
Modeling and Optimizing Data Transfer
in GPU-Accelerated Optical Coherence

Tomography

Tobias Schrödter1,2(B) , David Pallasch2 , Sandra Wienke3 ,
Robert Schmitt4, and Matthias S. Müller3

1 RWTH Aachen University, Aachen, Germany
tobias.schroedter@rwth-aachen.de

2 Fraunhofer-Institute for Production Technology IPT, Aachen, Germany
3 IT Center, RWTH Aachen University, Aachen, Germany

{wienke,mueller}@itc.rwth-aachen.de
4 Laboratory for Machine Tools and Production Engineering (WZL),

RWTH Aachen University, Aachen, Germany

Abstract. Signal processing of optical coherence tomography (OCT)
has become a bottleneck for using OCT in medical and industrial appli-
cations. Recently, GPUs gained more importance as compute device to
achieve video frame rate of 25 frames/s. Therefore, we develop a CUDA
implementation of an OCT signal processing chain: We focus on refor-
mulating the signal processing algorithms in terms of high-performance
libraries like CUBLAS and CUFFT. Additionally, we use NVIDIA’s
stream concept to overlap computations and data transfers. Performance
results are presented for two Pascal GPUs and validated with a derived
performance model. The model gives an estimate for the overall execu-
tion time for the OCT signal processing chain, including compute and
transfer times.

Keywords: GPU · OCT · Performance model · CUDA

1 Introduction

Tomographic imaging methods are of great importance in medical and indus-
trial contexts. In medicine, one focus lies on imaging quality and processing
speed, whereas in industry the possibilities for automation and cost efficiency
are crucial. These various requirements have led to the development of a variety
of different tomographic imaging techniques. Originating from ophthalmology,
one of the techniques which gained importance in the last 25 years, is optical
coherence tomography (OCT). Due to its resolution in the lower micrometer
range, it is used in production metrology, i.e., for measuring coating thickness
in terms of quality assurance. At the Fraunhofer IPT OCT systems for medical
and industrial applications are developed, including the OCT itself as well as
the corresponding signal processing.
c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 421–433, 2019.
https://doi.org/10.1007/978-3-030-10549-5_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10549-5_33&domain=pdf
http://orcid.org/0000-0002-1071-060X
http://orcid.org/0000-0002-7281-0251
http://orcid.org/0000-0002-5794-3662
http://orcid.org/0000-0003-2545-5258
https://doi.org/10.1007/978-3-030-10549-5_33

422 T. Schrödter et al.

For monitoring processes in a production or biomedical environment, not only
a high spatial resolution but also a high temporal resolution is needed. Currently,
this is limited by the signal processing time for OCT systems. The goal is to
achieve a frame rate of 25 frames/s, which corresponds to 40 ms of processing
time. Increasing the frame rate beyond this value may not benefit the human eye
while observing the process, but creates headroom for further image processing
and evaluation, as well as accelerating processing volumetric data. GPUs with
the possibility of executing massively parallel computations promise processing
of high-resolution OCT images with video frame rate. Hence, we developed a
GPU-parallel CUDA version of the signal processing based on an existing CPU
implementation. Since the investigated OCT system has been designed to be
cost-effective, we focused solely on consumer GPUs with Pascal architecture.
For testing and validating the GPU implementation a middle class and a high-
end GPU have been used. To validate the performance of our implementation,
we derive a performance model for the OCT signal processing chain that covers
runtime prediction of kernels and data transfers. This model can also be used to
get an estimate which resolutions could be achieved with a given GPU.

Thus, our main contributions are:

– A CUDA-based GPU implementation of the OCT signal processing chain
with focus on leveraging highly-optimized (BLAS) libraries

– A performance model which describes the computation and the data transfer
of the GPU signal processing

– Investigation of two different NVIDIA GPUs in comparison to two CPU-
parallel versions

The paper is structured as follows: Sect. 2 presents related work. The basics
of OCT and the used signal processing functions are described in Sect. 3. The
parallelization concepts using CUDA follow in Sect. 4. In Sect. 5, we derive a
performance model for the given OCT signal processing chain. The performance
results of our parallelization is presented in Sect. 6. Finally, we conclude and give
a short outlook in Sect. 7.

