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Abstract. The reconstruction of the haplotype pair for each chromo-
some is a hot topic in Bioinformatics and Genome Analysis. In Haplo-
type Assembly (HA), all heterozygous Single Nucleotide Polymorphisms
(SNPs) have to be assigned to exactly one of the two chromosomes. In
this work, we outline the state-of-the-art on HA approaches and present
an in-depth analysis of the computational performance of GenHap, a
recent method based on Genetic Algorithms. GenHap was designed to
tackle the computational complexity of the HA problem by means of
a divide-et-impera strategy that effectively leverages multi-core architec-
tures. In order to evaluate GenHap’s performance, we generated different
instances of synthetic (yet realistic) data exploiting empirical error mod-
els of four different sequencing platforms (namely, Illumina NovaSeq,
Roche/454, PacBio RS II and Oxford Nanopore Technologies MinION).
Our results show that the processing time generally decreases along with
the read length, involving a lower number of sub-problems to be dis-
tributed on multiple cores.
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1 Introduction

The advent of second-generation sequencing technologies revolutionized the field
of genomics, enabling a more complete view and understanding of the genome
of different species. However, despite their great contribution to the field, the
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data produced by these technologies are still unsuitable for several applications,
including Haplotype Assembly (HA). This problem consists in assigning all het-
erozygous Single Nucleotide Polymorphisms (SNPs) to exactly one of the two
homologous chromosomes, leveraging data from sequencing experiments. The
short length of the reads produced by second-generation sequencing technolo-
gies might be not long enough to span over a relevant number of SNP positions,
leading to the reconstruction of short haplotype blocks [8,43] and ultimately
hindering the possibility of reconstructing the full haplotypes.

In recent years, however, a third-generation of sequencing technologies was
developed and paved the way to the production of sequencing data character-
ized by reads covering hundreds of kilobases, thus able to span different SNP
loci at once [16,32,33]. Unfortunately, the increase in length comes at the cost
of a decrease in the accuracy of the reads, compared to the short and precise
ones produced by second-generation sequencing technologies, such as NovaSeq
(Illumina Inc., San Diego, CA, USA) [31]. In order to compensate for this inad-
equacy, there is a need for increasing the read coverage. Formally, the coverage
of a sequencing experiment is the average number of times that each nucleotide
is expected to be covered by a read. This value is given by the following rela-
tionship:

cov = (L · N)/G, (1)

where cov stands for the coverage, L for the read length, N for the number of
reads and G for the length of the haploid region of the genome on which the reads
are mapped [20]. Equation (1) shows that longer reads or a higher amount of
reads are needed to increase the coverage. In practice, an average coverage higher
than 30× is the de facto standard for accurate SNP detection [38]. Along with the
HA issues, novel challenges—e.g., poliploidity, metagenomics, analysis of cancer
cell heterogeneity and chromosomal capture experiments—require sequencing
data with a high coverage.

In this paper, we briefly describe the state-of-the-art on haplotype computa-
tional tools, providing a taxonomy based on the employed computational tech-
niques. Then, we focus on GenHap [40], an evolutionary method that exploits
High Performance Computing (HPC) architectures. We show how GenHap per-
forms on data produced by four different sequencing platforms, namely:

– Illumina NovaSeq (Illumina Inc., San Diego, CA, USA) [31]: the most used
and widespread platform belonging to the class of second-generation sequenc-
ing technologies, able to produce a huge number of short and precise reads
(up to 150 bp);

– Roche/454 (Roche AG, Basel, Switzerland) [23]: a second-generation sequenc-
ing technology able to produce accurate and slightly longer reads than Illu-
mina sequencers (up to 700 bp);

– PacBio RS II (Pacific Biosciences of California Inc., Menlo Park, CA, USA)
[32,33]: a third-generation sequencing technology able to produce long reads
(up to 30000 bp);
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– Oxford Nanopore Technologies (ONT) MinION (ONT Ltd., Oxford, United
Kingdom) [16,17,36]: the latest developed third-generation sequencing tech-
nology, able to produce reads that are tens of kilobases long.

The manuscript is structured as follows. Section 2 describes and classifies the
most used HA approaches, focusing on HPC potential provided by GenHap. The
achieved results, in terms of scalability and efficiency on multi-core architectures,
are shown and analyzed in Sect. 3. Finally, future directions and possible fruitful
connections with other research fields, such as machine learning and security in
distributed computing, are mentioned in Sect. 4.

