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Abstract. Emerging blockchain technology is a promising platform for
implementing smart contracts. But there is a large class of applications,
where blockchain is inadequate due to performance, scalability, and con-
sistency requirements, and also due to language expressiveness and cost
issues that are hard to solve. In this paper we explain that in some
situations a centralised approach that does not rely on blockchain is a
better alternative due to its simplicity, scalability, and performance. We
suggest that in applications where decentralisation and transparency are
essential, developers can advantageously combine the two approaches
into hybrid solutions where some operations are enforced by enforcers
deployed on—blockchains and the rest by enforcers deployed on trusted
third parties.
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1 Introduction

This paper focuses on scenarios where two or more parties interact with each
other to conduct business over the Internet. Typical scenarios involve consumers
and providers where the latter sell tangible items or computing services to the
former. A specific example is the selling of personal data collected from IoT
sensors or social media applications to data consumers. We assume the business
parties involved are reluctant to trust each other unguardedly, that is; without
software mechanisms that assure (1) parties act according to some agreed upon
rules, and (2) performed actions are indelibly recorded on means that make them
undeniable and examinable, for example, to determine the sequence of actions
that led to an unexpected outcome and subsequent dispute.

In conventional business, the mechanisms normally used in these situations
are business contracts supported by ledgers. The contract stipulates what actions
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the parties are expected to execute, while the ledger is used to record the his-
tory of the actions that have been executed. It is widely accepted that equivalent
mechanisms are also needed in electronic business. An emerging solution that
is currently being explored to address this question is smart contracts built
on the basis of blockchain technologies [4,25]. Examples of such technologies
are Bitcoin [2], Ethereum [10] and Hyperledger [34]. However, blockchain-based
smart contracts are only at their initial research stage, and plagued with ques-
tions about their scalability, performance, transaction costs and other questions
that emerge from their decentralised nature.

This article makes the following contributions to help clarify some of these
issues. (i) We explain that there are different approaches to implement smart con-
tracts ranging from centralised to decentralised. (ii) We explain the advantages
and disadvantages of these approaches and argue that their suitability in solving
the problem depends on the particularities of the application, the assumptions
made about the application, and the facilities offered by the blockchain technol-
ogy available. (iii) We argue that there is a large class of applications that can
benefit from a hybrid solution.

The remainder of this article is organised as follows: Sect.2 presents a con-
tract example to motivate the use of smart contracts. In Sect. 3, we introduce
smart contracts and describe the difference between the centralised and decen-
tralised variations. Section 4 discusses implementation alternatives of smart con-
tracts. Section5 places our work within past and current contexts. In Sect. 6,
we present some concluding remarks and raise questions that in our view, need
research attention.

1 The data buyer is entitled to
present the data seller offers with
offers to buy data data ...

2 The data seller is free to use her
discretion to either reject the offer
or...
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Fig. 1. Data trading regulated by a smart contract.
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2 DMotivating Scenario

An illustrative example of a contractually regulated IoT application of our
research interest is shown in Fig. 1. Alice is a person in possession of personal
data that she would like to sell and as such she plays the role of a Data seller.
The Data Buyer (represented by Bob) is a company interested in buying data
from Alice. Alice gathers her data from different sources, such as her social net-
work activities, body sensors and domestic sensors, as envisioned in [35]. For
simplicity and to frame the discussion, we assume that Alice is trading only
her data collected from her domestic sensors. We assume that Alice stores her
data in a personal repository, perhaps located in the cloud. Like in the “Hat”
project [1], we assume Alice is the absolute owner of the data and that she is
entitled to negotiate with potential buyers how to trade her data, i.e., to whom
to sell it to, when, and under which conditions. The negotiation process can be as
sophisticated as needed. Since this issue falls outside of the scope of this paper,
we consider only a simple accept or reject the offer as it is negotiation process.
An example of contractual clauses that Alice and Bob can use to regulate their
data trading follows:

1. The buyer (Bob) is entitled to present the data seller (Alice) with offers to
buy data collected from Alice’s domestic sensors.

2. The data seller is free to use her discretion to either reject the offer or
accept the offer as it is.
(a) The data seller is expected to send a notification of offer acceptance

within 36 h of receiving the offer, when she decides to accept it.

(b) Failure to send a notification will be considered as offer rejection.

