
Performance Evaluation for a PETSc
Parallel-in-Time Solver Based
on the MGRIT Algorithm

Valeria Mele1(B) , Diego Romano2 , Emil M. Constantinescu3 ,
Luisa Carracciuolo2 , and Luisa D’Amore1

1 University of Naples Federico II, Naples, Italy
valeria.mele@unina.it

2 Italian National Research Council - CNR, Rome, Italy
3 Mathematics and Computer Science Division,
Argonne National Laboratory, Chicago, IL, USA

Abstract. We herein describe the performance evaluation of a modular
implementation of the MGRIT (MultiGrid-In-Time) algorithm within
the context of the PETSc (the Portable, Extensible Toolkit for Scientific
computing) library. Our aim is to give the PETSc users the opportunity
of testing the MGRIT parallel-in-time approach as an alternative to the
Time Stepping integrator (TS), when solving their problems arising from
the discretization of linear evolutionary models. To this end, we analyzed
the performance parameters of the algorithm in order to underline the
relationship between the configuration factors and problem characteris-
tics, intentionally overlooking any accuracy issue and spacial parallelism.

Keywords: Parallelism-in-time · Performance evaluation
Multigrid reduction · MGRIT · Linear systems · PETSc

1 Introduction

Scientific applications in life science and in many other fields can benefit from the
Parallel In Time (PINT) methods which have the potential to extract additional
parallelism in many applications governed by evolutionary models, allowing for
concurrency also along the temporal dimension. Consider as an example the
analysis, the reconstruction and the denoising of ultrasound images arising from
2D/3D echocardiography [2,18,24]. In the European Exascale Software Initiative
(EESI) 2014 roadmap, PINT approaches are recommended to the end of develop-
ing efficient applications for Exascale computing, thus taking a significant step
beyond “traditional” HPC. On the other side, the deployment of application
codes by means of scientific libraries, such as PETSc (the Portable, Extensible
Toolkit for Scientific computing) [1], can be considered as a good investment [2]
to maximize the availability of PinT algorithms for scientific applications.

c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 716–728, 2019.
https://doi.org/10.1007/978-3-030-10549-5_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10549-5_56&domain=pdf
http://orcid.org/0000-0002-2643-3483
http://orcid.org/0000-0002-2640-157X
http://orcid.org/0000-0002-7003-6899
http://orcid.org/0000-0002-8521-1645
http://orcid.org/0000-0002-3379-0569
https://doi.org/10.1007/978-3-030-10549-5_56


Performance Evaluation for a PETSc Parallel-in-Time Solver 717

Recent advances in PETSc regarded the improvement of multilevel, multido-
main and multiphysics algorithms. The most relevant capabilities allow users
to test different solvers (linear, nonlinear, and time stepping) for their com-
plex simulations, without making premature choices about algorithms and data
structures [1]. Neverthless, PETSc does not provide any parallel-in-time support.

The MultiGrid-In-Time (MGRIT) algorithm is a PINT approach based on
Multigrid Reduction (MGR) techniques [3]. Although we know that it is imple-
mented in the software package XBraid [4], we are developing a modular mul-
tilevel parallel implementation [5] based on PETSc. The main goal of our app-
roach is to provide a model predicting the performance gain achievable using
the MGRIT approach instead of a timemarching integrator, independently of
wheather parallelism in the space dimension is introduced or not. The perfor-
mance model in [7], instead, aims to selecting the best parallel configuration
(i.e. how much parallelism is to be devoteted to space vs. time). Therefore,
we analyze the performance parameters of the algorithm in the mathematical
framework presented in other works by the same authors [8]. We intentionally
overlook spacial parallelism. In this way we describe the performance improve-
ment regardless of the execution time needed to implement the characteristic
function of the problem. We believe that both performance models could be
employed for the successful implementation of the MGRIT algorithm [9].

In the second section we describe the basic idea of the algorithm to be imple-
mented, summarizing the main results described in other works [3,7,10,11]. In
the third section we briefly define the tools of the performance evaluation frame-
work we need. In the fourth one we give some details about the PETSc imple-
mentation of MGRIT and write a performance model to describe the expected
performance gain, depending mainly on the number of processors, the number
of time-discretization points and of grids levels. Finally, in the last section we
introduce what we are currently working on and what are the next planned steps.