2 Related Work

Due to the needed processing time, using GPUs has become an important factor
during the development of OCT systems. So far, the main focus has lied on
resampling the data [11,18], or using multiple GPUs one for computation and
one for visualization [15,17]. These works do not elaborate on their strategies
for implementing a GPU version of the OCT signal processing chain, especially
leveraging BLAS libraries have not been reported yet. In addition, different
libraries are available which are designed for tomographic signal processing such
as the ASTRA Toolbox [1]. However, they do not include algorithms that are
specifically needed for the signal processing of the Fraunhofer IPT OCT system.

While different techniques exist for performance models for GPUs [12], we
focus on analytical-based models that illustrate a comprehensive approach. That

Modeling of GPU-Accelerated Optical Coherence Tomography 423

means the model must cover the computational part, as well as the GPU-CPU
data transfers, and should not be tied to a specific application. Various mod-
els have been established to describe the transfer times on distributed-memory
systems [2–4]. The model of Boyer et al. [3] gives an estimate for the transfer
time based on the GPU’s bandwidth. A theoretical performance model, based
on the Roofline Model [16], for GPU applications has been introduced as the
so-called Boat Hull Model [13]. It gives an estimate of the floor of the attainable
runtime for the computational part depending on the device specifications and
some algorithm specific characteristics. To model concurrent copy and compute
operations, Gómez-Luna et al. [8] have focused on (today) older NVIDIA archi-
tectures, where Werkhoven et al. [14] update this approach to (more) recent
NVIDIA architectures with multiple copy engines. In this work, we combine the
approaches of [3,13], and [14] to derive a complete model for the OCT signal
processing chain as real-world application.

3 Optical Coherence Tomography

Optical coherence tomography is a cross-sectional tomographic imaging method
and is mostly applied in ophthalmology, due to the possibility of creating con-
tact free cross-sectional images of the eye [9]. In contrast to traditional imaging
techniques, OCT offers a higher penetration depth than confocal microscopy and
a better resolution than ultrasound imaging. Due to its destruction-free nature
and the possibility of a complete fiber-optic setup, OCT has recently been intro-
duced into new fields in biomedical imaging like cancer detection and tissue
engineering, as well as in production technology for quality assurance.

OCT is an interferometric measurement technique, in which low-coherent
light excites the material under investigation. Light, which is backscattered at
different depths inside the sample, is overlapped with light from a reference path
and interferes at the detector. The interference creates a modulated signal whose
frequency depends on the depth of the reflection. In a Frequency-Domain-OCT
(FD-OCT), a spectrometer is used to measure the interference and therefore
obtain spectral resolved modulated data. The depths of the reflection can be
computed by using a Fourier transformation on the modulated data, resulting
in the depth profile of the sample. As this is only a brief overview of OCT we
recommend [7] for further reading.

The OCT signal processing chain, as implemented in the OCT software at
Fraunhofer IPT, is shown in Fig. 1. For controlling the line scan camera and
the data acquisition boards only C++ interfaces are available, hence the driver
is implemented in C++. The obtained signal is stored in vectors as unsigned
short values and is processed serially on the CPU. From the line scan camera of
the spectrometer the recorded spectrum of a 2D-scan (B-scan) is continuously
written into the acquisition buffer. In the next step the data is processed and
the results are written to the display buffer.

