idea is to use so-called keystream generators
with keyed update functions (KSGs with KUF) where the secret key is involved
not only in the initialization phase (as is common practice) but during the entire
encryption process. After explaining the advantages [27] of KSGs with KUF in
resisting Time Memory Data Tradeoff (TMDTO) attacks [47, 237] together with

V. Mikhalev (�) · F. Armknecht
University of Mannheim, Mannheim, Germany
e-mail: mikhalev@uni-mannheim.de

M. J. Mihaljević
Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Serbia

O. Kara
Department of Mathematics, IZTECH Izmir Institute of Technology, Izmir, Turkey

© The Author(s) 2021
G. Avoine, J. Hernandez-Castro (eds.), Security of Ubiquitous Computing Systems,
https://doi.org/10.1007/978-3-030-10591-4_3

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10591-4_3&domain=pdf
mailto:mikhalev@uni-mannheim.de
https://doi.org/10.1007/978-3-030-10591-4_3

50 V. Mikhalev et al.

practical issues and limitations on their implementation in hardware[421], we
describe the stream cipher Sprout which was designed in order to demonstrate
the feasibility of the approach [27], and its improvement Plantlet where the
security weaknesses of Sprout were fixed [421]. In Sect. 3.3 we present a generic
attack [314] against such KSGs that implies a design criterion. Section 3.4 presents
an approach to security enhancement of certain encryption schemes employing uni-
versal homophonic coding [397] and a randomized encryption paradigm [503]. The
approach summarized in this section has been reported and discussed in a number
of references including [413, 418, 452] and [420]. A security evaluation of this
encryption scheme has been reported in [452] from an information-theoretic point
of view, and a computational-complexity evaluation approach is given in [420].

3.2 Keystream Generators with Keyed Update Functions

3.2.1 Design Approach

Stream ciphers usually provide a higher throughput than block ciphers. However,
due to the existence of certain TMDTO [47, 91, 237] attacks, the area size required
to implement secure stream ciphers is often higher. The reason is the following. The
effort of TMDTO attacks against stream ciphers is O(2σ/2), where σ is the internal
state size. Therefore, a rule of thumb says that to achieve κ-bit security level, the
state size should be at least σ = 2 · κ . This results in the fact that a stream cipher
requires at least 2 · κ memory gates which are the most costly hardware elements in
terms of area and power-consumption. In this section we discuss an extension [27,
421] of the common design principle, which allows for secure lightweight stream
ciphers with internal state size below this bound.

We start the description of the new approach for stream ciphers design by giving
the definition of the KSG with KUF [27]:

Definition 1 (Keystream Generator with Keyed Update Function) A keystream
generator with a keyed update function comprises three sets, namely the key space
K = GF(2)κ , the IV space IV = GF(2)ν , and the variable state space S =
GF(2)σ . Moreover, it uses the following three functions

• an initialization function Init : IV × K → S
• an update function Upd : K × S → S such that Updk : S → S ,

Updk(st) := Upd(k, st), is bijective for any k ∈ K , and
• an output function Out : S → GF(2).

The internal state ST is composed of a variable part st ∈ S and a fixed part
k ∈ K . A KSG operates in two phases. In the initialization phase, the KSG
takes as input a secret key k and a public IV iv and sets the internal state to

3 Selected Design and Analysis Techniques for Contemporary Symmetric Encryption 51

st0 := Init(iv, k)∈S . Afterwards, the keystream generation phase executes the
following operations repeatedly (for t ≥ 0):

1. Output the next keystream bit zt = Out(stt)
2. Update the internal state stt to stt+1 := Upd(k, stt)

The main difference between KSGs with KUF and the KSGs traditionally used as
a core of stream ciphers is that the next state is now computed not only from the
current variable state stt (as is commonly done) but also from the fixed key k.

We now explain why stream ciphers built based on the KSGs with KUF have
advantages in resisting TMDTO attacks over classical KSGs. The goal of the
TMDTO attacker is the following: given a function F : N → N and D images
y1, . . . , yD of F , find a preimage for any of these points, i.e., determine a value
xi ∈ N such that F(xi) = yi . Typically, these attacks consist of two phases: a
precomputation (offline) phase, and a real-time (online) phase. At first the attacker
precomputes a large table using the function F (offline phase). In the online phase
the attacker gets D outputs of F and checks if any of these values is included in the
precomputed table. In the case of success, a preimage has been found. Obviously,
an attacker can increase the success probability by either precomputing more values
in the offline phase or collecting more data in the online phase where the optimal
trade-off is usually given as |D| = √|N |.