2 MGRIT Algorithm. Basic Idea

The basic idea of MGRIT comes from the two-grid formulation of the Parareal
method [11] for solving an Ordinary Differential Equation (ODE) and its dis-
cretization

ut = f(u, t), with u(0) = u0 and t ∈ [0, T ]. (1)

u(t + δt) = Φ(u(t), u(t + δt)) + g(t + δt). (2)

where Φ is a linear (or nonlinear) operator that encapsulates the chosen time
stepping solver, and g incorporates all solution independent terms. The applica-
tion of Φ is either a matrix vector multiplication, e.g. forward Euler, or a spatial
solver, e.g. backward Euler [13].

The MGRIT algorithm is detailed in several works [3,7,10,13]. Briefly, let
ti = iδt, i = 0, 1, ..., N be a discretization of [0, T ] with spacing δt = T

N (this
mesh will be called F-grid), and tj = jΔT , where j = 0, 1, ..., NΔ with NΔ = N

m



718 V. Mele et al.

and m > 1 (called C-grid). We rewrite the problem 2 on the F-grid, denoted as
Fine problem:

A(u) =

⎡
⎢⎢⎢⎢⎢⎣

I 0 · · · 0 0
−Φ0 I · · · 0 0

0 −Φ1 · · · 0 0
...
0 0 · · · −ΦN−1 I

⎤
⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎣

u0

u1

...
uN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

g0
g1
...

gN

⎤
⎥⎥⎥⎦ = g (3)

that corresponds to a C-grid problem obtained by introducing the appropri-
ate interpolation and restriction operators P and R (see definitions in [10] and
description in [9]). Then the multigrid reduction approximates AΔ by BΔ which
is based on a new coarse propagator ΦΔ,i arising from the re-discretization of
problem 2 on the C-grid, and which is less expensive to evaluate. In this way we
have to solve the so-called Coarse problem:

BΔ =

⎡
⎢⎢⎢⎢⎢⎣

I 0 · · · 0 0
−ΦΔ,0 I · · · 0 0

0 −ΦΔ,1 · · · 0 0
...
0 0 · · · −ΦΔ,N−1 I

⎤
⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎣

uΔ,0

uΔ,1

...
uΔ,N

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

gΔ,0

gΔ,0

...
gΔ,0

⎤
⎥⎥⎥⎦ = gΔ (4)

Let us assume that the model equations in (1) are linear so that the Φi

are linear, and we let Φi ≡ Φ, i = 1, 2, . . . , N . Then, Parareal can be derived
as an approximate Schur-complement approach with F-relaxation (relaxation1

applied on the so-called fine points, or F-points, that are the points on the F-grid
and not also on the C-grid), i.e. a two-level multigrid method. Mainly MGRIT
algorithm extends the Parareal approach on more grids. This means that it uses
discretization, relaxation, restriction, and projection operators for each grid-
level, according to different kinds of cycles. The key difference from Parareal
relies on a new relaxation operator called the FCF-relaxation. In practice it
is the application of the F-relaxation and the C-relaxation repeated one after
another once or more times [7].

The MGRIT algorithm for solving the linear case, as detailed in [3], is listed
in Algorithm 1.

where:

– l is the current level, 0 ≤ l ≤ L and Lis the coarsest level,
– ml is the coarsening step at each level l, with m0 = 1, and δl is the discretiza-

tion time step at each level l, where δl = δl−1 · ml

– Nl is the number of time steps for each l, with N0 > N1 > ... > NL and Al

is the matrix at level l
– u(l) and g(l) are the solution and right hand side vectors at level l,

1 Relaxation meaning the solution of (3) by using an iterative method (see [12] for
details).



Performance Evaluation for a PETSc Parallel-in-Time Solver 719

Algorithm 1. MGRIT(l) - Linear MGRIT algorithm at level l

if l is the coarsest level L then
Solve the Coarse problem ALu

(L) = g(L)

else
Apply FCF-relaxation to Alu

(l) = g(l)

Compute and restrict residual using injection g(l+1) = RInj(g
(l) − Alu

(l))
Recursively call MGRIT(l + 1) to solve on next level
Correct using ideal interpolation u(l) ← u(l) + Pu(l+1)

end if

– RInj is the restriction/injection operator from a level to the coarser one and
P is the ideal interpolation (see [3]) corresponding to an injection from the
coarser level to a finer one, followed by an F-relaxation with a zero right-hand
side (see [13]).

3 Preliminary Concepts and Definitions

The increasing need for parallel and scalable software, ready to exploit the new
exascale architectures, leads to the development of many performance models,
mainly based on architecture features [19–23,26] or especially made for choosen
algorithm classes [25,27–29]. The model we present here is mainly focused on
the dependencies among the computational tasks of the algorithm and is meant
to be as general as possible.

We start by giving the definition of dependency relation on a set.