3. The data buyer is obliged to send the payment to the data seller within 24 h

of receiving the notification of acceptance.
(a) Failure to meet his obligation will result in an abnormal termination of
the agreement to be sorted out off line.
4. The data seller is obliged to send a notification of payment acceptance
to the data buyer within 24 h of collecting the payment.
(a) Failure to meet his obligation will result in an abnormal termination of

the agreement to be sorted out off line.

5. The data seller is obliged to make the data available to the data buyer
within 24 h of collecting the payment and maintain the data repository
accessible during the following seven days.

6. The Data buyer is entitled to place data requests against the data seller
repository without exceeding 24 data requests per day.

7. The data buyer is entitled to close the repository upon expiration of the
seven day period.

8. This agreement will be considered successfully complete when the seven day
period expires.

The clauses include several contractual operations that we have highlighted in
bold such as offer to buy data, reject the offer, accept the offer, send a notification
of offer acceptance, send payment, etc. Though the clauses are relatively simple,
they are realistic enough to illustrate our arguments.
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3 Smart Contracts: Background

A smart contract is an event—condition—action stateful computer program, exe-
cuted between two or more parties that are reluctant to trust each other unguard-
edly. It can be regarded as Finite State Machine (FSM) that keeps a state that
models the development (from initiation to completion) of a shared activity. For
instance, in [22,32], the state is used for modeling changes in rights, obligations
and prohibitions as they are fulfilled or violated by the parties.

Research on executable contracts can be traced back to the mid 80s and early
90s [16,18]. In 1997, Szabo used the term smart contract [33] to refer to contracts
that can be converted into computer code and executed. However, commercial
interest in smart contracts emerged only in 2008 motivated by the publication of
Satoshi’s Bitcoin paper [24] that inspired the development of cryptocurrencies,
smart contracts and other distributed applications. Satoshi departed from the
centralised approach taken in previous research and demonstrated how smart
contracts can be decentralised.

TTP node

Q op/rp @
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®

(a) centralised smart contract. (b) decentralised smart contract.

Fig. 2. Centralised and decentralised implementation of a smart contract.

3.1 Centralised and Decentralised Smart Contracts

Depending on the number of instances (copies) of the smart contract deployed to
monitor and enforce the contract we distinguish between centralised and decen-
tralised (distributed) approaches (Fig.2). In the figure, A and B are business
partners, for example, Alice and Bob of our contract example of Sect.2. SC' is
the corresponding smart contract. op stands for operation executed against SC,
rp is the corresponding response. TTP node is a node under the control of a
Trusted Third Party. Ny, ..., N4 are untrusted nodes. CP stands for Consensus
Protocol. As shown in Fig. 2-(a), a contract can be implemented as a centralised
application that uses a single instance of the smart contract (SC) running in
the TTP node. Besides the disadvantages that a TTP introduces (single point
of failure, trust placed on the TTP, etc.) this approach is comparatively sim-
pler that the decentralised approach. The decentralised approach relies on a set
of untrusted nodes instead of a single TTP that are used for running several
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identical instances (shown as SC1,...,SCy) of the smart contract. In this app-
roach, A and B are free to place their operation against any of the instances.
The price that the decentralised approach pays for getting rid of the TTP is
that the untrusted nodes must run a consensus protocol to verify that a given
operation has been executed correctly, and to keep the states of SC4q,...,5C,
identical. Depending on the protocol used, its computational, communication
and performance degradation cost might be unbearable [36] or its consistency
guarantees inadequate [3] to the extent of rendering the decentralised approach
unsuitable.

4 Implementation Alternatives

We will take the example of Sect. 2 and highlight the advantages and disadvan-
tages of three implementation alternatives.

TTP node
Alice’s domestic
sensors

op cc| ncc
op gateway op

(open | close)
p Uy

Data buyer (Bob) Data seller (Alice)

Fig. 3. Centralised smart contract.

4.1 Centralised Implementation

A centralised implementation is shown in Fig.3. The role of the SC is played
by the CCC (Contract Compliance Checker) developed at the University of
Newcastle. We use CCC and SC synonymously in this section. The CCC is a FSM
written in Java that accepts contractual clauses encoded as business rules written
in the Drools language [22]. The state of the FSM is altered by the execution of
contractual operations (op) initiated by the business partners, such as offer to
buy data, and send the payment. The FSM running within the CCC keeps track
of the state of the business process executed between Bob and Alice, and on this
basis it determines if a given operation is contract compliant (cc) or non contract
compliant (ncc). The CCC is used to control the gateway that grants access to
Alice’s data. For example, when Bob wishes to access Alice’s data, he (i) issues
the corresponding operation against the gateway, (ii) the gateway forwards the
operation to the CCC, (iii) the CCC evaluates the operation in accordance with
its business rules that encode the contractual clauses and responds with either cc
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or nce to open or close the gateway, respectively, (iv) the opening of the gateway
allows Bob’s operation to reach the data repository and retrieve the response
(rp) that travels to Bob. Note that, to keep the figure simple, the arrows show
only the direction followed by operations initiated by Bob.

