
Chapter 12
Sensitivity Analysis of Continuous
Markov Chains

12.1 Introduction

When Markov chains are used as mathematical models of natural or social
phenomena, the transition intensities or probabilities are usually defined in terms of
parameters that are relevant to the scientific question at hand. Sensitivity analysis
of such models is important because it quantifies the dependence of the model
behavior on the parameters. This chapter presents sensitivity results for finite-state,
continuous-time absorbing Markov chains, paralleling the approach for discrete-
time chains in Chap. 11. In absorbing chains, interest focuses on behavior prior
to absorption (time spent in transient states and time to absorption) and on the
probabilities of absorption in each absorbing state. Here we will derive formulae
for the sensitivity and the elasticity (i.e., proportional sensitivity) of the moments
of the time to absorption, the time spent in each transient state, and the number of
visits to each transient state.

The most basic difference between discrete-time and continuous-time Markov
chains is that the former are defined by transition probabilities, while the latter are
defined by transition rates. This leads to differences in the structure of the matrices,
but there is a nice parallelism in the results.

Perturbation analysis of Markov chains has a long history (Schweitzer 1968;
Meyer 1975). Most of the literature, however, is devoted to discrete-time chains,
and most of that focuses on ergodic chains and the perturbation analysis of the
stationary distribution; e.g. Funderlic and Meyer (1986), Golub and Meyer (1986),
Hunter (2005), Cho and Meyer (2000), and Seneta (1993). Much less attention has
been paid to continuous-time chains. Perturbation expansions have been developed
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for the stationary distribution of ergodic continuous-time chains, with application
to queueing models (Altman et al. 2004), and sensitivity results and perturbation
bounds presented for transient solutions (Ramesh and Trivedi 1993; Mitrophanov
2004). The operations research literature contains many studies of the sensitivity
of performance measures calculated over realizations of a continuous-time ergodic
Markov chain; e.g., Cao (1989), Glasserman (1992), and Cao et al. (1996). The
results to be presented here complement and extend the existing literature on
perturbation analysis of Markov chains, by focusing on the statistical properties of
the solutions of absorbing continuous-time chains, by introducing the use of matrix
calculus, and (as a consequence of that technique) extending the range of parameters
whose effects can be evaluated.

12.1.1 Absorbing Markov Chains

I consider a finite state, homogeneous, continuous-time Markov chain with intensity
matrix Q, where qij is the rate of transition from stage j to stage i. The intensity
matrix satisfies qij ≥ 0 for i �= j and qjj = −∑

i �=j qij . Note that Q is written
in column-to-row orientation, and operates on column vectors. An absorbing chain
contains at least one absorbing class of states. Numbering the states so that the
transient states appear before the absorbing states leads to the intensity matrix

Q =
(
U 0
M 0

)

. (12.1)

The matrixU contains rates of transitions among the transient states, andM contains
the rates of transition from transient to absorbing states.

I assume that U and M are differentiable functions of a vector θ of parameters,
and that Q[θ] remains an intensity matrix for sufficiently small perturbations of θ .
This includes as a special case the situation where the elements of θ are simply
some or all of the qij , i �= j . The goal of the perturbation analysis is to obtain the
derivatives of properties of the chain with respect to θ .

12.2 Occupancy Time in Transient States

Let s be the number of transient states, and νij be the time spent in transient state i by

an individual starting in transient state j . Define Nk = E
(
νk
ij

)
as the matrix whose

entries are the kth moments, and Ndg = (N1)dg. The matrix N1 of expectations is
the fundamental matrix of the chain. The first several moments of occupancy times
are given by the entries of the matrices

N1 = −U−1 (12.2)
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N2 = 2NdgN1 (12.3)

N3 = 6N2
dgN1 (12.4)

N4 = 24N3
dgN1 (12.5)

and, in general, by

Nk = kNdgNk−1 k ≥ 2 (12.6)

(Iosifescu 1980, Thm. 8.7).
The differentials of the moments (12.2), (12.3), (12.4), and (12.5) are

dvecN1 =
(
NT
1 ⊗ N1

)
dvecU (12.7)

dvecN2 = 2
{ (

NT
1 ⊗ I

)
D (vec I) + (

I ⊗ Ndg
)} (

NT
1 ⊗ N1

)
dvecU (12.8)

dvecN3 = 6
{
2
(
NT
1 ⊗ Ndg

)
D (vec I) +

(
I ⊗ N2

dg

)} (
NT
1 ⊗ N1

)
dvecU

(12.9)

dvecN4 = 24
{
3
(
NT
1 ⊗ N2

dg

)
D (vec I) +

(
I ⊗ N3

dg

)} (
NT
1 ⊗ N1

)
dvecU

(12.10)

where I = Is throughout. A recursive relation for all the moments is

dvecNk = k
(
NT

k−1 ⊗ I
)
D (vec I)dvecN + k

(
I ⊗ Ndg

)
dvecNk−1 k ≥ 2.