Definition 1 (Dependency relation). Let E be a set and let πE be a strict
partial order relation on E describing a dependency relation between the ele-
ments. We say that any element of E, say A, depends on another element of E,
say B, if AπEB, and we write A ← B. If A and B do not depend on each other
we write A � B.

Then, consider the set of all the computational problems Γ and any element
BN ∈ Γ where N is the input data size, called the problem size. Any BN can
always be decomposed in at least one finite set of other computational problems,
that we call decomposition of BN . Given a decomposition in k subproblems BNi

,
called Dk, and, taking into account the dependencies among the subproblems, we
build a dependency matrix MDk

where in each row we essentially put subprob-
lems independent of one another and dependent on those in the previous rows.
Let us introduce the dependency relation πDk

such that BNi
πDk

BNj
with i �= j

if and only if the solution of BNj
must be found before the one of BNi

.

Definition 2 (Dependency Matrix). Given the partially ordered set
(Dk, πDk

), the matrix MDk
, of size rDk

× cDk
, whose elements di,j, are s.t.

∀i ∈ [0, rDk
− 1] and ∀s, j ∈ [0, cDk

− 1] it is di,j � di,s and s.t. ∀i ∈
[1, rDk

− 1] ∃q ∈ [0, cDk
− 1] s.t. di,j ← di−1,q ∀j ∈ [0, cDk

− 1], while the
other elements are set equal to zero, is called the dependency matrix.



720 V. Mele et al.

Given Dk, cDk
is the concurrency degree of BN , and rDk

is the dependency
degree of BN , according to the actual decomposition, so that the dependency
degree measures the amount of dependencies intrinsic to the chosen decomposi-
tion. The number and size of sub-problems a problem is decomposed into deter-
mine the granularity of the decomposition. Granularity has a major consequence
in the level of detail required for an algorithm to be analysed with this approach.

The decomposition matrix allows us to identify some properties of the algo-
rithm design, such as the concurrency available in a problem when we choose
a decomposition rather than another. So the first question must be about how
to decompose the problem. That is pretty obvious, but it can lead to algorithm
characteristics that we want to emphasize and possibly exploit.

At this point we define the Scale up, using the cardinality of two decompo-
sitions.

Definition 3 (Scale Up). Let us consider the following two decomposition Dki

and Dkj
of BN , with cardinalities kj �= ki, the ratio SC(Dki

,Dkj
) := ki

kj
is called

scale-up factor of Dkj
measured with respect to Dki

.

The next step is to assign the identified subproblems to the computing
machine. First we introduce the machine MP equipped with P ≥ 1 processing
elements with specific logical-operational capabilities2 called computing opera-
tors of MP , and denoted by the function3 I[· ] : BN ∈ Γ −→ S(BN ) ∈ S where
S is the set of the solutions of all the problems in Γ and S(BN ) is the solution
of BN . Given MP , the set without repetitions CopMP

= {Ij}j∈[0,q−1], where
q ∈ N, characterizes logical-operational capabilities of the machine MP .

Definition 4 (Algorithm). Given the problem decomposition Dk, an algo-
rithm solving BN on MP , is the partially ordered set (Ak,P , πAk,P

), with not
necessarily distinct elements, where Ak,P = {Ii0 , Ii1 , ...Iik} such that Iij ∈
CopMP

and

∀BNν
∈ Dk(BN ) ∃!Iij ∈ Ak,P : Iij [BNν

] = S(BNν
). (5)

There is a bijective correspondence γ : BNν
∈ Dk ←→ Iij ∈ Ak,P . Every ordered

subset of Ak,P is called sub-algorithm of Ak,P .

By virtue of the property 5, operators of Ak,P inherit the dependencies existing
between subproblems in Dk, but not the independencies, because, for example,
two operators may depend on the availability of computing units of MP during
their executions [6].

Let ALBN
(or simply AL) be the set of algorithms that solve BN , obtained by

varying MP , P and Dk. Let us associate each algorithm of AL to a decomposi-
tion suited for MP , which means that we introduce the surjective correspondence

2 Such as basic operations (arithmetic,. . .), special functions evaluations (sin, cos, . . .),
solvers (integrals, equations system, non linear equations. . .).

3 An operator can be an algorithm itself, from a finer granularity point of view.



Performance Evaluation for a PETSc Parallel-in-Time Solver 721

ψ : Ak,P ∈ AL −→ Dk, which induces an equivalence relationship 	 of AL to
itself, such that

	(Ak,P ) = {˜Ak,P ∈ AL : ψ(˜Ak,P ) = ψ(Ak,P )}. (6)

Therefore, 	(Ak,P ) is the set of algorithms of AL associated with the same
decomposition Dk

4. Hence, 	 induces the quotient set AL
� , the elements of which

are disjoint subsets of AL determined by 	, that is they are equivalence classes
under 	. In the following we consider Ak,P as a representative of its equivalence
class in AL.

