
Towards Application-Centric Parallel
Memories

Giulio Stramondo(B), Cătălin Bogdan Ciobanu, Ana Lucia Varbanescu,
and Cees de Laat

University of Amsterdam, Amsterdam, The Netherlands
{g.stramondo,c.b.ciobanu,a.l.varbanescu,delaat}@uva.nl

Abstract. Many applications running on parallel processors and accel-
erators are bandwidth bound. In this work, we explore the benefits of par-
allel (scratch-pad) memories to further accelerate such applications. To
this end, we propose a comprehensive approach to designing and imple-
menting application-centric parallel memories based on the polymor-
phic memory-model called PolyMem. Our approach enables the accel-
eration of a memory-bound region of an application by (1) analyzing the
memory access to extract parallel accesses, (2) configuring PolyMem to
deliver maximum speed-up for the detected accesses, and (3) building
an actual FPGA-based parallel-memory accelerator for this region, with
predictable performance. We validate our approach on 10 instances of
Sparse-STREAM (a STREAM benchmark adaptation with sparse mem-
ory accesses), for which we design and benchmark the corresponding
parallel-memory accelerators in hardware. Our results demonstrate that
building parallel-memory accelerators is feasible and leads to perfor-
mance gain, but their efficient integration in heterogeneous platforms
remains a challenge.

Keywords: Polymorphic parallel memory
Memory bandwidth improvement · Parallel-memory accelerator

1 Introduction

Many heterogeneous systems are currently based on massively parallel acceler-
ators (e.g., GPUs), built for compute-heavy applications. Although these accel-
erators offer significantly larger memory bandwidth than regular CPUs, many
kernels using them are bandwidth-bound. New technologies hold promise for
further bandwidth gain, but their adoption depends on the processor vendors,
and can therefore be slow. Instead, our work addresses the need for increased
bandwidth by enabling more parallelism in the memory system. In other words,
for bandwidth-bound applications, this work demonstrates how to build hetero-
geneous platforms using parallel-memory accelerators.

Designing and/or implementing application-specific parallel memories is non-
trivial [3]. Writing the data efficiently, reading the data with a minimum number
c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 481–493, 2019.
https://doi.org/10.1007/978-3-030-10549-5_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10549-5_38&domain=pdf
https://doi.org/10.1007/978-3-030-10549-5_38

482 G. Stramondo et al.

of accesses and maximum parallelism, and using such memories in real applica-
tions are significant challenges. In this paper, we describe our comprehensive
approach to designing, building, and using parallel-memory application-specific
accelerators. Our parallel memory is designed based on PolyMem [5], a poly-
morphic parallel memory model with a given set of predefined parallel access
patterns. Our approach follows four stages: (1) analyze the memory access trace
of the given application to extract parallel memory accesses (Sect. 2), (2) con-
figure PolyMem to maximize the performance of the memory system for the
given application (Sects. 3.1, 3.2 and 3.3), (3) compute the (close-to-)optimal
mapping and scheduling of application concurrent memory accesses to Poly-
Mem accesses (Fig. 1, Sect. 3.4), and (4) implement the actual accelerator (using
MAX-PolyMem), also embedding its management into the host code (Sect. 4.1).

Application
Parallel Memory

Access
Trace

Supported
Patterns

Mapping

Fig. 1. Customizing parallel memories. Our research focuses on the mapping of the
access trace from the application to the parallel access patterns of the parallel memory.

The performance of our accelerators is assessed using two metrics: speed-
up against an equivalent accelerator with a sequential memory, and efficiency.
Blased on a simple, yet accurate model that estimates the bandwidth of the
resulting memory system. Using this estimate and benchmarking data, we could
further estimate the overall performance gain of the application using the newly
built heterogeneous system.

We validate our approach using 10 Sparse STREAM instances: the original
(dense) and 9 variants with various sparsity levels (Sect. 4). We demonstrate how
our method enables a seamless analysis and implementation of 10 accelerators in
hardware (using a Maxeler FPGA board). Finally, using real benchmarking data
from the PolyMem-based heterogeneous systems, we validate our performance
model.
In summary, our contribution in this paper is four-fold:

– We present a methodology to analyze and transform application access traces
into a sequence of parallel memory accesses.

– We provide a systematic approach to optimally configure a polymorphic par-
allel memory (e.g., PolyMem) and schedule the set of memory accesses to
maximize the performance of the resulting memory system.