2 HPC in Haplotype Assembly

Current human Whole Genome Sequencing (WGS) approaches do not gener-
ally provide phasing information, limiting the identification of clinically-relevant
samples, estimation of compound heterozygosity as well as population-level phe-
nomena, including haplotype diversity and Linkage Disequilibrium patterns that
could help to resolve migratory patterns and mutation origins [7].

Several computational HA approaches for human genome phasing have been
proposed in literature [7]. Most of these methods solve the NP-hard Minimum
Error Correction (MEC) problem, which aims at inferring the haplotype pair
that yields two disjoint sets of the sequencing reads characterized by the mini-
mum number of SNP values to be corrected [41]. An additional variant of MEC
exists, called weighted MEC (wMEC) [14], which takes into account also the
information concerning the quality of the reads.

In what follows, we concisely describe the most diffused HA methods and
graphically represent them by means of a “phylogenetic tree”-like diagram
(Fig. 1). Then, we focus on the functioning of the distributed GenHap imple-
mentation on multi-core architectures [40].

2.1 Related Work

Beagle [5] is one of the earliest heuristic approaches based on Hidden Markov
Models (HMMs). Considering the genotype information of an individual, Beagle
finds the most likely haplotype pair among different possible haplotype solutions.
It has a quadratic computational complexity with respect to the input data.

SHAPEIT [10] starts from genotyping data related to a population and,
given the genotype data of an individual, exploits an HMM-based approach to
estimate the haplotype pair. The population data are used to apply constraints
on the graph, which denotes all possible haplotypes compatible with the input
data, in order to determine the haplotype of that individual. At each iteration,
SHAPEIT has a linear complexity with respect to the number of haplotypes.

Eagle2 [22] is a phasing algorithm that exploits the Burrows-Wheeler trans-
form to encode the information from large external reference panels. It relies
on an HMM to explore only the most relevant phase paths among all possible
paths. The authors showed that Eagle is 20 times faster than SHAPEIT [10].
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Fig. 1. The “phylogeny” of haplotyping methods. Over the past few years, the reper-
toire of tools for haplotyping has rapidly expanded. A “phylogenetic tree”-like diagram
is used here to depict the division of the algorithms in 4 different classes, namely:
exact, greedy, probabilistic, metaheuristic. Hybrid methods are connected with dashed
lines to the implemented multiple computational techniques. The orange superscript
denotes the analyzed data: sequencing (S) and genotyping (G). Methods that solve
either the MEC or the wMEC problem are denoted with blue or magenta, respectively.
Finally, the HA methods that exploit HPC are highlighted with a green arrow directed
to the used computational resources. See text in Sect. 2.1 for descriptions of the most
common software representatives of branches, and for the definitions of abbreviations.
(Color figure online)

HapCUT [1] leverages sequencing data (i.e., the entire set of reads is consid-
ered) instead of population genotypes. It infers the haplotype pair of an indi-
vidual by partitioning the set of reads solving the MEC problem. The MEC
problem is reduced to the max-cut problem, which is greedily solved over the
graph representation of the input instance.

HapCUT2 [12] is a recent heuristic approach that exploits a haplotype like-
lihood model for the sequencing reads. A partial likelihood function is used to
evaluate the likelihood of a subset of the fragments. Differently from its previous
version (HapCUT [1]), which is based on a greedy max-cut algorithm, HapCUT2
optimizes the likelihood to find a max-cut in graph representation of the input
instance.
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ProbHap [18] relies on an exact likelihood optimization technique to solve
a generalized version of the MEC problem. It exploits a dynamic programming
algorithm capable of exactly optimizing a likelihood function, which is specified
by a probabilistic graphical model that generalizes the MEC problem.

ReFHap [11] is based on a heuristic algorithm to find the max-cut. ReFHap
solves the Maximum Fragments Cut (MFC) problem instead of the classic
MEC problem. The max-cut problem is reduced to the MFC problem, which
is addressed using a greedy approach.

HuRef [21] is a heuristic approach that aims at inferring the heterozygous
variants of an individual. It is based on a greedy algorithm that iteratively refines
the initial partial haplotype solutions. The authors leveraged this HA approach
to study non-SNP genetic alterations considering the diploid nature of the human
genome.