Definition 5 (Complexity). The cardinality of Ak,P is called complexity of
Ak,P . It is denoted as C(Ak,P ). That is C(Ak,P ) := card(Ak,P ) = k.

Notice that, by virtue of the property 5, it holds that

card(Ak,P ) = card(Dk(BNr
)) = k, ∀Ak,P ∈ 	(Ak,P ). (7)

and so C(Ak,P ) = k equals the number of non empty elements of MDk
(see

Definition 2). This means that each algorithm belonging to the same equivalence
class according to 	 has the same complexity. Thus an integer (the complexity) is
associated with each element 	(Ak,P ) of quotient set AL

� and induces an ordering
relation between the equivalence classes in AL

� . Therefore there is a minimum
complexity for algorithms that solve the problem BNr

.
Let us better define the order relation on the algorithm set, as a second

dependency relation πAk,P
such that Iij πAk,P

Iir with j �= r if and only if Iij

solves a subproblem dependent on the one solved by Iir , and/or the execution
of Iij needs to wait for the execution of Iir to use the same computing resource.

Definition 6 (Execution matrix). Given the partially ordered set
(Ak,P , πAk,P

), the matrix Ek,P , of size rEk,P
× cEk,P

, with5 cEk,P
= P , whose

elements ei,j, are s.t. ∀i ∈ [0, rEk,P
−1] and ∀s, j ∈ [0, P −1] it is ei,j � ei,s and

s.t. ∀i ∈ [1, rEk,P
− 1] ∃q ∈ [0, P − 1] s.t. ei,j ← ei−1,q ∀j ∈ [0, P − 1], while

the other elements are set equal to zero, is called the execution matrix.

Inside an equivalency class, the algorithm solving a problem according to
a decomposition that is executed on a machine with just one processor is a
sequential algorithm and its execution matrix has just one column, since P = 1.
In general, the execution matrix size describes the cost of the algorithm. In case
of empty spaces in the matrix, they represent the algorithm overhead.

The number of rows rEk,P
is directly related to the execution time of the

algorithm executed with that number P of processing units. Note that in order
to compare two algorithms we must ensure that they are described by the same
4 In this set the algorithms can have different value of P.
5 In general cE ≤ P , but we can exclude cases where dependencies between subprob-

lems do not allow us to use all the computing units available, i.e. in which cE < P ,
because they can easily be taken back to the case where cE = P .



722 V. Mele et al.

kind of operators, or with the same granularity. In particular, if all the operators
have the same execution time t, the algorithm execution time is proportional to
rEk,P

and the Speed Up can be defined for an algorithm, in its equivalency class,
as the ratio between its complexity and the number of rows. More specifically,
if Ak,P is an algorithm built according to the decomposition Dk and executed
on a machine with P processing units, we give the following definitions

Definition 7 (Execution time). The quantity T (Ak,P ) := rEk,P
· t is called

execution time of Ak,P .

Definition 8 (Speed Up). Given the algorithms Ak,P executed with P com-
puting units the ratio S(Ak,P ) := C(Ak,P )

rEk,P
is called Speed Up of Ak,P in its

equivalency class.

This rewrites the classical speed up formula, so we can say that the ideal
value is P , and we can also show that, varying P , it is limited by the concurrency
degree of the problem in the same decomposition.

Briefly, given two different decompositions Dki
and Dkj

, with kj �= ki, given
two different machines with two different number of processors P1 = 1 and
P > 1, for the two corresponding algorithms we define the General Speed Up of
the parallel one respect to the sequential one, as the product of the Scale Up
between the two decompositions and the classical speed up of the parallel one.

Definition 9 (General Speed Up). The ratio

GS(Akj ,P , Aki,1) := SC(Dki
,Dkj

) · S(Akj ,P ) =
ki

kj
· kj

rEAkj,P

=
rEAki,1

rEAkj,P

is called General Speed Up of Akj ,P respect to Aki,1.

Note that the ideal value of the General Speed Up is not limited by the number
of processing units P .

4 The PETSc Based Implementation of MGRIT
for the Linear Case

At the top of the PETSc hierarchy there are the object to solve ODEs and nonlin-
ear systems, built on other objects needed to solve linear systems. In particular,
the TS (TimeStepping) library provides a framework to solve ODEs and DAEs
arising from the discretization of time-dependent PDEs. Users shall essentially
provide the F function, the G function (if nonzero), the initial condition and the
Jacobian.