Due to physical effects, the modulated data recorded by the line scan cam-
era is not equidistantly spaced [10]. Since Fourier transformations can only be

424 T. Schrödter et al.

Fig. 1. Signal processing chain. Dark gray items display necessary operations of OCT
signal processing, orange the bottleneck of the CPU implementation (WA).

applied if the data is sampled in an equidistant manner, the data must be rescaled
(DC). To obtain the depth profile of the sample, the Fourier transformation (FFT)
is applied. For this, we use the FFTW algorithm [6], in particular the real to
complex transformation, where only the magnitude of the result is of interest.
To reduce noise in the detected spectrum, the average of 1D-scans (A-scan) con-
tained in the B-scan is computed and subtracted from the complete scan, here
referred by white adjust (WA). Its implementation will be explained in Sect. 4.

As test data sets, we use different real-life OCT images that contain B-scans
of a pill (1120×256 px, 1120×500 px) and cancerous tissue (2048×512 px). Since
we are also interested in the performance for large data sets, one data set was
artificially enlarged, by doubling the input data (up to 2048 × 8192 px). With
these data sets also the correctness of the GPU implementation is assured.

In Fig. 2 the absolute runtimes of the serial reference OCT implementation
are shown. The white adjust needs up to 40% of the execution time. FFT, DC and
MEAN are further bottlenecks in the application. The red-dotted line indicates
the time limit for processing data with a video frame rate. A B-scan of size
2018 × 1536 px is already too large to be processed in less than 40 ms. As the
Fraunhofer IPT targets at larger data sets, a faster processing is needed.

1120 × 256 1120 × 500 2048 × 512 2048 × 1024 2048 × 1536 2048 × 2048 2048 × 4096 2048 × 8192
0

100

200

300

400

Size of image [px]

T
im

e
[m

s]

I2F REF WA

DC WIN FFT

MEAN LOG PI

Fig. 2. Runtime of the reference implementation, split into the different processing
steps. The red line indicates the target frame rate of 25 frames per second.

Modeling of GPU-Accelerated Optical Coherence Tomography 425

4 Parallelization with CUDA

Based on the existing serial CPU signal processing chain, we developed a
massively-parallel GPU implementation with CUDA that focuses on matrix
models. These models could also be applied to the original CPU implementation
to parallelize it and speedup its runtime.

4.1 Signal Processing Chain

For our CUDA implementation of the signal processing chain, we focused on
empowering the OCT application to leverage optimizations provided by the
CUBLAS library. We remodeled the data alignment of the original CPU imple-
mentation (see Sect. 3) in matrix notation as shown in Eq. 1. Using the fact, that
each A-scan is written continuously into the memory, we used a column-major
ordered matrix. ⎡

⎢⎢⎢⎣

A1
1 A2

1 . . . AdB
1

A1
2 A2

2 . . . AdB
2

...
...

. . .
...

A1
dA

A2
dA

. . . AdB

dA

⎤
⎥⎥⎥⎦ (1)

We exemplify the data interpretation as matrix model by looking in-depth
at the white adjust function (WA in Fig. 2) which is the hotspot of the CPU
implementation. Originally, three consecutive for-loops are used to improve the
image quality. The first loop computes the sum, the second one divides by the
number of A-scans, and the third loop subtracts the result from the original
data. The computation of the average can also be written as a matrix vector
product, which can be computed by calling gemv provided by the BLAS library.
It computes y ← αAx + βy where A is the obtained B-scan, x is a vector of
ones, α = 1

A-scans , and β = 0. The results stored in y are subtracted from each
A-scan in A using the ger function: A ← αyxT + A. We assign x as vector of
ones, reuse y and A from the previous step and set α = −1. Thus, we rewrote
three for-loops using two BLAS calls. Using BLAS calls also holds for rewriting
MEAN and REF (see Sect. 3). To map code parts to CUBLAS-specific functions,
we also applied matrix models to the functions PI and WIN, which could be
reformulated using cublasDdgmm with a weighting vector as diagonal matrix.

For the function FFT, we exchanged the FFTW library that is used in the
CPU version by NVIDIA’s CUFFT library. It performs multiple Fourier Trans-
forms in parallel since the A-scans are independent from each other. For functions
which could not be remodeled in matrix notation, we used THRUST whenever
possible. It provides a GPU-optimized version of std::lib algorithms. With
THRUST, self-written transformations can be applied to each value of a data
vector. In case of LOG and amplitude computations, which is part of FFT we used
this to perform the needed operations. Finally, we provide self-written kernels for
the remaining functions, namely I2F and DC. An overview of the used principles
per function is given in Table 1.