The goal of a TMDTO attack in the context of KSGs is to recover one internal
state as this allows us to compute the complete keystream. To this end, let FOut :
GF(2)σ → GF(2)σ be the function that takes the internal state stt ∈ GF(2)σ at
some clock t as input and outputs the σ keystream bits zt , . . . , zt+σ−1. Then, the
attack translates to finding a preimage of FOut for a given keystream segment with
the search space being N = S and an effort of at least

√|S | = 2σ/2. This implies
the above-mentioned rule of selecting σ ≥ 2κ .

To understand the motivation behind the design principle given in Definition 1,
we introduce the notion of keystream-equivalent states which is important for
analyzing the effectiveness of a TMDTO attack. Let F

compl.
Out be the function that

takes as input the initial state and outputs the maximum number of keystream bits.
If no bound is given by the designers, we assume that the maximum period of 2σ

keystream bits is produced. An attacker is interested in any internal state that allows
the keystream to be computed:

Definition 2 (Keystream-Equivalent States) Consider a KSG with a function
F

compl.
Out that outputs the complete keystream. Two states st, st ′ ∈ S are said to

be keystream-equivalent (in short st ≡kse st ′) if there exists an integer r ≥ 0 such
that F

compl.
Out (Updr (st)) = F

compl.
Out (st ′). Here, Updr means the r-times application

of Upd.

For any state st ∈ S , we denote by [st] its equivalence class, that is [st] =
{st ′ ∈ S |st ≡kse st ′}.

52 V. Mikhalev et al.

Now, let us consider an arbitrary KSG with state space S . As any state is a
member of exactly one equivalence class, the state space can be divided into �

distinct equivalence classes:

S =
[
st(1)

] .∪ . . .
.∪

[
st(�)

]
(3.1)

Assume a TMDTO attacker who is given some keystream (zt), based on an unknown
initial state st0. In this case if none of the precomputations are done for values in
[st0], the attack will fail. This implies that the attack effort is at least linear in the
number � of equivalence classes. Hence we can see that if we design a cipher such
that � ≥ 2κ , such a cipher will have the required security level against trade-off
attacks.

Let us now take a look at the minimum time effort for a TMDTO attack against
a KSG with a KUF. We make in the following the assumption that any two different
states ST = (st, k) and ST ′ = (st ′, k′) with k 	= k′ never produce the same
keystream, that is F

compl.
Out (ST) 	≡kse F

compl.
Out (ST ′). Hence, we have at least 2κ

different equivalence classes. As the effort grows linearly with the number of
equivalence classes, we assume in favor of the attacker that we have exactly 2κ

equivalence classes. This gives a minimum time complexity of 2κ . This means that,
in theory, it is possible to design a cipher with a security level of κ regardless of the
length σ of its variable state.

3.2.2 On Continuously Accessing the Key

In most cases the workflow of ciphers looks as follows. After the encryption or
decryption process is started, the key is loaded from some non-volatile memory
NVM into some registers, i.e., into some volatile memory VM. We call the value in
VM a volatile value as it usually changes during the encryption/decryption process
and the value stored in NVM, the non-volatile value or non-volatile key which
remains fixed. It holds for most designs that after the key has been loaded from NVM
into VM, the NVM is usually not involved anymore (unless the key schedule or the
initialization process needs to be restarted). But the design approach discussed in
Sect. 3.2.1 requires that the key which is stored on the device has to be accessed not
only for initialization of the registers but continuously in the encryption/decryption
process. The feasibility of this approach for different scenarios was investigated
in [421].

It has been argued there that continuously accessing the key can impact the
achievable throughput. To this end, two different cases need to be considered. The
first one is when the key is set once and is never changed and the second one is when
it is possible to rewrite the key. The types of NVM (e.g., MROM and PROM) which
can be used in the first case, allow for efficient implementations where accessing the
key bits induces no overhead. However, the key management is very difficult here.