– We define and validate a model that predicts the performance of our parallel-
memory system.

Towards Application-Centric Parallel Memories 483

– We present empirical evidence that the designs generated using our approach
can be implemented in hardware as parallel-memory accelerators, delivering
the predicted performance.

2 Preliminaries and Terminology

In this section we present the terminology and basic definitions necessary to
understand the remainder of this work.

2.1 Parallel Memories

Definition 1 (Parallel Memory). A Parallel Memory (PM) is a memory that
enables the access to multiple data elements in parallel.

A parallel memory can be realized combining a set of independent memories
- referred to as sequential memories. The width of the parallel memory, identified
by the number of sequential memories used in the implementation, represents
the maximum number of elements that can be read in parallel. The capacity of
the parallel memory refers to the amount of data that it can store.

A specific element contained in a PM is identified by its location, a combina-
tion of a memory module identifier (to specify which sequential memory hosts
the data) and an in-memory address (to specify where within that memory the
element is stored). We call this pair the parallel memory location of the data ele-
ment. Formally, thus, loc(A[I]) = (mk, addr), k = [0..M), where A[I] represents
an element of the application - see Sect. 2.2, mk is the memory module identifier,
M is the width of the PM, and addr is the in-memory address.

Our approach focuses on non-redundant parallel memories. These memories
use a one-to-one mapping between the coordinate of an element in the applica-
tion space and a memory location. Non-redundant parallel memories can use the
full capacity of all the memory resources available, and data consistency is guar-
anteed by avoiding data replication. However, these parallel memories restrict
the possible parallel accesses: only elements stored in different memories can be
accessed in parallel (see Sect. 2.2).

2.2 The Application

We use the term application to refer to the entity using the PM to read/write
data - e.g., a hardware element directly connected to the PM, or a software
application interfaced with the PM.

Without loss of generality, we will consider the data of an application to be
stored in an array A of N dimensions. Each data element can then be identified
by a tuple containing N coordinates I = (i0, i1, ..., iN−1), which are said to be
the coordinates of element A[I] = A[i0][i1]...[iN−1] in the application space.

An application memory access is a read/write operation which accesses A[I].
A concurrent access is a set of memory accesses, A[Ij], j = 1..P , which the

484 G. Stramondo et al.

application can perform concurrently. An application memory access trace is a
temporal series of concurrent accesses. Finally, a parallel memory access is an
access to multiple data elements which actually happens in parallel.

Ideally, to maximize the performance of an application, any concurrent access
should be a parallel access, happening in one memory cycle. However, when the
size of a concurrent access (P) is larger than the width of the PM (M), a schedul-
ing step is required, to schedule all P accesses on the M memories. Our goal
is to systematically minimize the number of parallel accesses for each concur-
rent access in the application trace. We do so by tweaking both the memory
configuration and the scheduling itself.

Tweaking the Memory Configuration. To specify a M -wide parallel
access to array A – stored in the PM –, one can explicitly enumerate M
addresses (A[I0]...A[IM−1]), or use an access pattern. The access pattern is
expressed as a M -wide set of N -dimensional offsets - i.e.,{(o0,0, o0,1, ..., o0,N−1)−
(oM−1,0, oM−1,1, ..., oM−1,N−1)}. Using a reference address - i.e. A[I] - and the
access pattern makes it possible to derive all M addresses to be accessed. For
example, for a 4-wide access (M = 4) in a 2D array (N = 2), where the accesses
are at the N,E,S,W elements, the access pattern is {(−1, 0), (0,−1), (1, 0), (0, 1)}.
When combining the pattern with a reference address - e.g., (4, 4) - we obtain a
set of M element coordinates - e.g, {(3, 4), (4, 3), (5, 4), (4, 5)}. We call the oper-
ation of instantiating a memory access pattern into a set of addresses based on
a reference address resolving the pattern. In Sect. 3.2 we will use the function
resolve pattern(p,a) - where p is an access pattern and a is a reference address -
to indicate this operation.

Definition 2 (Conflict-Free Parallel Access). A set of Q memory accesses
A[I0]..A[IQ−1] form a parallel memory access iff it constitutes a conflict-free
parallel access, namely:

∀(A[Ii], A[Ij])

where i �= j, 0 ≤ i, j ≤ Q − 1, Q = M

loc(A[Ii]) = (mi, addri), loc(A[Ij]) = (mj , addrj)

mi �= mj .