426 T. Schrödter et al.

Table 1. Overview of optimization principles for the signal processing functions.

Function I2F REF WA DC WIN FFT MEAN LOG PI

Principle kernel CUBLAS CUBLAS kernel CUBLAS CUFFT+THRUST CUBLAS THRUST CUBLAS

4.2 Data Transfer

To optimize the data transfer to and from the GPU, we keep unmodified data
on the GPU and, thus, reduce the amount of data transferred. Data that is
modified in each step (B-scans) is copied as a whole to the GPU, resulting in a
high bandwidth. Furthermore, we use pinned memory with no ECC for all data
transfers as we aimed for asynchronous data transfers. OCT sync is the first code
version that the parallelization of all kernels in the signal processing chain while
relying on synchronous data transfers.

For the second (further optimized) code version OCT async, we overlap data
transfer and compute operations by using CUDA’s streaming concept and asyn-
chronous operations. Since the OCT B-scans are independent from each other,
each CUDA stream processes one B-scan. Thus, the processing can be executed
in one stream and another one moves data at the same time.

5 Performance Model

For validating the performance of the presented CUDA implementation, a per-
formance model which takes the compute and data transfer times with syn-
chronous and asynchronous transfers into account is derived. The results of the
performance models also depend on the hardware, as GPU we used a Geforce
GTX Titan X and a Geforce 1050 Ti, both of Pascal architecture. An overview
of the specifications is given in Table 2.

5.1 Signal Processing

As part of an overall performance model, we take the Boat Hull Model [13] to
abstract the OCT signal processing functions on the GPU. The model contains
the compute and memory bound of the Roofline Model. As our analysis reveals
that all functions are of low computational complexity, we only consider the
memory bound. The estimated runtime m0 for memory bound kernels is given by
Eq. 2 with d = c+u, where d is the total amount of data accessed, and c and u are
the coalesced and uncoalesced memory accesses respectively. The corresponding

Table 2. Specifications of the used GPUs.

Architecture Memory MP CUDA cores GPU Clock rate Mem. Clock rate Mem. Bus Width

GTX Titan X Pascal 12GB 24 3072 1.08GHz 3505MHz 384 bit

GTX 1050 Ti Pascal 4GB 6 768 1.46GHz 3504MHz 128 bit

Modeling of GPU-Accelerated Optical Coherence Tomography 427

Table 3. Performance properties of the different used GPUs.

Pcoalesced Puncoalesced bH2D αH2D bD2H αD2H

GTX Titan X 230GB/s 10 GB/s 6.1610GB/s 0.030ms 6.7084GB/s 0.030ms

GTX 1050 Ti 101GB/s 12 GB/s 6.1614GB/s 0.035ms 6.7066GB/s 0.050ms

bandwidths are given by Pcoalesced and Puncoalesced. If only scattered memory
accesses occur, m1 gives the estimated execution time.

m0 =
c

Pcoalesced
+

u

Puncoalesced
, m1 =

d

Puncoalesced
(2)

To determine the on-device bandwidth we used the SHOC deviceMemory
benchmark [5]. We used the maximum of the measurements of
readGlobalMemoryCoalesced as bandwidth for the coalesced memory
access Pcoalesced, whereas the lowest value of readGlobalMemoryUnit and
writeGlobalMemoryUnit represents Puncoalesced. The latter measures the read
or write bandwidth of uncoalesced, per thread contiguous, global memory
accesses [5]. Since we optimized the algorithms by using high-performance
libraries the particular memory access pattern cannot be reconstructed. There-
fore, we needed to base values for c and u in the model on the assumption
that the used libraries mainly use contiguous data access. From results of the
NVIDIA profiler, we conclude that c is between 60% and 95% of the total data
amount d depending on the signal processing function. The GPU-specific model
parameters are listed in Table 3.