Chen et al. [6] proposed an exact approach for the MEC problem using an
integer linear programming solver. First, the fragment matrix is decomposed into
small independent sub-matrices. Each of these sub-matrices is used to define an
integer linear programming problem that is then exactly solved.

WhatsHap [29] is an exact method relying on a dynamic programming algo-
rithm used to solve wMEC. It implements a fixed parameter tractable algorithm,
where the fixed parameter is the maximum coverage of the input instance, to
deal with the NP-hardness of the wMEC problem. This method does not assume
the all-heterozygosity of the phased positions.

pWhatsHap [4] is an efficient version of WhatsHap [29], which was designed
to leverage multi-core architectures in order to obtain a relevant reduction of the
execution time required by WhatsHap. The proposed implementation exploits
the physical shared memory of the underlying architecture to avoid data com-
munication among threads.

HapCol [30] implements a dynamic programming algorithm to solve an alter-
native version of the wMEC problem, called k-MEC, which is used to take into
account the distribution of sequencing errors of future-generation technologies.
In this strategy, the number of corrections per column is bounded by the param-
eter k. No all-heterozygous assumption is required.

Two-Level ACO [2] is based on the Ant Colony Optimization (ACO) tech-
nique, which is a metaheuristic designed to deal with combinatorial problems on
graphs generated starting from the genotyping data given as input. This app-
roach is based on the pure parsimony criterion to find the smallest set of distinct
haplotypes that solves the HA problem.

Probabilistic Evolutionary Algorithm with Toggling for Haplotyping (PEATH)
[26] is based on the Estimation of Distribution Algorithm (EDA), which is a
metaheuristic suitable for continuous problems. During each iteration of EDA,
the promising individuals are used to build probabilistic models that are sampled
to explore the search space. This metaheuristic is exploited to deal with noisy
sequencing reads, aiming at inferring one haplotype, under the all-heterozygous
assumption.
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Wang et al. [41] relies on Genetic Algorithms (GAs), which are a family
of metaheuristics designed to tackle combinatorial and discrete problems. This
method was proposed to address an extended version of the MEC problem in
which genotyping data are considered during the SNP correction process.

GAHap [42] uses GAs to infer the haplotype pair of an individual working
on nucleotide strings. During the optimization, GAHap solves the MEC problem
by means of a majority rule that takes into account allele frequencies. No all-
heterozygous assumption is required.

GenHap [40] is a novel computational method based on GAs to solve the
wMEC problem. This method exploits a divide-et-impera approach to parti-
tion the entire problem into smaller and manageable overlapped sub-problems.
In order to solve in parallel the sub-problems, GenHap was developed using a
Master-Slave approach to leverage multi-core architectures.

2.2 GenHap: A Distributed Computing Implementation for HA

Hereafter, we briefly recall the peculiarities of GenHap [40], by focusing on the
HPC implementation. GenHap tackles the HA problem by solving the wMEC
problem, exploiting an approach based on GAs. Since the execution time and the
problem difficulty increase with the number of reads and SNPs of the input data,
GenHap follows a divide-et-impera approach [24] in which the wMEC problem
is efficiently solved by splitting the fragment matrix M into Π = �m/γ� sub-
matrices consisting of γ reads (where γ depends on the coverage value and on
the nature of the sequencing technology). By so doing, the problem difficulty is
reduced by solving the sub-problems by means of independent GA executions
that eventually converge to solutions having two sub-haplotypes with the least
number of corrections to the SNP values. Finally, these sub-haplotypes are com-
bined to achieve the complete haplotype pair. It is worth noting that GenHap
considers all phased positions [19] as heterozygous during the optimization phase
with GAs. As soon as the sub-haplotypes are obtained, all possible uncorrected
heterozygous sites are removed and the correct value is assigned by checking the
columns of the sub-partitions.

GenHap makes use of a Master-Slave distributed programming paradigm [39]
to speed up the overall execution (Fig. 2) [35]. It was developed using the C++
programming language and the Message Passing Interface (MPI) specifications
to leverage multi-core Central Processing Units (CPUs). The Master-Slave strat-
egy of GenHap consists of the following phases: (1) the Master process (MPI
rank 0) proceeds by (i) allocating the necessary resources, (ii) partitioning the
matrix into Π sub-matrices, and (iii) offloading the data onto the available Σ
Slave processes. Each Slave σ (with MPI rank 1 ≤ σ ≤ Σ) proceeds by ran-
domly generating the initial population of the GA; (2) each Slave executes the
assigned wMEC sub-task by means of an independent GA instance. If multiple
cores are available, the Slave processes are executed in a parallel fashion; (3) as
soon as the wMEC sub-tasks are terminated, the Master process recombines the
sub-solutions received from the Slaves, and yields the complete wMEC solution.
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According to the GA settings analysis provided in [40], we used here 100
individuals, tournament selection with size equal to 10 individuals, crossover and
mutation rates equal to 0.9 and 0.05, respectively. Finally, the elitism strategy is
exploited to copy the best individual from the current population into the next
one without undergoing the genetic operators.