To map the access to an element in application space to a parallel access in
PM space, we need to define a mapping function that guarantees M -wide conflict
free accesses. Determining the function to use is a key challenge in defining a
custom parallel memory.

Definition 3 (Memory Mapping Function). The Memory Mapping Func-
tion (MMF) maps an application memory access to its parallel memory location.

MMF : (A[I],M,D[I]) → (mk, addrk), k = [0..M)

where I = (i0, i1, ..., iN−1) are the coordinates of the access in the application
space, M is the width of the parallel memory, and D[I] are the sizes of each
dimension of the application space array.

Towards Application-Centric Parallel Memories 485

We note that due to the restriction that only conflict-free accesses can be
parallel accesses, there is a limited set of access patterns that a parallel memory
can support. These patterns are an immediate consequence of the MMF .

A PM configuration is the pair (MMF,C), where MMF is a mapping func-
tion and C is the capacity of the PM. Customizing a parallel memory entails
finding, for a given application, the configuration that minimizes the number of
parallel accesses to the PM.

In the remainder of this paper we focus on a methodology to configure a
custom parallel memory with the right M , C, and MMF for a given application
(see Sect. 3 and further).

Scheduling Concurrent Accesses. Once the parallel memory configuration
is known, the transformation between the application concurrent accesses and
the memory parallel accesses is necessary. We call this transformation scheduling,
and note it can be static - i.e., computed pre-runtime, per concurrent access - or
dynamic - i.e., computed at runtime. In this work, we assume static scheduling is
possible, and the actual schedule is an outcome of our methodology (see Sect. 3
and further).

3 Scheduling an Application Access Trace to a PM

In this section we describe two approaches for scheduling an application access
trace using a set of PM parallel access patterns. The first one finds an opti-
mal solution to this problem - the minimum number of PM accesses that cover
the application access trace - using ILP. The second one proposes an alterna-
tive to ILP, in the form of a heuristic method which trades-off optimality for
speed. Finally, we end this section with an overview of our full approach towards
application-centric parallel memories and a simple predictive model to calculate
the performance of the resulting memory system.

3.1 The Set Covering Problem

We express the problem of scheduling an application access trace onto a set of PM
accesses as a particular instance of the set covering NP-complete problem [12].

Definition 4 (Set Covering [12]). Given a universe U of n elements, a col-
lection of sets S = {S1, ..., Sk}, with Si ⊆ U, and a cost function c : S → Q+,
find a minimum-cost subset of S that covers all elements of U.

The set cover can be formulated as an integer program:

minimize
∑

Si∈S

c(Si) · xSi

subject to
∑

Si:e∈Si

xSi
≥ 1, e ∈ U.

486 G. Stramondo et al.

In this formulation, xSi
= {0, 1} is a variable indicating if set Si is part of

the solution, c(Si) is the cost of set Si, and the solution is constrained to have
for each element e ∈ U at least one set Si : e ∈ Si.

3.2 From Concurrent Accesses to Set Covering

An optimal schedule of an application access trace on a set of PM parallel
accesses can be found by reducing this problem to a set covering one, and lever-
aging the ILP formulation discussed in the previous section. Although an appli-
cation access trace contains a list of application concurrent accesses, we schedule
each of those separately. For every application concurrent access, the universe U

is formed by all accesses. From the PM predefined parallel access patterns, we
define S as the collection of all possible parallel accesses in PM (see Algorithm 1).
Finally, the solution obtained using an ILP solver, Smin,Smin ⊆ S, is a list of
sets which optimally cover the concurrent accesses, and will be converted back
into a sequence of parallel memory accesses.

Algorithm 1. Generation of the Collection of Sets
1: S ← ∅

2: A ← {all application elements}
3: U ← {all accessed elements}
4: P ← {PM parallel access patterns}
5: for p ∈ P do
6: for a ∈ A do
7: pa ← resolve pattern(p, a).
8: Spa ← pa ∩ U.
9: S ← S ∪ Spa

10: end for
11: end for
12: return S.