3 Selected Design and Analysis Techniques for Contemporary Symmetric Encryption 53

In the second case, i.e., for those types of NVM which allow the key to be rewritable
(such as EEPROM and Flash), severe timing limitations for accessing the NVM may
occur. In particular, it depends on how the key stored in NVM needs to be accessed.
In some cases, implementation of ciphers which require continuous access to the
randomly selected bits of the key stored in rewritable types of NVM may lead to a
reduction of the throughput up to a factor of 50 [421]. However, designs that require
sequential access to the key bits are almost unaffected, irrespective of the underlying
NVM type.

With respect to area size, there is no big difference whether the key has to be
read only once or continuously during encryption, since the logic for reading the
key (at least once) has to be implemented anyway. Small extra logic may be needed
for synchronization with an NVM cipher which should not be clocked unless key
material is read from NVM.

3.2.3 The Stream Ciphers Sprout and Plantlet

The design principles discussed in Sect. 3.2.1 have been demonstrated by two
concrete keystream generators with keyed update function, namely Sprout and
Plantlet. Both ciphers have a similar structure (see Fig. 3.1) which was inspired by
Grain-128a [14]. The differences are the following:

1. Sprout and Plantlet have shorter internal state size compared to any of the Grain
family ciphers [265]

2. They use the round key function to make the state update key-dependent

2 7

7

f

LFSR

Counter
6

h

g

NFSR

…
…

29

Ini aliza on phase Ini aliza on phase

Round key
func on

Fig. 3.1 Overall structure of the Sprout and Plantlet ciphers

54 V. Mikhalev et al.

3. The counter is used in the state update in order to avoid situations where shifted
keys result in shifted keystreams

The design of Plantlet actually builds on Sprout but included some changes to fix
several weaknesses [50, 203, 355, 387]. The main differences between Plantlet and
Sprout are the following:

1. Plantlet has a larger internal state size compared to Sprout. The difference was
introduced in order to increase the period of the output sequences and to increase
resistance against guess-and-determine attacks

2. In both ciphers, the round key function cyclically steps through the key bits,
which is well aligned with the performance of different types of NVM as
mentioned before. However, in Sprout the key bits are only included in the NFSR
update with a probability of 0.5, i.e., only if the linear combination of several
state bits is equal to 1. This has been exploited by several attacks so in Plantlet
the next key bit is added unconditionally at every clock-cycle.

3. Plantlet uses a so-called double-layer LFSR which allows for high period and at
the same time avoids the LFSR being initialized with all-zeroes

For full specifications we refer the reader to [27, 422].

Implementation Results We used the Cadence RTL Compiler1 for synthesis and
simulation, and the technology library UMCL18G212T3 (UMC 0.18µm process).
The clock frequency was set to 100 kHz. For different memory types Sprout requires
from 692 to 813 GEs, whereas Plantlet needs from 807 to 928 GEs. Note that the
smallest KSG which follows the classical design approach needs at least 1162 GEs
if the same tools are used for implementation [421].

Security As already mentioned, several serious weaknesses [50, 203, 355, 387]
were shown to exist in Sprout, whereas Plantlet, to the best of our knowledge,
remains secure for the moment.

3.3 A Generic Attack Against Certain Keystream
Generators with Keyed Update Functions

In this section, we describe a generic attack against the following type of Keystream
Generators with a Keyed Update Function (Definition 1):

Definition 3 (KSG with Boolean Keyed Feedback Function) Consider a KSG
with a KUF as in Definition 1. Let Updi denote the Boolean component functions
of the update function Upd, that is Upd(k, st) = (Updi (k, st))i . We call this a KSG
with a Boolean KFF (Keyed Feedback Function) if only one component function
depends on the secret key. That is, there is an index i∗ such that all other component

1See http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx.

http://www.cadence.com/products/ld/rtl_compiler/pages/default.aspx

3 Selected Design and Analysis Techniques for Contemporary Symmetric Encryption 55

functions with index i 	= i∗ can be rewritten as Updi (k, st) = Updi (st). We call
Updi∗(k, st) the keyed feedback function and denote it by fUpd(k, st).

When we say the “feedback value”, we mean the output of the keyed feedback
function fUpd(k, st). The most prominent examples of KSGs with a Boolean KUF
in the literature are Sprout [27] and its successor Plantlet [421] (see Sect. 3.2.3).
Even though several attacks against the cipher Sprout have been published [50, 203,
355, 387, 593], only little is known about the security of the underlying approach
(see Sect. 3.2.1) in general. In the following, we explain the only existing generic
attack [314] that implies a design criterion for this type of ciphers.