We are now developing a kind of “parallel TS”, based on MGRIT, to be
compared with the already provided sequential ones. The idea is to “simply”
solve the linear system using a linear solver with a multigrid preconditioner.

The first step of the implementation is to provide the data structure to handle
the time dimension together with the space ones, in the context of the PETSc



Performance Evaluation for a PETSc Parallel-in-Time Solver 723

DM or Distributed objects. This means (1) to provide the basic operations for
the new type, (2) to handle the coarsening factor, and (3) to provide the user
interface to the function which describes the way of operating for Φ, that is the
spacial solver, and the time discretization calls.

Everything about the coarsening of the grids along the levels, the distribution
of the points among the processes and the communications is handled by the
PETSc DA (DistributedArray) object linked to the solvers in a fully transparent
fashion. Users can tune the behavior of the solver and thus the actual structure
of the scheme through the option setting (including tolerance and initial guess
for all the operators involved) at runtime.

The second step is the implementation of F- and C-relaxations that must be
set as down and up smoothers of the multigrid scheme, tunable (even at runtime)
by the user to fit his/her own problem, according to the PETSc design. Users
will still control all the parameters and solver choices even at runtime.

4.1 The Performance Model

First, we notice that the application of Φ is the dominant task. In case of explicit
time stepping each application of Φ corresponds to a matrix-vector product,
whose execution time will be constant. In case of implicit time stepping, each
application of Φ equates itself to a system solver. Using an optimal space solver
and fixing the stopping tolerance or the number of iterations and the initial guess
choice for the spacial solver, the work required for one time step evaluation can be
considered constant across all time levels (and associated time step sizes)6 [10].

Let Φi,j be the subproblem of evaluating the function Φ at any instant uδi,j ,
with i = 0, ...L and j = 1, ...Nl, and φi,j the operator to solve it. Notice that
there is no evaluation at the first instant of each grid.

Let NFl
:= Nl − Nl+1 be the number of F-points and Nl+1 be the number of

C-points at each level l of MGRIT algorithm. The relation between the number
of F-points and C-points depends on the coarsening factor m that can be the
same for all levels or possibly different for each one. In Algorithm 1, we note
that if L is the coarsest level, and the solver of the system on the coarsest-grid
is sequential, this will involve at least one φ-execution for each time step on the
L-th grid. It means that if L is the coarsest level there are NL executions of φ.
Otherwise, for each level l < L,

– the FCF-relaxation involves NFl
F-relaxation steps (or φ-executions), which

can be performed in parallel, Nl+1 C-relaxation steps (or φ-executions), which
can be performed in parallel, F-relaxation steps (or φ-executions), which can
be performed in parallel,

– computing the residual requires one φ-execution for each time step on the
(l + 1)-th grid, that is Nl+1, which can be performed in parallel,

6 For the sake of brevity we discuss here the execution of only one V-Cycle, as described
in Algorithm 1. The number of iterations of the multigrid cycles can be considered
later.



724 V. Mele et al.

– the ideal interpolation requires NFl
F-relaxation steps (or φ-executions),

which can be performed in parallel.

Let us now define the dependency matrix MD (see Definition 2 in Sect. 3)
of the time-space problem to be solved, according to its decomposition in
the space subproblems Φi,j , for i = 0, . . . , L and j = 1, . . . , Np where Np ∈
{NFl

, Nl+1, NL} and where in each row we essentially put subproblems inde-
pendent of one another and dependent on those in the previous rows (the MD

matrix is well described in [9]).
The concurrency degree of the problem decomposed in this way is cD, i.e.

the maximum number of simultaneous Φ evaluations. Since NFl
> Nl+1 and

NFl
> NFl+1 , which means that the number of F-points at any level is greater

than the number of C-points at the same level and greater than the F-points at
the next level, cD = NF0 .

The dependency degree is rD = 5 ·L+NL, since, with L+1 levels, we have (1)
3 rows for each FCF-relaxation, that means 3 ·L rows, (2) 1 row for each residual
computation, that means L rows, which are the longest rows in the matrix, or
with the largest numbers of columns, (3) NL rows for the coarsest-grid solver,
(4) 1 row for each ideal interpolation (F-relaxation), that means L rows.

Consider now a computing architecture with P processing elements, where
P = cD

np (this condition states that the points on the finest grid are equally
distributed among the processors, that is cD is a multiple of P ) and np ∈ N and
P <= NL (this condition states that on the coarsest grid each processor holds
at least one point).