It is worth elaborating the following points. Observe that in the architecture,
all the operations are presented to the SC for evaluation. The operation rate is
not a problem because the architecture involves only a single instance of the SC,
i.e., there is no need to run consensus protocols. Likewise, the contract clauses,
which are encoded in the Drools languages, are executed by a FSM implemented
in Java. This means that we have a Turing complete programming environment
that allows us to encode and implement clauses of arbitrary complexity. Unfor-
tunately, the centralised approach introduces several drawbacks. For example,
the contracting parties need to trust the TTP to collect undeniable and indeli-
ble records of the actions executed by the contracting parties and make them
available upon request to parties that are entitled to see them, say to sort out
disputes. At the technical level, the TTP is a single point of failure. Another
issue is that the execution of the payment operation is centralised. We assume
a conventional card payment mediated by a bank as opposed to cryptocurrency
payment.

Alice’s domestic
sSensors

(open | close)
m
Data buyer (Bob)

Fig. 4. Decentralised smart contract.

4.2 Decentralised Implementation

A decentralised architecture is shown in Fig. 4. Four instances of the smart con-
tract (SCq,...,S5C,) are deployed in four nodes Ny,..., N4 (one each) of a
blockchain platform. Each operation initiated by a business partner is executed
against the contract; the contract determines if the operation is contract com-
pliant (ec) or non contract compliant (nce) and responds to both business part-
ners accordingly. The response is also sent to the gateway to open or close it,
accordingly.
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To keep the figure simple, we show only the communication lines between
the Data buyer, SC1 and the gateway; and between the Data seller, SC3 and
the gateway. Yet we assume that a given operation can be presented to any of
the four instances of the smart contract and that any of them can respond to
the business partners and the gateway.

The salient feature of the decentralised implementation is the replication of
the smart contract, consequently, there is no dependency on a single party. The
cost to pay for this benefit is the execution of the consensus protocol among the
instances which can significantly impact the performance of the smart contract
in terms of number of operations (called transactions in blockchain terminology)
per second that it can analyse, and the response time to complete a trans-
action. For example, Bitcoin, a public blockchain that uses a Proof of Work
(PoW) consensus algorithm, can only process about 7 transactions per second.
Another problem with Bitcoin is its consistency latency: its PoW algorithm offers
only eventual consistency that might take Bitcoin about an hour (or longer)
to approve and indelibly include a transaction in its blockchain [8]. Ethereum
operating under PoW consensus suffer from similar drawbacks. Permissioned
blockchains like Hyperledger rely on lighter consensus algorithms such as Proof of
State (PoS). However, applications where eventual consistency is unsafe, demand
strong consistency [3]. Strong consistency can only be delivered by communica-
tion intensive consensus protocols such as Byzantine Fault Tolerant protocols.
Unfortunately, these protocols suffer from scalability issues [36]. Some smart con-
tract applications (for example, applications that require instantaneous payment
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Fig. 5. Hybrid smart contract.
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or the delivery of real time data) fall within this category. Another issue that
impacts decentralised approaches that rely on public blockchains is the trans-
action fee incurred by each operation analysed by the smart contract. In this
order, it would be insensible to take a decentralised implementation approach
for the contract example of Sect. 2 if the data buyer was to place a large number
of operations to retrieve small pieces of data under stringent time constraints.

4.3 Hybrid Implementation

Figure5 shows the architecture of a hybrid implementation. It combines fea-
tures from the centralised and decentralised approaches discussed, respectively,
in Sects. 4.1 and 4.2. We separate the contractual operations into two classes:
decentralised operations (d—-op) that need blockchain support and operations
that can be executed in a centralised fashion (¢-op). d—op operations are encoded
using the decentralised approach and enforced by the instances (SC1q,...,SC4)
whereas operation of the c—op category are encoded using the centralised app-
roach and enforced by the CCC.