The attack is a guess-and-determine attack that is based on guessing internal
states from the observed output. Its efficiency heavily relies on the guess capacity,
which we define next:

Definition 4 For a given KSG with a Boolean KFF having a σ -bit internal state, a
κ-bit key, and fUpd as its Boolean keyed feedback function, we define the average
guess capacity as

Prg = 1

2
+ 2−σ

∑
st

∣∣∣∣
#{k : fUpd(k, st) = 0}

2κ
− 1

2

∣∣∣∣ .

The average guess capacity simply indicates how accurately we can guess the
feedback value fUpd(k, st) when we know the internal state but we do not know the
key. The following attack [314] applies to the case of Prg > 1/2 which eventually
allows us to formulate a necessary design criterion.

The core of the attack is an internal state recovery algorithm (see Algorithm 1).
It tests, for a given internal state whether it can consistently continue producing
the observed output bits. To this end, it produces the feedback values (the outputs
of the Boolean keyed feedback function) for the next states by either determining
them from the output if that is possible or first checking and then guessing them.
It consists of two parts: determining the feedback value is done by Algorithm 2
and checking the candidate state and then guessing the feedback value if the state
survives, is achieved by Algorithm 3. It is obvious that Algorithm 2 produces
only one feedback value for each clock. Similarly, Algorithm 3 first checks if a
candidate state can produce the output. So, it survives with a probability of one half
and the surviving states will have two successors. Hence, neither Algorithm 2 nor
Algorithm 3 will propagate the total number of states to be checked.

Each candidate state has successors for consecutive clocks and a set of feedback
values produced by Algorithm 1. On the other hand, we count the number of
mismatches for each feedback value. We say that a feedback value is a mismatch
if it is not the suggested value obtained through its internal state. If the probability
that the feedback value is equal to 0 (or 1) for a given state is higher than one half,
then 0 (or 1) will be the suggested value of that state.

Assume we clock the generator αter steps to check each state. Then, we expect
roughly αter/2 mismatches for a wrong state and αter (1 − Prg) mismatches for

56 V. Mikhalev et al.

Algorithm 1 Internal state recovery
1: Input: Non-empty set of internal state candidates, S; keystream {zt+1+θf

, . . . , zt+θf +αter };
the maximum number of clocks for each test, αter ; average guess capacity, Prg ; miss event
probability ε

2: Set εter =
√

− ln ε
2αter

and αthr = αter (1 − Prg +εter)

3: Initialize CUR and NEW as two empty sets and load all the states in S into CUR
4: Set #MM(st) to 0 for each state st in CUR and make a copy of CUR as the roots

5: for each clock i from t to (t + αter − 1) do
6: for each state st in CUR do
7: Compute Prg(st)f
8: if Prg(st)f = 0.5 then
9: Set f bsugg = 0

10: else
11: Set f bsugg as the feedback value of st suggested through fUpd
12: end if
13: if fUpd(k, st) of st can be determined from the output bit zi+1+θf

then
14: Run Determine Procedure (Algorithm 2)
15: else
16: Run Check-and-guess Procedure (Algorithm 3)
17: end if
18: end for
19: Terminate if NEW is empty and give no output
20: Copy NEW to CUR
21: Empty NEW
22: end for
23: Output: the roots in CUR as the candidates for the correct state at clock t

Algorithm 2 Determine procedure
1: Determine the feedback value as fUpd(k, st) from the corresponding output bit
2: Update st by clocking it with the feedback value f bdet

3: if f bsugg 	= f bdet (it is a mismatch) then
4: Increment #MM(st) by one
5: end if
6: if #MM(st) ≤ αthr then
7: Add updated st with #MM(st) and its root to NEW
8: end if

a correct state. This provides us with a distinguisher to recover the correct state
without knowing the key. We set a threshold value αthr , between αter (1 − Prg)
and αter/2 and simply eliminate the states whose number of mismatches exceeds
αthr . We expect all the wrong internal states to be eliminated for a well-chosen pair
(αter , αthr) and only the correct state is expected to survive. Theorem 1 suggests
appropriate values for αter so as to obtain a given success rate. Then we fix the
threshold value accordingly, in Algorithm 1 in its third line.