We can define the execution matrix EP of MGRIT (see Definition 6, in
Sect. 3), consisting of the operators φi,k·P+j , with i = 0, . . . , L and j = 1, ...P

and k = 1, . . . ,
NFl

P for F-relaxation or k = 1, . . . , Nl+1
P for C-relaxation and

residual computation, considering that, for each level, the number of points of
the grid is a multiple of P 7 (the EP matrix is well described in [9]).

Consider now the algorithm AN0,1, which solves (2) with the same discretiza-
tion in time on the finest grid (same initial guess and same tolerance) but with-
out introducing MGR or any parallelism, that means using a sequential time-
stepping approach with the same discretization techniques and parameters as
used by MGRIT on the finest grid. AN0,1 is made of N0 executions of φ, leading
to the execution matrix E1 with one column and N0 rows (the E1 matrix is well
described in [9]).

7 This is without loss of generality, as, otherwise, the number of rows is still the same
but with just some empty elements.



Performance Evaluation for a PETSc Parallel-in-Time Solver 725

We can prove the following (proof in [9]):

Theorem 1. Let us assume that MGRIT algorithm runs on a computing archi-
tecture with P <= NL processing elements, where P = N0

np and np ∈ N. Let tφ
be the execution time of φ, ∀l ∈ [0, L].
Let us say that it reaches the same accuracy as AN0,1 in ν iterations. Then
the general speed-up GS(MGRITNMGRIT ,P , AN0,1) of MGRIT with respect to
AN0,1 is

GS(MGRITNMGRIT ,P , AN0,1) =
N0

ν ·
(∑L−1

l=0

(
3 · NFl

P + 2 · Nl+1
P

)
+ NL

) (8)

5 Conclusions and Future Work

Summarizing, we introduced a mathematical framework to propose a speed-up
model for our implementation of MGRIT algorithm. It describes the impact of
several factors (i.e. the number of time steps and the number of processors)
on the dependencies among operators and thus on the algorithm performance,
regardless of the execution of φ. Any choice related to its implementation affects
the unit time tφ and/or the numerical accuracy of the results. The required
accuracy will limit one or more parameters in a way that is beyond the scope
of this paper. If Φ is nonlinear, each application becomes an iterative nonlinear
solver, whose conditioning usually depends on the time step size [13].

The main topics we are now focusing on are the following:

– definition of a memory access matrix to take into account the communications
that can significantly affect the software speed up limiting the number of
processing elements and grid levels to be used,

– parallel implementation of Φ, to handle different levels of parallelism, exploit-
ing the capabilities of heterogeneous architectures, such as multicore clusters
and GPUs, to efficiently treat the parallelism in the spacial dimension [14–17],

– validation of all the results arising from this designing approach through the
execution of the resulting software prototype on a suited set of problems.
The validation activities should provide the PETSc users with the needed
guidelines to efficiently use the new TS object to solve their problems.

Acknowledgments. The research was carried out during a collaboration between the
University of Naples Federico II (Naples, Italy) and the Argonne National Laboratory
(Chicago, Illinois, USA).

It has received funding from European Commission under H2020-MSCA-RISE
NASDAC project (grant agreement n. 691184).

This work was also supported by GNCS INdAM.



726 V. Mele et al.

References

1. Balay, S., et al.: Petsc User Manual. Revision 3.7 Report number ANL-95/11
Rev. 3.7 127241, United States: N. p., 2016. Web (2016). https://doi.org/10.2172/
1255238

2. Murli, A., Boccia, V., Carracciuolo, L., D’Amore, L., Laccetti, G., Lapegna, M.:
Monitoring and migration of a PETSc-based parallel application for medical imag-
ing in a grid computing PSE. In: Gaffney, P.W., Pool, J.C.T. (eds.) Grid-Based
Problem Solving Environments. ITIFIP, vol. 239, pp. 421–432. Springer, Boston,
MA (2007). https://doi.org/10.1007/978-0-387-73659-4 25

3. Falgout, R.D., Friedhoff, S., Kolev, T.V., MacLachlan, S.P., Schroder, J.B.: Parallel
time integration with multigrid. SIAM J. Sci. Comput. 36(6), C635–C661 (2014).
https://doi.org/10.1137/130944230

4. XBraid: Parallel multigrid in time. http://llnl.gov/casc/xbraid
5. Carracciuolo, L., D’Amore, L., Mele, V.: Toward a fully parallel multigrid in time

algorithm in PETSc environment: a case study in ocean models. In: IEEE proceed-
ings of International Conference on High Performance Computing & Simulation
(HPCS) 2015, Amsterdam, pp. 595–598 (2015). https://doi.org/10.1109/HPCSim.
2015.7237098