The designer separates the contractual operation into d-op and c—op on the
basis of several criteria. As examples, we can mention some key parameters
related to the blockchain technology. The list is meant to be illustrative rather
then exhaustive. Complementary advise is discussed in [9,38] where they take
into account privacy concerns along with computation and data storage costs.

One decision criterion is the expressiveness of the language used for writing
the contract. For instance, if the blockchain does not offer a Turing—complete
language, the implementers needs to keep the d—op category simple. Bitcoin
for example, offers only a stack—based opcode scripting language that does not
support loops or flow control structures. In contrast, in a blockchain platform
like Ethereum that offers a Turing—complete language the designer can afford
to pass as much complexity to the decentralised part of the figure as she wishes
to. Another decision criterion is the transaction fee which is an issue in pri-
vate blockchains like Bitcoin and Ethereum but not in Hyperledger [37] when it
is operated as a permissioned blockchain. For example, Bitcoin and Ethereum
have already experienced average transaction fees of 54.90 and 4.15 USD, respec-
tively [5]. Another central parameter to take into account is the performance of
the blockchain, for example, the number of transactions per second and con-
sistency requirements as explained in Sect.4.2. Operations that demand strong
consistency would be good candidates to be implemented as c—op. The perfor-
mance of the blockchain is especially relevant to IoT applications where transac-
tions must be automatically monitored to ensure that they perform under strict
Quality of Service requirements. For example one could easily imagine an addi-
tional clause being added to the contract in Sect.2 requiring the repository to
process each request for data at a particular rate that would be too fast to be
monitored using a smart contract deployed on a blockchain. In such a scenario, a
centralised smart contract would be more logical, whereas the blockchain would
be used to record important milestone events such as the sending and receipt of
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payments for received data. We envision that the centralised and decentralised
integration can be operated in several ways, including the following:

Indelible Blockchain—Based Log. We can operate the blockchain—based part
of Fig.5 as a passive log that records events that the parties consider worth
duplicating in the blockchain as well as in the TTP node. By passive we mean
that SCq,...,S5C, are not involved in enforcing activities—this is entirely the
responsibility of the CCC. This arrangement is useful when one or more of
the contracting parties is reluctant to trust the TTP blindly, say because it is
deployed within the buyer’s premises.

In this arrangement, the d—op set will include operations aimed at creating
additional records while c-op will include all the contractual operations like
in 4.1. The CCC and SC4,...,SC, operate independently from each other.

Cryptocurrency—Based Payment Channel. The data buyer of the example
of Sect. 2 can take advantage of payment services offered by a public blockchain
(for example, Bitcoin) and use the top part of Fig.5 to pay in satoshis. This
approach is recommended only when the payment operation is significantly larger
than the transaction fees and is not repetitive. In this arrangement, the d—op set
will include only the send the payment operation stipulated in clause 3. In this
arrangement, the CCC requires the assistance of the smart contract running in
the blockchain (SC4,...,SCy) only to verify that the data buyer has fulfilled
his obligation to pay. For instance, the data buyer application can submit his
payment through Bitcoin, wait for the confirmation of his transaction, collect
the evidence and submit it to the CCC.

Off-Blockchain Execution of Operations. In this arrangement the CCC
running in the TTP node is used as an off the blockchain channel. The designer
places in the d—op set only the contractual operations that need decentralised
treatment and leaves the remaining in the c—op. Naturally, operations that can-
not be executed in the decentralised blockchain because of the issues discussed
in Sect. 4.2 need to be included in c—op set. A good candidate operation to place
in the d-op set is send the payment (see Sect.4.3). Another candidate is close
the repository when the data seller wishes to generate indelible records about
the closing time of her repository and completion of the contract. The remaining
operations can be cheaply and efficiently enforced by the CCC, the inclusion of
place data requests (clause 6), in the c—op set is highly desirable because its
recurrence would incur high accumulative transaction fees.

It is worth clarifying that there are some similarities between the deployment
shown in Fig. 5 and the lightning channels for executing off-blockchain payments
in Bitcoin [27]. However, observe that in lighting networks the aim is to create
channels for conducting micro-payment operations off the blockchain to save on
transaction fees. In contrast, in Fig.5 we use the CCC (a complete contractual
enforcing tool) to execute most of the contractual operations off-blockchain.
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Operations from both sets are independently converted to smart contracts and
enforced at run time.