The performance of Algorithm 1 depends heavily on how many clocks we should
go further to eliminate all the wrong states without missing the correct state. This is

3 Selected Design and Analysis Techniques for Contemporary Symmetric Encryption 57

Algorithm 3 Check-and-guess procedure
1: if the output of st is equal to the actual output at the corresponding clock then
2: Make two copies st0, st1 of st with #MM(st0) = #MM(st1) := #MM(st)

3: Set the feedback value to 0 for st0 and update st0 and 1 for st1 and update st1
4: if f bsugg = 0 then
5: Increment #MM(st1) by one
6: else
7: Increment #MM(st0) by one
8: end if
9: if #MM(st0) ≤ αthr then

10: Add st0 along with #MM(st0) to NEW and set the root of S as its root
11: end if
12: if #MM(st1) ≤ αthr then
13: Add st1 along with #MM(st1) to NEW and set the root of st as its root
14: end if
15: end if

determined by the success rate of the algorithm which in turn is dominated by the
guess capacity (Definition 4) as stated in the following Theorem 1 [314]:

Theorem 1 Let Prg > 1/2 be the guess capacity of a given KSG with Boolean KFF
having internal state size σ . For a given 0 < ε < 1, if αter is greater than or equal
to

1

(2 Prg −1)2

(√−2 ln ε + √
2 ln 2 · (σ − 1)

)2
,

then the success rate of the attack in Algorithm 1 is at least 1 − ε and the number of
false alarms is less than one in total.

The average guess capacity of Sprout is 0.75. Hence it is possible to recover
its correct state without knowing the key by eliminating a wrong state in roughly
122 clocks [314]. Checking roughly 240 states (which are called “weak states” and
loaded into a table in the precomputation phase), one can recover the key in roughly
238 encryptions [314]. On the other hand, Algorithm 1 becomes infeasible when Prg
approaches 1/2. Plantlet (Sect. 3.2.3) has a guess capacity of 1/2, so Algorithm 1
is not applicable to Plantlet. Concluding, the attack above implies a new security
criterion: the guess capacity of the feedback function of a KSG with Boolean KFF
should be one half in order to avoid state recovery attacks that bypass the key.

58 V. Mikhalev et al.

3.4 Randomized Encryption Employing Homophonic Coding

3.4.1 Background

In [503], several approaches to including randomness in encryption techniques
are discussed, mainly in the context of block and stream ciphers. Randomized
encryption is described [503] as a procedure which enciphers a message by
randomly choosing a ciphertext from a set of ciphertexts corresponding to the
message under the current encryption key.

Homophonic coding was introduced in [249] as a source coding technique which
transforms a stream of message symbols with an arbitrary frequency distribution
into a uniquely decodable stream of symbols which all have the same frequency. The
universal homophonic coding approach [397] is based on an invertible transforma-
tion of the source information vector with embedded random bits, and this approach
does not require knowledge of the source statistics. The source information vector
can be recovered from the homophonic coder output without knowledge of the
random bits by passing the codeword to the decoder (inverter) and then discarding
the random bits.

A number of randomized encryption techniques have been reported: In [234],
a probabilistic private-key encryption scheme named LPN-C whose security can
be reduced to the hardness of the LPN problem was proposed and analysed.
An approach for the design of stream ciphers employing error-correction coding
and certain additive noise degradation of the keystream was reported in [201]. A
message is encoded before the encryption so that the decoding, after mod 2 addition
of the noiseless keystream sequence and the ciphertext, provides its correct recovery.
Resistance of this approach against a number of general techniques for cryptanal-
ysis, was also considered in [201]. Joint employment of randomness and dedicated
coding has been studied for enhancing the security of the following block-by-block
encryption schemes: (1) in [418], where the basic keystream generator security is
enhanced by employing a particular homophonic coding based on embedding of
random bits; (2) in [413, 419] and [414] randomness and dedicated coding were
employed for enhancing the security of the compact generators of pseudorandom
vectors; (3) in [322] and [577] channel coding was employed to increase the security
of a DES block cipher operating in the ciphertext feedback (CFB) mode. Also,
certain issues of randomized encryption were considered in [321, 570] and [313].

3.4.2 Encryption and Decryption

The ciphering technique given in this section originates from the schemes reported
in [322, 414, 418], and it corresponds to the randomized encryption schemes
proposed and discussed in [452]. The design assumes the availability of a source of
pure randomness (for example, as an efficient hardware module) and that a suitable

3 Selected Design and Analysis Techniques for Contemporary Symmetric Encryption 59

error-correcting coding (ECC) technique is available. This availability means that
the implementation complexities of the source of randomness and the ECC do not
imply a heavy implementation overhead in suitable scenarios.