6. Tjaden, G.S., Flynn, M.J.: Detection and parallel execution of independent instruc-
tion. IEEE Trans. Comput. 19(10), 889–895 (1970). https://doi.org/10.1109/T-C.
1970.222795

7. Gahvari, H., et al.: A performance model for allocating the parallelism in a
multigrid-in-time solver. In: Proceedings of 7th International Workshop on Perfor-
mance Modeling, Benchmarking and Simulation of High Performance Computing
Systems (PMBS), Salt Lake City, UT, 2016, art. no. 7836411, pp. 22–31. IEEE
Press (2017). https://doi.org/10.1109/PMBS.2016.008

8. D’Amore, L., Mele, V., Laccetti, G., Murli, A.: Mathematical approach to the
performance evaluation of matrix multiply algorithm. In: Wyrzykowski, R., Deel-
man, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015.
LNCS, vol. 9574, pp. 25–34. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-32152-3 3

9. Mele, V., Costantinescu, E.M., Carracciuolo, L., D’Amore, L.: A PETSc parallel-
in-time solver based on MGRIT algorithm. Concurrency Comput.: Practice Exp.
e4928 (2018). https://doi.org/10.1002/cpe.4928

10. Schroder, J.B., Falgout, R.D., Manteuffel, T.A., O’Neill, B.: Multigrid reduction in
time for nonlinear parabolic problems: a case study. SIAM J. Sci. Comput. 39(5),
S298–S322 (2017)

11. Lions, J.L., Maday, Y., Turinici, G.: A parareal in time discretization of PDEs.
Comptes Rendus de l’Academie des Sci. - Ser. I - Math. 332, 661–668 (2001).
https://doi.org/10.1016/S0764-4442(00)01793-6

12. Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-
integration method. SIAM J. Sci. Comput. 29, 556–578 (2007). https://doi.org/
10.1137/05064607X

13. Falgout, R.D., Friedhoff, S., Kolev, T.V., MacLachlan, S.P., Schroder, J.B., Vande-
walle, S.: Multigrid methods with space-time concurrency. SIAM J. Sci. Comput.
(2015). https://doi.org/10.1007/s00791-017-0283-9

14. Cuomo, S., De Michele, P., Piccialli, F.: 3D data denoising via nonlocal means
filter by using parallel GPU strategies. Comput. Math. Methods Med. 2014, 14
(2014). https://doi.org/10.1155/2014/523862. Article ID 523862

https://doi.org/10.2172/1255238
https://doi.org/10.2172/1255238
https://doi.org/10.1007/978-0-387-73659-4_25
https://doi.org/10.1137/130944230
http://llnl.gov/casc/xbraid
https://doi.org/10.1109/HPCSim.2015.7237098
https://doi.org/10.1109/HPCSim.2015.7237098
https://doi.org/10.1109/T-C.1970.222795
https://doi.org/10.1109/T-C.1970.222795
https://doi.org/10.1109/PMBS.2016.008
https://doi.org/10.1007/978-3-319-32152-3_3
https://doi.org/10.1007/978-3-319-32152-3_3
https://doi.org/10.1002/cpe.4928
https://doi.org/10.1016/S0764-4442(00)01793-6
https://doi.org/10.1137/05064607X
https://doi.org/10.1137/05064607X
https://doi.org/10.1007/s00791-017-0283-9
https://doi.org/10.1155/2014/523862


Performance Evaluation for a PETSc Parallel-in-Time Solver 727

15. Cuomo, S., De Michele, P., Piccialli, F.: A (multi) GPU iterative reconstruction
algorithm based on Hessian penalty term for sparse MRI. Int. J. Grid Utility
Comput. 9(2), 139–156 (2018). https://doi.org/10.1504/IJGUC.2018.091720

16. Piccialli, F., Cuomo, S., De Michele, P.: A regularized MRI image reconstruction
based on Hessian penalty term on CPU/GPU systems. Procedia Comput. Sci. 18,
2643–2646 (2013). https://doi.org/10.1016/j.procs.2013.06.001. ISSN 1877–0509

17. D’Amore, L., Marcellino, L., Mele, V., Romano, D.: Deconvolution of 3D flu-
orescence microscopy images using graphics processing units. In: Wyrzykowski,
R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011. LNCS, vol.
7203, pp. 690–699. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31464-3 70

18. Maddalena, L., Petrosino, A., Laccetti, G.: A fusion-based approach to digital
movie restoration. Pattern Recogn. 42(7), 1485–1495 (2009)