MasterMPI rank 0

Slave 3MPI rank 3

Slave ΣMPI rank 

Slave 2MPI rank 2

Slave 1MPI rank 1
...

Multi-cores
G

A

G
A

G
A

G
A

Fig. 2. Graphical representation of the Master-Slave approach implemented by Gen-
Hap: the Master process handles all the Σ Slaves by sending one or more sub-partitions
to each Slave, which then solves the assigned wMEC sub-task leveraging a core.

3 Test Battery and Results

In what follows, we present some computational results obtained by considering
different sequencing technologies, namely: Illumina NovaSeq, Roche/454, PacBio
RS II, and ONT MinION. In [40], GenHap was shown to be faster than HapCol
achieving up to 20× speed-up on PacBio RS II instances, reconstructing haplo-
types characterized by a very low haplotype error rate. Moreover, GenHap was
capable of solving in about 10 min a real PacBio RS II instance characterized by
#SNPs � 28000 and #reads � 140000, with average and maximum coverages
equal to 29 and 565, respectively. Notice that a direct comparison with the only
other parallel method, pWhatsHap [4], was not possible since the source code of
that tool is no longer publicly available.

In order to assess the computational performance of GenHap, we used the
General Error-Model based SIMulator (GemSIM) toolbox [25] to generate dif-
ferent instances of synthetic (yet realistic) data, compliant with these sequenc-
ing technologies. GemSIM generates the instances relying on empirical error
models and distributions learned from real NGS data. A detailed description
of the whole pipeline is described in [40]. For each sequencing technology, we
generated a single instance varying the following parameters: (i) #SNPs ∈
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Fig. 3. Comparison of the running time required by GenHap on sequencing data gen-
erated by four sequencing technologies (Illumina NovaSeq, Roche/454, PacBio RS II,
ONT MinION) by varying the coverage values. Note that the instances generated using
the Illumina NovaSeq technology and characterized by #SNPs = 20000 required more
RAM than the amount of memory available on the computing nodes used for the tests.
The tests were executed by increasing the number of cores exploited to run GenHap,
to evaluate the scalability of the implementation based on distributed computing.

{500, 1000, 5000, 10000, 20000}; (ii) cov ∈ {∼ 30×,∼ 40×,∼ 50×,∼ 60×}; (iii)
average fSNPs = 200 (i.e., one SNP every 200 bp exists [13,27]).

These instances were used to evaluate the scalability of GenHap by varying
the number of cores, that is, #cores ∈ {2, 4, 8, 16, 24, 32, 40, 48, 56, 64}. All tests
were performed on the MARCONI supercomputer, which is based on the Lenovo
NeXtScale System R© platform (Morrisville, NC, USA), provided by the Italian
inter-university consortium CINECA (Bologna, Italy). Three different partitions
running on CentOS 7.2 are available on this supercomputer:

A1 Broadwell (BDW) partition consists of 720 compute nodes, each one equipped
with 2 Intel R© Xeon R© E5-2697 v4 (18 cores at 2.30 GHz) and 128 GB RAM;

A2 Knights Landing (KNL) partition consists of 3600 compute nodes, each one
equipped with an Intel R© Knights Landing (68 cores at 1.40 GHz and 16 GB
MCDRAM), which is the next-generation of the Intel R© Xeon PhiTM product
family for many-core architectures, and 93 GB RAM;

A3 Skylake (SKL) partition consists of 92 compute nodes, each one equipped
with 2 Intel R© Xeon R© 8160 CPU (18 cores at 2.10 GHz) and 192 GB RAM.

Our analysis was carried out by using the computing nodes of partition A2,
which was chosen due to the availability of a higher number of computing cores.