5.2 Data Transfer

Besides modeling the performance of the single GPU kernels, it is crucial to also
incorporate the CPU-GPU data transfer into the performance evaluation for a
better representation of the reality. First, we describe a general model for CPU-
GPU data transfers where the hardware-dependent parameters are obtained by
benchmarks. Later, we modified this model to take the OCT-specific data trans-
fers into account.

For modeling the time of the data transfer, we generally used T (d) = α + d
β

with data size d in Byte, latency α in seconds, and β the transfer bandwidth
[3]. For modeling the data transfer to the GPU, it holds d = 2B × dA × dB ,
α = αH2D, and β = bH2D. The transfer of the data back to CPU is divided
into two parts. First the processed data with dA × dB elements. Secondly, the
computed spectrum with (dA

2 + 1) × dB elements is copied to the CPU. Each
element of the data sets is of type float, hence has a size of 4 B. Additionally,
the latency αD2H is needed twice, once for each copy operation, as displayed in
Eq. 3.

428 T. Schrödter et al.

TD2H(dA, dB) =2 · αD2H +
4B

bD2H
× dA × dB +

4B

bD2H
× (

dA

2
+ 1) × dB (3)

We used the SHOC benchmarks BusSpeedDownload and BusSpeedReadback
for bH2D and bD2H , and self-written latency benchmarks for αH2D and αD2H .
The results are reported in Table 3. Of particular interest are the bandwidths
for data sets of 0.5 MB to 64 MB, as our test data sets. Both GPUs reach the
maximum of the transfer bandwidth at approx. 30 MB. As we are primarily inter-
ested in the performance of high-resolution OCT data sets, the highest attainable
bandwidth is used as model parameter. Comparing the model and the results
from the benchmark yield a deviation lower than 10%. This deviation occurs
mainly at small data sizes since we used the highest attainable bandwidth as
model parameter, hence, the transfer times for small data sets are underesti-
mated.

5.3 Synchronous Data Transfer (OCT sync)

The standard copy in CUDA is executed synchronously, meaning that the copy
operation first has to be completed before the next processing step can start. For
modeling the performance of systems with no overlapping computations or data
transfers, the runtime T is the sum of the data transfer time from host to device
and vise-versa (TH2D and TD2H) and the runtime of all kernels Tproc =

∑
m0.

Thus, the total processing can be estimated by Eq. 4.

T = TH2D + Tproc + TD2H (4)

5.4 Asynchronous Data Transfer (OCT async)

Modeling data transfer of GPUs with two copy engines (as in the used Pas-
cal GPUs) and no implicit synchronization is objective of [14]. The predicted
runtime is the maximum of all possible combinations of overlap as described in
Eq. 5. From Sect. 5.1 we concluded that the GPU is not utilized completely since
all processing functions are memory bound. Hence, multiple compute operations
of different streams can be executed concurrently on the GPU. Thus, the second
term in Eq. 5 can be neglected since it describes the case that all computations
are executed serially. The first term of Eq. 5 can also be eliminated since the time
needed for the copy from device to host is always larger than the transfer from
host to device, since more data needs to be transferred. Including the results
from the previous steps yields the performance model for a GPU with two copy
engines (as in our Pascal GPUs) for the OCT signal processing chain.