The scheme employs a homophonic approach for a purpose different from
the ones this coding techniques were designed for. The main purpose is not just
randomization of the source message vectors (the goal of homophonic coding) nor
secrecy without a secret key (the goal of wire-tap channel coding) but enhancing the
cryptographic security of certain encryption schemes by employing the underlying
features of homophonic or wire-tap channel coding. The goal is the security
enhancement of a cryptographic keystream generator for encryption by employing
a dedicated coding scheme where the codewords provide additional “masking” of
the keystream vectors employed for encryption. The encryption scheme in Fig. 3.2
performs modulo 2 addition of the outputs of the encoding block and the keystream
generator which can be considered not only as “masking” the message vector with
a vector generated by a secret key, but also as masking the keystream vector by a
randomized mapping of the information vector.

We assume that the encryption from Fig. 3.2 employs concatenation of the
following coding algorithms: (1) a universal homophonic coding [397] which
performs the following mapping {0, 1}� → {0, 1}m, � < m, and (2) a linear
block error-correction code which performs {0, 1}m → {0, 1}n, m < n, and
which provides reliable communication over a binary symmetric channel with a
known probability of bit complementation. Please note that any suitable binary

Fig. 3.2 Model of a security enhanced randomized encryption within the encoding-encryption
paradigm: the upper part shows the transmitter, the lower part—the receiver [452]

60 V. Mikhalev et al.

linear block code designed to work over a binary symmetric channel with crossover
probability p could be employed. There are a lot of these coding schemes reported
in the literature and one which best fits into a particular implementation scenario
(hardware or software oriented) could be selected. We consider a communication
system displayed in Fig. 3.2 where some message a = [ai]li=1 ∈ {0, 1}l is sent to a
transmitter over a noisy channel and the following operations at the transmitter and
receiver.

At the Transmitter To ensure reliable communication, a linear error-correcting
encoder CECC(·) is used, that maps an m-bit message to a codeword of n > m bits,
using an m×n binary code generator matrix GECC . A homophonic encoder CH (·) is
added prior to CECC(·), which requires the use of a vector u = [ui]m−l

i=1 ∈ {0, 1}m−l

of pure randomness, i.e., each ui is the realization of a random variable Ui with
distribution Pr(Ui = 1) = Pr(Ui = 0) = 1/2. The encoding CH (a||u) may be
described by an m × m binary matrix GH such that

CH (a||u) = [a||u]GH , GH =

⎡
⎢⎢⎢⎣

h1
...

hl

GC

⎤
⎥⎥⎥⎦ (3.2)

where GC is an (m−l)×m generator matrix for an (m,m−l) linear error-correction
code C, and h1, h2, . . . , hl are l linearly independent row vectors from {0, 1}m\C.

We get a joint encoding a ∈ {0, 1}l �→ CECC(CH (a||u)) ∈ {0, 1}n, which may
alternatively be written as

CECC(CH (a||u)) = CECC([a||u]GH) = [a||u]GH GECC = [a||u]G (3.3)

where G = GH GECC is an m × n binary matrix containing the two successive
encoders at the transmitter.

The codeword sent is finally an encrypted version y of CECC(CH (a||u)) given
by y = y(k) = CECC(CH (a||u)) ⊕ x where x = x(k) = [xi]ni=1 ∈ {0, 1}n
is a pseudorandom vector needed for encryption, which is generated by either a
keystream generator, or by a block cipher working in the cipher feedback mode
(CFB) as in [322] and [577]. Notice the important dependency of x = x(k) in the
secret key k. Also note that, for simplicity of the exposition, the data employed
for generation of the pseudorandom vectors x, which are publicly known (like a
public seed and a synchronization parameter) are not explicitly shown. Finally,
the model includes the assumption that the concatenation of the binary vectors x
appears as a pseudorandom binary sequences and from a statistical point of view is
indistinguishable from a random binary sequence.