Figure 3 depicts the running times required by GenHap to infer the pairs of
haplotypes. As expected, the processing time generally decreases along with the
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read length: indeed, according to Eq. (1), the same coverage can be obtained
by means of long reads coupled with a lower number of reads. This circum-
stance leads to a lower number of sub-problems to be solved, reducing the neces-
sary computational effort. Moreover, the lowest running time is achieved on the
instances generated relying on the ONT MinION, which is capable of produc-
ing long reads (up to 6000 bp) with accuracy greater than 92%. As a matter of
fact, the amount of SNPs to be corrected decreases when reads characterized by
high accuracy are taken into account, allowing the GA instances to have a fast
convergence to the optimal solutions. The results obtained for each sequencing
platform are summarized as follows. (i) Illumina NovaSeq: independently from
the coverage, the lowest running time is achieved by exploiting 24 cores to par-
allelize the GA instances when #SNPs = 10000. When #SNPs < 10000, 16 or
24 cores require the minimum running time to infer the haplotype pairs; (ii)
Roche/454: when #SNPs ≥ 5000, the best GenHap’s performance is achieved
by exploiting 16 or 24 cores, otherwise the best choice is 24 cores; (iii) PacBio
RS II: in every test, the fastest executions are generally obtained by exploiting
24 cores to parallelize the GA instances, except when #SNPs = 500 is taken into
account. In this case, the running time decreases when 16 cores are exploited
to effectively distribute the GA instances on multiple cores. Since the reads
generated by relying on this technology have a low accuracy (approximately
87%), which makes the problem more difficult to be solved (i.e., the amount of
SNPs to be corrected increases), the scalability of GenHap is emphasized; (iv)
ONT MinION: in all tests, the best choice is 16 cores that allow for efficiently
distributing the computational load. In every test, a number of cores greater
than 24 does not reduce the running time since the overhead introduced by
MPI is not entirely mitigated by the required computational load. Furthermore,
when the number of sub-problems is lower than the number of available cores,
our Master-Slave approach exploits a number of cores equal to the number of
sub-problems. On the one hand, when technologies producing short reads are
considered, the number of haplotype blocks increases along with #SNPs. Since
these blocks are solved sequentially and are generally characterized by a number
of sub-problems lower than the available cores, 16 or 24 cores allow for balancing
the computational load. On the other hand, technologies producing long reads
generate a small number of reads that lead to a low number of sub-problems
to be solved. Notice that exploiting the accuracy of the reads produced using
Illumina NovaSeq, Roche/454 and ONT MinION, the GA instances have a fast
convergence to the optimal solutions requiring only a dozen of generations.

4 Conclusion and Future Trends

In this paper, we presented a complete overview on the currently available HA
computational tools, focusing on the potential of HPC in this research area. In
particular, we investigated the computational performance of GenHap [40], a
recent evolutionary method leveraging multi-core architectures.

As a future development, we plan to extend GenHap to deal with HA in
organisms characterized by different ploidity. Differently from diploid organisms
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having two copies of each chromosome set, polyploid organisms have multiple
copies of their chromosome sets. Polyploidy has gained scientific interest in the
study of the ongoing species diversification phenomena [28]. This characteristic
is mainly present in plant genomes, but also in animals (such as salmonid fishes
and African clawed frogs) [34]. In these comparative genomic studies, haplotype-
aware assemblies play a crucial role in elucidating genetic and epigenetic reg-
ulatory evolutionary aspects. Unfortunately, the computational burden of the
HA problem is emphasized in the case of polyploid haplotypes with respect to
diploids [9]. Therefore, HPC represents a key element for efficient, accurate, and
scalable methods for HA of both diploid and polyploid organisms.

An interesting future trend in Genome Analysis is related to its connection
with machine learning. As a matter of fact, deep learning has been successfully
applied in population genetic inference and learning informative features of data
[37]. Combining population genetics inference and HA can provide insights on
patterns regarding the genetic diversity in DNA polymorphism data, especially
for rapid adaptation and selection [15].

An additional issue worth of notice is that, although the integration of vari-
ous types of information (e.g., electronic health records and genome sequences)
conveys a wealth of information, it is giving rise to unique challenges in bioinfor-
matics analysis even in terms of secure genomic information sharing [3]. With ref-
erence to secure Genome-Wide Association Study (GWAS) in distributed com-
puting environments, multi-party computation schemes based on conventional
cryptographic techniques achieve limited performance in practice [7]. Therefore,
HPC could become an enabling factor also in this context.
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