19. Gregoretti, F., Laccetti, G., Murli, A., Oliva, G., Scafuri, U.: MGF: a grid-enabled
MPI library. Future Gen. Comput. Syst. 24(2), 158–165 (2008)

20. Laccetti, G., Lapegna, M., Mele, V., Romano, D., Murli, A.: A double adaptive
algorithm for multidimensional integration on multicore based HPC systems. Int.
J. Parallel Program. 40(4), 397–409 (2012). https://doi.org/10.1007/s10766-011-
0191-4

21. Laccetti, G., Lapegna, M., Mele, V., Romano, D.: A study on adaptive algorithms
for numerical quadrature on heterogeneous GPU and multicore based systems.
In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM
2013. LNCS, vol. 8384, pp. 704–713. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-55224-3 66

22. Laccetti, G., Lapegna, M., Mele, V., Montella, R.: An adaptive algorithm for high-
dimensional integrals on heterogeneous CPU-GPU systems. Concurrency Comput.:
Practice Exp. 2018, e4945 (2018). https://doi.org/10.1002/cpe.4945

23. Laccetti, G., Lapegna, M., Mele, V.: A loosely coordinated model for heap-based
priority queues in multicore environments. Int. J. Parallel Program. 44(4), 901–921
(2016). https://doi.org/10.1007/s10766-015-0398-x

24. D’Amore, L., Casaburi, D., Galletti, A., Marcellino, L., Murli, A.: Integration of
emerging computer technologies for an efficient image sequences analysis. Integr.
Comput.-Aided Eng. 18(4), 365–378 (2011). https://doi.org/10.3233/ICA-2011-
0382

25. Arcucci, R., D’Amore, L., Celestino, S., Laccetti, G., Murli, A.: A scalable numer-
ical algorithm for solving Tikhonov regularization problems. In: Wyrzykowski, R.,
Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM
2015. LNCS, vol. 9574, pp. 45–54. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-32152-3 5

26. Boccia, V., Carracciuolo, L., Laccetti, G., Lapegna, M., Mele, V.: HADAB:
enabling fault tolerance in parallel applications running in distributed environ-
ments. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.)
PPAM 2011. LNCS, vol. 7203, pp. 700–709. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-31464-3 71

27. Murli, A., Cuomo, S., D’Amore, L., Galletti, A.: Numerical regularization of a real
inversion formula based on the Laplace transform’s eigen function expansion of the
inverse function. Inverse Probl. 23(2), 713 (2007)

https://doi.org/10.1504/IJGUC.2018.091720
https://doi.org/10.1016/j.procs.2013.06.001
https://doi.org/10.1007/978-3-642-31464-3_70
https://doi.org/10.1007/978-3-642-31464-3_70
https://doi.org/10.1007/s10766-011-0191-4
https://doi.org/10.1007/s10766-011-0191-4
https://doi.org/10.1007/978-3-642-55224-3_66
https://doi.org/10.1007/978-3-642-55224-3_66
https://doi.org/10.1002/cpe.4945
https://doi.org/10.1007/s10766-015-0398-x
https://doi.org/10.3233/ICA-2011-0382
https://doi.org/10.3233/ICA-2011-0382
https://doi.org/10.1007/978-3-319-32152-3_5
https://doi.org/10.1007/978-3-319-32152-3_5
https://doi.org/10.1007/978-3-642-31464-3_71
https://doi.org/10.1007/978-3-642-31464-3_71


728 V. Mele et al.

28. D’Amore, L., Campagna, R., Mele, V., Murli, A., Rizzardi, M.: ReLaTIve. An Ansi
C90 software package for the real Laplace transform inversion. Numer. Algorithms
63(1), 187–211 (2013). https://doi.org/10.1007/s11075-012-9636-0

29. Murli, A., D’Amore, L., Laccetti, G., Gregoretti, F., Oliva, G.: A multi-grained
distributed implementation of the parallel Block Conjugate Gradient algorithm.
Concurrency Comput. Practice Exp. 22(15), 2053–2072 (2010). https://doi.org/
10.1002/cpe.1548

https://doi.org/10.1007/s11075-012-9636-0
https://doi.org/10.1002/cpe.1548
https://doi.org/10.1002/cpe.1548

	Performance Evaluation for a PETSc Parallel-in-Time Solver Based on the MGRIT Algorithm
	1 Introduction
	2 MGRIT Algorithm. Basic Idea
	3 Preliminary Concepts and Definitions
	4 The PETSc Based Implementation of MGRIT for the Linear Case
	4.1 The Performance Model

	5 Conclusions and Future Work
	References