T = max(
���������������
TH2D +

Tproc

#streams
+

TD2H

#streams
,
���������������

TH2D

#streams
+ Tproc +

TD2H

#streams
,

TH2D

#streams
+

Tproc

#streams
+ TD2H)

(5)

Modeling of GPU-Accelerated Optical Coherence Tomography 429

6 Results

For evaluating the performance of the OCT signal processing chain, we reduced
the software system of Fraunhofer IPT to a test setup focusing on the signal
processing functions included as shared libraries in the test suite. These imple-
mentations were compiled using either Microsoft’s Visual Compiler 14.0 (MS
VS), Intel’s Compiler 17.0 (ICC) or CUDA 8.0, respectively. Additionally to the
provided serial reference implementation (MSVS), BLAS libraries are utilized for
CPU-parallel versions: BLAS (OpenBLAS + MS VS) and ICC (MKL + ICC). We
used two different test set-ups: First a work station at Fraunhofer IPT, second
a compute node of the RWTH Aachen cluster. The work station contains an
Intel i7 3820 Sandy Bridge CPU with 3.6 GHz on 4 cores (8 threads) and 16 GB
main memory. The compute nodes of the cluster are 2-socket Intel Broadwell EP
E5-2650v4@2.2 GHz systems with an overall of 24 cores. Due to unbalanced data
affinity, using only one socket with 6 threads and close thread binding yields the
best-effort performance (ICC BW). Future work will cover improved data affinity.

Runtime measurements on the CPU were tracked using the boost::timer,
whereas CUDA calls were measured with CUDA events. The measured time
also includes some overhead from the program flow of the processing chain. For
OCT async, we conducted an overall measurement of 100 runs and then derived
the average runtime of a single execution. Furthermore, each of the measure-
ments is the mean of 100 separate runs. We ensured that the standard deviation
of measurements is within 10% of the reported mean and the measurements
are roughly normally distributed. The number of used streams was set (up) to
the number of multiprocessors as this lead to the best results in our tests (see
Table 2). Times needed for initial copy operations of constant values to the GPU
is not taken into account since it can be neglected when using OCT in real
applications.

6.1 Model vs. Measurement

To validate the performance of OCT async, we compare the measured runtimes
with our predicted times from the model (see Eq. 5). For the Geforce GTX
Titan X, the results are displayed in Fig. 3, tested to a maximum of 16 streams.
Comparing OCT sync with the predicted runtimes, shows an error of 5% to 8%.
In case of OCT async, the largest error (20%) occurs when using 4 streams, where
our implementation has a better performance than predicted by the model. Using
more than 4 streams lead to no further performance improvement, contrary more
streams tend to lead to a slower processing time for smaller data sets. In case
of the Geforce GTX 1050 Ti, the measured and predicted runtimes are shown
in Fig. 4. The difference for OCT sync is less than 5% for all tested data sets.
Although the Geforce GTX 1050 has 6 multiprocessors, we tested it up to 4
streams, as our tests showed the best performance. The difference between model
and reality is up 15%.

For both GPUs, OCT sync is slower as predicted by the model. But when
using multiple streams the measured execution time is faster than the model.

430 T. Schrödter et al.

1120 × 256 1120 × 500 2048 × 512 2048 × 1024 2048 × 1536 2048 × 2048 2048 × 4096 2048 × 8192

100µs

1ms

10ms

100ms

Data size [px]

R
un

ti
m
e

sync 2 streams

4 streams 8 streams

16 streams estimate

Fig. 3. Comparison of measured and predicted compute times on Geforce GTX Titan
X with asynchronous data transfer.

1120 × 256 1120 × 500 2048 × 512 2048 × 1024 2048 × 1536 2048 × 2048 2048 × 4096 2048 × 8192

100µs

1ms

10ms

100ms

Data size [px]

R
un

ti
m
e

sync 2 streams

4 streams estimate

Fig. 4. Comparison of measured and predicted compute times on Geforce GTX 1050
Ti with asynchronous data transfer.

The error is mainly introduced in the prediction of Tproc, in particular in the func-
tions where mostly scattered memory accesses occur, i.e. DC. The benchmarked
Puncoalesced is based on more coalesced memory accesses than the compute ker-
nels, leading to an overestimation of the runtime. However, the performance of
our GPU implementations lies close to the predicted runtimes.