Algorithm 1 shows how to generate S, from which the minimal coverage will
be extracted. Set P contains the list of PM conflict-free accesses patterns, and
it is obtained from the PM configuration. Set A contains the coordinates of the
application data. Each pair of an application element and an access pattern (i.e.,
elements from A and P, respectively) is resolved into a set of coordinates of appli-
cation elements, pa, by resolve pattern (see Sect. 2.1); To map our problem to
the ILP formulation above we need to guarantee that the union of the collection
of subsets in S is equal to the universe U. This is done by removing the elements
that are not being accessed in the concurrent access -i.e. the elements in A but
not in U- from the parallel access pa. The elements of S will be all these Spa

sets, for which it holds that
⋃

Spa∈S
Spa = U.

To solve our original problem, we are interested in finding the minimum
collection of sets Smin such that

⋃
S∈Smin

S = U and Smin ⊆ S, so the cost
function will be defined as c(Spa) = 1,∀Spa ∈ S. Once S,U, c are defined, an ILP
solver can be used to compute Smin - the minimum collection of sets that covers
the universe U.

Towards Application-Centric Parallel Memories 487

3.3 An Heuristic Approach

As our preliminary results show that ILP is a major bottleneck in our system,
speed-wise, we also investigate the possibility to offer an alternative to the ILP
formulation for solving the scheduling problem. Therefore, we have designed
and implemented a heuristic approach, based on a greedy algorithm (see Algo-
rithm2). Our heuristic is based on [12], and the solution is guaranteed to be
within an harmonic factor from the optimal solution (extracted with the ILP
approach).

Algorithm 2. Heuristic Application Trace Scheduling
1: U ← {all accessed elements}
2: S ← {possible parallel accesses}
3: Sh ← ∅

4: E ← U

5: while E �= ∅ do
6: Find Spa ∈ S s.t. |E\Spa| is minimum.
7: Sh ← Sh ∪ Spa.
8: E ← E\Spa

9: end while
10: return Sh.

Algorithm 2 shows our heuristic approach. E is a set used to keep track of the
elements still to be covered with a parallel access, and it is initialized with U, the
set containing all the elements in the concurrent access. S contains all parallel
accesses from A for a given PM configuration (Algorithm 1, Sect. 3.2). In each
iteration, the parallel access Spa ∈ S, which contains the maximum number of
elements that still needs to be covered, is added to the solution, and the elements
covered by Spa are removed from E. Once all the elements in the application
concurrent access have been covered, the algorithm returns the set of parallel
access Sh containing the solution.

3.4 The Complete Approach

Our complete approach is presented in Fig. 2. We start from the Application
Access Trace, a description of the concurrent accesses in the application, dis-
cussed in detail in Sect. 2.2. We test different parallel memory configuration by
providing different Configuration Files to our Memory Simulator. Each Con-
figuration File contains details regarding mapping scheme, number of parallel
lanes and capacity of the parallel memory. The Memory Simulator produces all
the available parallel accesses, compatible with the given parallel memory Con-
figuration File, that cover elements contained in the Application Access Trace.
The set of parallel accesses is then given as input to our ILP or Heuristic solver
- implemented as described in Sects. 3.2 and 3.3. The Solver selects the mini-
mum number of parallel accesses that fully cover the elements in the Application

488 G. Stramondo et al.

Access Trace, thus producing a Schedule of parallel memory accesses. The Sched-
ule can then directly be used in the hardware implementation of the application
parallel memory.

An important side-effect of our approach is that the information contained in
the schedule can further be used to accurately estimate the performance of the
generated memory system. Thus, to calculate the achievable average bandwidth
of the memory system for the given access trace, we can “penalize” the theoretical
bandwidth (i.e., assuming that all lanes are fully used) by our efficiency metric:
BWreal = BWpeak ×Efficiency = (Frequency ∗Bitwidth∗Lanes)× Nseq

Nelements
.

Frequency is the frequency the PM is operating at, Bitwidth is the size of each
element stored in the PM and Lanes represents the amount of elements that can
be accessed in parallel; Nseq is the number of required sequential accesses and
Nelements is the total number of elements accessed by the PM using a Schedule.

Memory
Simulator

ILP/
HEU

Solver

ScheduleFile

Application Access
Trace

Set of all
Parallel

Accesses

Analysis

Hw Implementation

Fig. 2. An overview of our complete approach.