5 Related Work

An extended version of this paper can be found here [23]. Research on smart con-
tracts was pioneered by Minsky in the mid 80s [18] and followed by Marshall [16].
Though some of the contract tools exhibit some decentralised features [17], those
systems took mainly centralised approaches. Within this category falls [13,26].
To the same category belongs the model for enforcing contractual agreements
suggested by IBM [15] and the Heimdhal engine [12] aimed at monitoring state
obligations (see clause 5 of the contract example, maintain the data repository
accessible). Directly related to our work is the Contract Compliant Checker
reported in [22,32] which also took a centralised approach to gain in simplicity
at the expense of suffering from all the drawbacks that TTPs inevitably intro-
duce. Smart contracts were known as executable contracts or electronic contracts
in [20,21,30], where the important issues of smart contract representation and
verification were discussed. A pioneering implementation of a decentralised con-
tract enforcer is discussed in [29]. The central idea is the use of a distributed
middleware that is responsible for keeping indelible records of the operations exe-
cuted by each party. The middleware (called Business to Business Objects [7])
is in essence an indelible ledger similar in functionality to the hyperledger used
by current blockchains.

The publication of the Bitcoin paper [24] motivated the development of sev-
eral platforms for supporting the implementation of decentralised smart con-
tracts. Platforms in [2,10,34] are some of the most representative. A good sum-
mary of the features offered by these and other platforms can be found in [4].
Though they differ on language expression power, fees and other features dis-
cussed in Sect.4.2 they are convenient for implementing decentralised smart
contracts. The hybrid approach that we suggest addresses problems that nei-
ther the centralised or decentralised approach can address separately and was
inspired by the off-blockchain payment channel discussed in [2,27]. Similar to our
work also is Ekiden, a system for combining blockchains with Trusted Execution
Environments (TEEs) [6]. The authors report significant performance improve-
ments however they do not discuss the challenges of testing and verification
hybrid smart contracts. The concept of logic—based smart contracts discussed
in [14] has some similarities with our hybrid approach. They suggest the use
of logic—based languages in the implementation of smart contracts capable of
performing on—chain and off—chain inference. The difficulty with this approach
is lack of support of logic—based languages in current blockchain technologies. In
our work, we rely on the native languages offered by the blockchain platforms,
for example, Ethereum’s Solidity.
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6 Conclusions and Future Research Directions

The central aim of this paper is to argue that conventional business contracts
can be automated (at least partially) and that depending on several factors,
the centralised approach suits some applications but others demand decen-
tralised implementations or even hybrid implementations. We are only start-
ing to explore hybrid implementation of smart contracts, yet on the basis of
the study of the APIs (JSON-RPC) that Bitcoin, Ethereum and Hyperledger
offer, the idea seems implementable [19]. Also, it is of practical interest as it
would offer a pragmatic answer to the scalability problems that afflict current
blockchain platforms. This approach opens several research questions.

An important issue is the interaction between the centralised (CCC) and
decentralised components. In Fig.5 they cannot communicate directly. We are
currently working on a version of the CCC that can be deployed as a micro—
service capable of interacting with the JSON-RPC Client API that blockchain
technologies offer. Precisely, we are investigating how the hybrid architecture
can be realised using the Ethereum blockchain and a CCC implemented as a
decentralised application (DApp) [11]. The relationship (directly or indirectly)
between the CCC and the blockchain raises several questions that need further
investigation. They can interact directly, indirectly, tightly or loosely. Figure 5
suggests the latter where, for example, the CCC can fail and recover while the
send the payment operation is taking place through the block—chain based smart
contract (recall in Bitcoin it might take longer that 24 h to complete a transac-
tion). However, in some applications a tight relationship might be desirable to
hold or divert the progress of one of the contracts when its counterpart expe-
riences an exception or fails. Therefore it is important to develop an under-
standing on how to separate the contractual operations into c—op and d—op in a
manner that the two contracts collaborate instead of conflicting with each other.
For contracts with scores of clauses, this issue might require the assistance of
model-checking tools to ensure that the whole contractual clauses are consistent
and that the two sets do not conflict with each other [28,31].

Another issue is the language for writing the contract. It is arguably accepted
that declarative languages (rule based languages in particular) are more conve-
nient than imperative languages to encode contractual clauses. This feature is
enjoyed by the CCC. However, current blockchain platforms support only imper-
ative languages (for example Ethereum’s Solidity). This means that in our hybrid
approach the contract will be written in two different languages which will make
their interaction less intuitive. Therefore ideally blockchain platforms should sup-
port declarative languages, or alternatively developers should be offered a declar-
ative language that can be automatically translated to languages like Solidity or
Drools as needed.
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