6.2 Performance Comparison

With the given (serial) reference implementation (MSVS), scans up to a size of
2048 × 1024 px could be processed with the desired frame rate. In Fig. 5, the
processing times of the different implementations and data sizes are shown.
Additionally, the speed-up compared to MSVS is displayed. The developed CPU
parallel versions allow to process our data set with 2048 × 2048 px in less than
40 ms. They lead to a speed-up between 1.5 and 3, which means up to 3 times
higher frame rate compared to the serial implementation. Due to higher clock
frequency, we get nearly the same execution time for the Sandy Bridge as for the
Broadwell node (ICC vs. ICC BW). By using our new implemented GPU version
with synchronous data transfer OCT sync, all of the given test data sets could
be processed faster than 40 ms with both GPUs. Overall the synchronous GPU

Modeling of GPU-Accelerated Optical Coherence Tomography 431

MSVS BLAS ICC ICC BW 1050 sync 1050 async Titan sync

Titan async

11
20

×25
6

11
20

× 50
0

20
48

× 51
2

20
48

× 10
24

20
48

× 15
36

20
48

× 20
48

20
48

× 40
96

20
48

× 81
92

1ms

100ms

Size of image in [px]

R
un

ti
m
e

11
20

× 25
6

11
20

× 50
0

20
48

× 51
2

20
48

× 10
24

20
48

× 15
36

20
48

× 20
48

20
48

× 40
96

20
48

× 81
92

0

10

20

Size of image in [px]

Sp
ee
d-
up

Fig. 5. Runtime comparison (log scale) of the different implementations and Speed-up
compared to the serial reference implementation for the OCT signal processing chain.

implementation is 5 to 7 times faster than the provided reference implementa-
tion. Compared to the CPU-parallel version a speed-up of 2.5 to 3 is achieved.
Now using OCT async reduces the processing time by a factor of 2.5 for the
Geforce GTX 1050 Ti compared to OCT sync. Resulting in a speed-up of 8 to 16
compared to MSVS, and 4 to 5 compared to the CPU-parallel implementations.
For the Geforce GTX Titan X, an additional speed-up of 3 could be noted com-
pared to OCT sync, hence, it can process the OCT signal 8 to 21 times faster
than MSVS. Compared to the CPU-parallel versions OCT async is 5 to 7 times
faster.

7 Conclusion and Outlook

For creating tomographic images with OCT, the signal processing is the limiting
factor to achieve a frame rate of 25 frames/s for smoothly displaying the result.
In this work, we developed a GPU-parallel version of Fraunhofer IPT’s OCT
software using CUDA. We further created a corresponding performance model
that includes runtime prediction of the OCT kernels and the PCIe data transfers.

For the porting of the signal processing kernels, we focused on re-formulating
the algorithms in matrix notation to leverage highly-tuned libraries like
CUBLAS. Furthermore, our optimizations included overlapping of data trans-
fers and computations. With our CUDA implementation OCT sync, we achieve
a speed-up of factor 5 to 7 on consumer Pascal GPUs over the serial CPU ver-
sion. Hence, the frame rate is increased from 3 frames/s to 20 frames/s for the
largest data set. With OCT async, 45 frames/s are reached for this data set, i.e.,
a speed-up of 5 compared to the CPU-parallel versions. Our performance model
captures all important properties of these OCT GPU implementations. Devia-
tions of measured and modeled performance results are below 15%. Using the

432 T. Schrödter et al.

model, we estimate that B-scans up to 2048 × 24576 px can be processed with
video rate.

In future, to achieve further acceleration and enable video frame rates for
volumetric 3D-scans, we will constantly optimize the code for both, CPU and
GPU. Part of this is using the GPU to directly displaying the obtained signal,
hence, saving two copy operations.