4 Experiments and Results

We evaluate the feasibility and performance of our approach by designing and
implementing 10 parallel-memory accelerators on an FPGA-based system. We
use a Maxeler Vectis board, equipped with a Xilinx Virtex-6 SX475T FPGA1 fea-
turing 475k logic cells and 4 MB of on-chip BRAMs.

4.1 MAX-PolyMem

Our parallel memory is based on PolyMem, a design inspired by the polymor-
phic register file [6]. The hardware implementations and performance analysis
presented in this section are all based on the Maxeler version of PolyMem, MAX-
PolyMem [5].
1 Xilinx Virtex-6 Family Overview:

http://xilinx.com/support/documentation/data sheets/ds150.pdf.

http://xilinx.com/support/documentation/data_sheets/ds150.pdf

Towards Application-Centric Parallel Memories 489

Controller

Host

PolyMem

MUX

MUX

A_IN

B_IN

C_IN

D
E

M
U

X

A_OUT

B_OUT

C_OUT

Wi Wj WShape Ri Rj RShape

Out_2

ModeVector
Sizes

PCI-e

STREAM
Kernels

Out_1

Fig. 3. The implementation of the STREAM benchmark for MAX-PolyMem (figure
updated from [5]). All transfers between host (the CPU) and PolyMem (on the FPGA)
are done via the PCIe link.

PolyMem is a non-redundant parallel memory, using multiple lanes to enable
parallel data access to bi-dimensional data structures, and a specialized hardware
module that enables parallelism for multiple access patterns. For example, an 8-
lane PolyMem allows reading/writing 8 elements at a time from/to a 2D memory.
The access shapes supported by PolyMem, defined as bi-dimensional shapes, are
Row, Column, Rectangle, Transposed Rectangle, Main Diagonal, and Secondary
Diagonal. Due to its multi-view design [6], PolyMem supports several access
schemes, i.e, it can perform memory operations with different access patterns
without reconfiguration:

– ReO: Rectangle.
– ReRo: Rectangle, Row, Diagonal, Sec. Diagonal.
– ReCo: Rectangle, Column, Diagonal, Sec. Diagonal.
– RoCo: Row, Column, Rectangle.
– ReTr: Rectangle, Transposed Rectangle.

4.2 Sparse STREAM

To prove the feasibility of our approach, from application access traces to hard-
ware, we adapt the STREAM benchmark [2,10], a well-known tool for memory
bandwidth estimation in modern computing systems, to support sparse accesses.

The original STREAM benchmark uses three dense vectors - A, B and C -
and proposes four kernels: Copy (C =A), Scale (A = q · B), Sum (A = B + C),
and Triad (A = B + q · C).

We have designed a version of STREAM for MAX-PolyMem [5]. A high-level
view of our design2, is presented in Fig. 3.

However, the original STREAM does not challenge our approach because it
uses dense, regular accesses. We therefore propose Sparse STREAM, an adap-
tation of STREAM which allows 2D arrays and configurable sparse accesses.
Table 1 presents 10 possible variants of Sparse STREAM, labeled based on their

2 STREAM for MAX-PolyMem is open-source and available online [1].

490 G. Stramondo et al.

Table 1. The 10 variants of the STREAM benchmark and the predicted performance
of the calculated schedules for two schemes (ReRo and RoCo). The other schemes are
omitted because they are not competitive for these patterns. In the patterns, only the
R elements need to be read.

Pattern description ReRo Scheme RoCo Scheme Selected
Density Pattern Nseq Npar Nelements Speed-up Efficiency Npar Nelements Speed-up Efficiency Scheme

20 RR________RR____ 17408 4369 34952 3.98 49.81 4369 34952 3.98 49.81 ReRo
25 R___R___R___R___ 21760 10880 87040 2.00 25.00 2816 22528 7.73 96.59 RoCo
33 R__R__R__R__R__R 29013 3724 29792 7.79 97.39 9671 77368 3.00 37.50 ReRo
40 RRRR____RRRR____ 34816 8687 69496 4.01 50.10 8687 69496 4.01 50.10 ReRo
50 R_R_R_R_R_R_R_R_ 43519 10880 87040 4.00 50.00 5504 44032 7.91 98.83 RoCo
60 RRRRRR____RRRRRR 52224 8821 70568 5.92 74.01 8821 70568 5.92 74.01 ReRo
66 RR_RR_RR_RR_RR_R 58026 7350 58800 7.89 98.68 9710 77680 5.98 74.70 ReRo
75 RRR_RRR_RRR_RRR_ 65279 10880 87040 6.00 75.00 8192 65536 7.97 99.61 RoCo
80 RRRRRRRR__RRRRRR 69632 8806 70448 7.91 98.84 8806 70448 7.91 98.84 ReRo
100 RRRRRRRRRRRRRRRR 87040 10880 87040 8.00 100.00 10880 87040 8.00 100.00 ReRo

read access density. The main difference between these variants is its number of
sequential accesses, Nseq.