At the Receiver The noisy communication channel is modeled by the addition
of a noise vector v = [vi]ni=1 ∈ {0, 1}n, where each vi is the realization of a
random variable Vi with Pr(Vi = 1) = p and Pr(Vi = 0) = 1 − p. The

3 Selected Design and Analysis Techniques for Contemporary Symmetric Encryption 61

receiver obtains z = z(k) = y ⊕ v = CECC(CH (a||u)) ⊕ x ⊕ v and starts by
decrypting y = (CECC(CH (a||u)) ⊕ x ⊕ v) ⊕ x = CECC(CH (a||u)) ⊕ v. He then
first decodes CH (a||u). In the case of a successful decoding, he computes a using
C−1

H and informs the transmitter he could decode. Otherwise he asks the transmitter
for a retransmission. This assumes noiseless feedback between the receiver and the
transmitter.

3.4.3 Security Evaluation

Information-Theoretic Security In [452], the above model of randomized encryp-
tion schemes was studied from an information-theoretic point of view. The goal was
to analyze the security enhancement provided by the wiretap encoding, in terms of
secret key k equivocation, that is, the uncertainty that an adversary faces about the
secret key, given all the information he could collect during passive or active attacks.
This analysis demonstrated a gain in unconditional security, and thus confirmed
the security benefit of the additional wiretap encoder, through tight lower bounds
(Lemmas 1 and 2 in [452]) and asymptotic values (Theorems 1 and 2 in [452])
of the secret key equivocation. The cost of this enhanced security is only a slight-
to-moderate increase in the implementation complexity and the communications
overhead. However, it also revealed that if the same secret key is used for too
long, the adversary may gather large enough samples for offline cryptanalysis. The
uncertainty then decreases to zero. Then starts a regime in which a computational
security analysis is needed to estimate the resistance against secret key recovery,
which motivated the current paper.

Computational Complexity Security Mihaljević and Oggier [420] presents a secu-
rity evaluation of the considered technique in a chosen plaintext attack scenario,
which shows that the computational complexity security is lower bounded by the
related LPN (Learning from Parity with Noise) complexity in both the average
and worst cases. This gives guidelines for constructing a dedicated homophonic
encoder which maximizes the complexity of the underlying LPN problem for a
given encoding overhead.

Note Recall that in a chosen plaintext attack (CPA) scenario, the claim that a
scheme is secure in an information-theoretic sense means that even an attacker
with unlimited resources for recovering the secret key, in the considered evaluation
scenario, faces complete uncertainty about the secret key employed for encryption,
i.e., a set of equally probable candidates for the true secret key will exist. On
the other hand, a claim that an encryption scheme is secure in a computational-
complexity sense means the following: Although the secret-key could be recovered
in a CPA scenario, and so it is not possible to claim information-theoretic security,
the computational complexity of this recovery is as hard as solving a problem which
belongs to a class of proven hard problems, as the LPN problem is.

62 V. Mikhalev et al.

3.5 Conclusion and Future Directions

We have presented some advances in the design and security evaluations of some
contemporary symmetric encryption techniques which provide a good trade-off
between the implementation/execution complexity and the required security.

In one direction, we have demonstrated the use of keystream generators with
keyed update functions to provide the same security level at much smaller hardware
area costs. In particular, we have shown that the security limitations which were
believed to be imposed by the size of the state can be improved to offer a much
better trade-off between hardware requirements and security. In the other direction,
we have described the use of homophonic encoding for security enhancement of
certain randomized symmetric encryption schemes.

Also, we have discussed certain generic approaches for security evaluation
of the considered encryption schemes. The encryption schemes based on keyed
update functions were evaluated against a dedicated guess-and-determine attack.
The randomized encryption schemes were evaluated based on generic information-
theoretic and computational-complexity approaches. We believe that there is plenty
of room for further work in this area, and other innovative schemes should be
investigated. We have found that employment of keyed update functions and results
from coding theory are particularly promising ideas for the design of advanced
encryption schemes and we plan to explore them further in the near future.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	3 Selected Design and Analysis Techniques for Contemporary Symmetric Encryption
	3.1 Introduction
	3.2 Keystream Generators with Keyed Update Functions
	3.2.1 Design Approach
	3.2.2 On Continuously Accessing the Key
	3.2.3 The Stream Ciphers Sprout and Plantlet

	3.3 A Generic Attack Against Certain Keystream Generators with Keyed Update Functions
	3.4 Randomized Encryption Employing Homophonic Coding
	3.4.1 Background
	3.4.2 Encryption and Decryption
	3.4.3 Security Evaluation

	3.5 Conclusion and Future Directions