References

1. van Aarle, W., et al.: Fast and flexible x-ray tomography using the astra toolbox.
Opt. Express 24(22), 25129–25147 (2016)

2. Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.: LogGP: incorporat-
ing long messages into the logp model for parallel computation. J. Parallel Distrib.
Comput. 44(1), 71–79 (1997)

3. Boyer, M., Meng, J., Kumaran, K.: Improving GPU performance prediction with
data transfer modeling. In: 2013 IEEE International Symposium on Parallel Dis-
tributed Processing, Workshops and PhD Forum, pp. 1097–1106, May 2013

4. Culler, D.E., et al.: LogP: a practical model of parallel computation. Commun.
ACM 39(11), 78–85 (1996)

5. Danalis, A., et al.: The scalable heterogeneous computing (SHOC) benchmark
suite. In: Proceedings of the 3rd Workshop on General-Purpose Computation on
Graphics Processing Units, GPGPU-3, pp. 63–74. ACM, New York (2010)

6. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005). special issue on “Program Generation, Optimization, and
Platform Adaptation”

7. Drexler, W., Fujimoto, J.G.: Optical Coherence Tomography: Technology and
Applications. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
77550-8

8. Gómez-Luna, J., González-Linares, J.M., Benavides, J.I., Guil, N.: Performance
models for asynchronous data transfers on consumer graphics processing units.
J. Parallel Distrib. Comput. 72(9), 1117–1126 (2012). accelerators for High-
Performance Computing

9. Huang, D., et al.: Optical coherence tomography. Science 254(5035), 1178–1181
(1991)

10. Izatt, J.A., Choma, M.A.: Theory of optical coherence tomography. In: Drexler,
W., Fujimoto, J.G. (eds.) Optical Coherence Tomography. Biological and Medical
Physics, Biomedical Engineering, pp. 47–72. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-77550-8 2

11. Van der Jeught, S., Bradu, A., Podoleanu, A.G.: Real-time resampling in fourier
domain optical coherence tomography using a graphics processing unit. J. Biomed.
Opt. 15(3), 030511–030511–3 (2010)

12. Madougou, S., Varbanescu, A., de Laat, C., van Nieuwpoort, R.: The landscape of
GPGPU performance modeling tools. Parallel Comput. 56, 18–33 (2016)

13. Nugteren, C., Corporaal, H.: The boat hull model: enabling performance predic-
tion for parallel computing prior to code development. In: Proceedings of the 9th
Conference on Computing Frontiers, CF 2012. ACM Press (2012)

14. Van Werkhoven, B., Maassen, J., Seinstra, F.J., Bal, H.E.: Performance models for
CPU-GPU data transfers. In: 2014 14th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, pp. 11–20, May 2014

https://doi.org/10.1007/978-3-540-77550-8
https://doi.org/10.1007/978-3-540-77550-8
https://doi.org/10.1007/978-3-540-77550-8_2
https://doi.org/10.1007/978-3-540-77550-8_2

Modeling of GPU-Accelerated Optical Coherence Tomography 433

15. Wieser, W., Draxinger, W., Klein, T., Karpf, S., Pfeiffer, T., Huber, R.: High
definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1
GVoxel/s. Biomed. Opt. Express 5(9), 2963–2977 (2014)

16. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

17. Zhang, K., Kang, J.U.: Graphics processing unit-based ultrahigh speed real-time
fourier domain optical coherence tomography. IEEE J. Sel. Top. Quantum Elec-
tron. 18(4), 1270–1279 (2012)

18. Zhang, K., Kang, J.U.: Real-time 4D signal processing and visualization using
graphics processing unit on a regular nonlinear-k fourier-domain oct system. Opt.
Express 18(11), 11772–11784 (2010)

	Modeling and Optimizing Data Transfer in GPU-Accelerated Optical Coherence Tomography
	1 Introduction
	2 Related Work
	3 Optical Coherence Tomography
	4 Parallelization with CUDA
	4.1 Signal Processing Chain
	4.2 Data Transfer

	5 Performance Model
	5.1 Signal Processing
	5.2 Data Transfer
	5.3 Synchronous Data Transfer (OCT_sync)
	5.4 Asynchronous Data Transfer (OCT_async)

	6 Results
	6.1 Model vs. Measurement
	6.2 Performance Comparison

	7 Conclusion and Outlook
	References