We apply our methodology for each variant. Thus, for each variant, we obtain
the (close-to-) optimal schedule per access scheme. The schedule is character-
ized by the number of parallel accesses Npar, and the total number of accessed
elements Nelements (Sect. 3), from which we calculate speed-up and efficiency
per access scheme. We present these results for two schemes (namely, ReRo and
RoCo) in Table 1. We select the best performing to test in hardware.

The final step in our approach is the translation from a schedule to a hard-
ware implementation of our parallel-memory accelerator. The key challenge is
to enable the controller (see Fig. 3) to orchestrate the parallel memory opera-
tions based on the given schedule. Our current prototype stores the schedule,
which contains information regarding the required sequence of parallel accesses
(coordinates, shape, and mask), in an on-chip Schedule memory.

4.3 Results

We have implemented all 10 STREAM variants in hardware by configur-
ing MAX-PolyMem, for each test-case, with a memory of 261120 elements
(i.e., the maximum capacity available fitting the arrays A,B,C and the
schedule memory), and the best scheme (see Table 1). We have measured the
performance of each STREAM component and compared it against our band-
width estimation.

We measure the bandwidth of our 10 Sparse STREAM kernels (average over
10000 runs)*3. The results - predicted vs. measured - are presented in Fig. 4. We
make the following observations:

– Our performance model (see Sect. 3) accurately predicts the performance of
the memory system (below 1% error in most cases).

3 The overhead of uploading/downloading the arrays to PolyMem is not included in
these results.

Towards Application-Centric Parallel Memories 491

– For 6 out of the 9 sparse STREAM variants, we can achieve close to optimal
speed-up due to our parallel memory being multi-view and polymorphic.

– For S-25, S-50, and S-75, the performance gain versus choosing the alternative
scheme used in this experiment is, according to Table 1, of 70%, 50%, and 24%,
respectively.

– Our STREAM PolyMem design uses only 25.98% of the logic available in
the Vectis Maxeler board. More information regarding the resource usage is
available in [5].

Overall, our experiments are successful: we demonstrated that the schedule
generated by our approach can be used in real-hardware, and we showed that
the measured performance is practically the same with the predicted one.

Fig. 4. The performance results (measured, predicted, and ideal) for the 10 different
variants of the STREAM benchmark. The horizontal lines indicate the theoretical
bandwidth of MAX-PolyMem, configured with 8-byte data, 8 lanes, and 2 (for Copy
and Scale) or 3 (for Sum or Triad) parallel operations. Running at 100 MHz, MAX-
PolyMem can reach up to 12.8 GB/s for 1-operand benchmarks and up to 19.6 GB/s
for 2-operand benchmarks.

5 Related Work

Research on using parallel memories to improve system memory bandwidth has
started in the 70s, and remains of interest today. Parallel memories that use a set
of predefined mapping functions to enable specifically shaped parallel accesses
have improved to better support more shapes [7–9], multiple views, and poly-
morphic access [6]. Approaches that derive an application-specific mapping func-
tion [13,15] have also emerged, constantly improving the efficiency and perfor-
mance of the generated memory systems. The current version of this work uses
a polymorphic parallel memory with fixed shapes, to which we add the novel
analysis and configuration methodology.

As for building such memories in hardware, a lot of research has been invested
in building application-specific caches for FPGAs. Although successful, such

492 G. Stramondo et al.

research [4,11,14] does not (yet) address parallel and/or polymorphic memo-
ries. Our work fills this gap, by showing how to efficiently design a polymorphic,
multi-view parallel memory embedded into an FPGA-based accelerator.

6 Conclusion and Future Work

Modern accelerators, currently embedded in heterogeneous systems, offer mas-
sive parallelism for compute-intensive applications, but often suffer from memory
bandwidth limitations. Our work investigates the benefits of building accelera-
tors with application-specific parallel memories as a solution to alleviate this
bottleneck. Our approach is especially effective for applications with large sets
of concurrent accesses.

To this end, we proposed an end-to-end workflow which analyzes the applica-
tion access trace, configures and builds a custom non-redundant parallel memory
(e.g., PolyMem), optimized for the data-intensive kernel of interest, generates
our parallel-memory accelerator in hardware, and embeds it in the original host
code.

We have empirically validated our approach using Sparse STREAM with 10
different access densities. We demonstrated that we can instantiate and bench-
mark all 10 designs in real hardware (i.e., a Maxeler system and the MAX-
PolyMem version). Our experimental results demonstrate clear bandwidth gains,
and closely match our model’s predictions. Our on-going work focuses on the
analysis of more applications. In the near future, we aim to improve/automate
the access traces extraction, a more efficient integration of the parallel-memory
accelerator into the host application, and an extension of the model towards
accurate full-application performance prediction.

References

1. STREAM PolyMem MaxJ Code. https://github.com/giuliostramondo/
PolyMemStream

2. The STREAM benchmark website. https://cs.virginia.edu/stream/
3. Budnik, P., Kuck, D.J.: The organization and use of parallel memories. IEEE Trans.

Comput. 100(12), 1566–1569 (1971)
4. Chung, E.S., Hoe, J.C., Mai, K.: CoRAM: an in-fabric memory architecture for

FPGA-based computing. In: FPGA 2011, pp. 97–106 (2011)
5. Ciobanu, C.B., Stramondo, G., de Laat, C., Varbanescu, A.L.: MAX-PolyMem:

high-bandwidth polymorphic parallel memories for DFEs. In: IPDPSW 2018 (RAW
2018) (2018)

6. Ciobanu, C.: Customizable register files for multidimensional SIMD architectures.
Ph.D. thesis, Delft University of Technology, Delft, Netherlands, March 2013

7. Gou, C., Kuzmanov, G., Gaydadjiev, G.N.: SAMS multi-layout memory: providing
multiple views of data to boost SIMD performance. In: ICS, pp. 179–188. ACM
(2010)

8. Harper, D.T.: Block, multistride vector, and FFT accesses in parallel memory
systems. IEEE Trans. Parallel Distrib. Syst. 2(1), 43–51 (1991)

https://github.com/giuliostramondo/PolyMemStream
https://github.com/giuliostramondo/PolyMemStream
https://cs.virginia.edu/stream/

Towards Application-Centric Parallel Memories 493

9. Kuzmanov, G., Gaydadjiev, G., Vassiliadis, S.: Multimedia rectangularly address-
able memory. IEEE Trans. Multimed. 8, 315–322 (2006)

10. McCalpin, J.D.: A survey of memory bandwidth and machine balance in current
high performance computers. IEEE TCCA Newslett. 19, 25 (1995)

11. Putnam, A.R., Bennett, D., Dellinger, E., Mason, J., Sundararajan, P.: CHiMPS:
a high-level compilation flow for hybrid CPU-FPGA architectures. In: FPGA 2008,
p. 261 (2008)

12. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-662-04565-7

13. Wang, Y., Li, P., Zhang, P., Zhang, C., Cong, J.: Memory partitioning for multi-
dimensional arrays in high-level synthesis. In: DAC, p. 12. ACM (2013)

14. Yang, H.J., Fleming, K., Winterstein, F., Chen, A.I., Adler, M., Emer, J.: Auto-
matic construction of program-optimized FPGA memory networks. In: FPGA
2017, pp. 125–134 (2017)

15. Yin, S., Xie, Z., Meng, C., Liu, L., Wei, S.: Multibank memory optimization for
parallel data access in multiple data arrays. In: ICCAD 2016, pp. 1–8 (2016)

https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7

	Towards Application-Centric Parallel Memories
	1 Introduction
	2 Preliminaries and Terminology
	2.1 Parallel Memories
	2.2 The Application

	3 Scheduling an Application Access Trace to a PM
	3.1 The Set Covering Problem
	3.2 From Concurrent Accesses to Set Covering
	3.3 An Heuristic Approach
	3.4 The Complete Approach

	4 Experiments and Results
	4.1 MAX-PolyMem
	4.2 Sparse STREAM
	4.3 Results

	5 Related Work
	6 Conclusion and Future Work
	References