(12.11)

The variance, standard deviation, and coefficient of variation of the νij are
important in applications; they are

V
(
νij

) = N2 − N1 ◦ N1 (12.12)

SD
(
νij

) =
√

V
(
νij

)
(12.13)

CV
(
νij

) = D (vecN1)
−1 vec SD

(
νij

)
(12.14)

where the square root is taken elementwise. Their derivatives are

dvecV = 2
[ (

NT ⊗ I
)
D (vec I) + (

I ⊗ Ndg
) − D (vecN)

]
dvecN1

(12.15)

dvec SD = 1

2
D

[
vec SD

(
νij

)]−1
dvecV (12.16)
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dvecCV = D (vecN1)
−1 dvec SD

−
[
(vec SD)TD (vecN1)

−1 ⊗ D (vecN1)
−1

]

×D (
vec Is2

) (
1s2 ⊗ Is2

)
dvecN1 (12.17)

(suppressing the arguments of V , SD and CV ). Because N1 usually contains zeros,
D (vecN1)

−1 must be restricted to the non-zero entries; the coefficient of variation
is undefined if the mean is zero.

Derivation The fundamental matrix N1 = −U−1. Applying (2.82) yields (12.7).
The derivatives of the higher moments are obtained by differentiating N2 – N4
in (12.3), (12.4), and (12.5). For example, the differential of N4 is

dN4 = 24
{
3N2

dg

(
dNdg

)
N1 + N3

dg (dN1)
}

, (12.18)

using the fact that Ndg commutes with itself and dNdg. Applying the vec operator
gives

dvecN4 = 24
{
3
(
NT
2 ⊗ N2

dg

)
dvecNdg +

(
Is ⊗ N3

dg

)
dvecN1

}
. (12.19)

Substituting (11.12) for dvecNdg and (12.7) for dvecN1 gives (12.10).
Results (12.8) and (12.9) are obtained in similar fashion.

Differentiating the recurrence relationship (12.6) gives

dNk = k
(
dNdg

)
Nk−1 + sNdg (dNk−1) . (12.20)

Apply the vec operator,

dvecNk = k
(
NT

k−1 ⊗ Is
)

dvecNdg + k
(
Is ⊗ Ndg

)
dvecNk−1, (12.21)

and substitute (11.12) for dvecNdg to obtain (12.11).
The derivative of V in (12.15) comes from differentiating (12.12),

dV = dN2 − 2N1 ◦ dN1, (12.22)

applying the vec operator,

DvecV = dvecN2 − 2D (vecN1) dvecN1, (12.23)

and then using (12.7) and (12.8). The derivative of SD
(
νij

)
in (12.16) follows

from (2.83). The derivative of CV
(
νij

)
in (12.17) is obtained using (2.84), with

x = vec SD and y = vecN1.
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12.3 Longevity: Time to Absorption

Let ηj be the time to absorption for an individual currently in transient state j . The
vectors of the kth moments of the time to absorption, ηk , satisfy

ηT1 = 1TN1 (12.24)

ηT2 = (2)1TN2
1 (12.25)

ηT3 = (6)1TN3
1 (12.26)

ηT4 = (24)1TN4
1 (12.27)

and in general

ηTk = kηTk−1N1 k ≥ 2 (12.28)

(Iosifescu 1980, Thm. 8.6)
The variance, standard deviation, and coefficient of variation of the time to

absorption are

V (η) = η2 − η1 ◦ η1 (12.29)

SD (η) = √
V (η) (12.30)

CV (η) = D (
SD(η)

)−1
η1 (12.31)

with the square root taken elementwise.
The derivatives of the moments in (12.24), (12.25), (12.26), and (12.27) are given

by

dη1 =
(
NT
1 ⊗ ηT1

)
dvecU (12.32)

dη2 =
{

2

[(
NT
1

)2 ⊗ ηT1

]

+ 2
(
NT
1 ⊗ ηT1N1

)}

dvecU (12.33)

dη3 =
{

6

[(
NT
1

)3 ⊗ ηT1

]

+ 6

[(
NT
1

)2 ⊗ ηT1N1

]

+ 3
(
NT
1 ⊗ ηT2N1

) }

dvecU (12.34)

dη4 =
{

24

[(
NT
1

)4 ⊗ ηT1

]

+ 24

[(
NT
1

)3 ⊗ ηT1N1

]

+12

[(
NT
1

)2 ⊗ ηT2N1

]

+ 4
(
NT
1 ⊗ ηT3N1

)}

dvecU (12.35)
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and, recursively,

dηk = kNT
1dηk−1 + k

(
Is ⊗ ηTk−1

)
dvecN1. (12.36)

The derivatives of the variance, standard deviation, and coefficient of variation of
the time to absorption are (suppressing the arguments)

dV = 2

{[(
NT
1

)2 ⊗ ηT1

]

+
(
NT
1 ⊗ ηT1N1

)
− D (

η1
) (

NT
1 ⊗ ηT1

)}

dvecU

(12.37)

dSD = 1

2
D (SD)−1 dV (12.38)

dCV = D (
η1

)−1
dSD −

[
SDTD (

η1
)−1 ⊗ D (

η1
)−1

]

×D (vec Is) (1s ⊗ Is) dη1. (12.39)

Derivation Differentiating (12.24) for the expected time to absorption gives

dηT1 = 1Ts dN1, (12.40)

Applying the vec operator, substituting (12.7) for dvecN1, and simplifying
gives (12.32). The derivatives of the higher moments are obtained in the same
way; e.g., for η4,

dηT4 = (24)1Ts
[
(dN1)N3

1 + N1 (dN1)N2
1 + N2

1 (dN1)N1 + N3
1 (dN1)

]
.

(12.41)
Applying the vec operator yields

dη4 = 24

{[(
NT
1

)3 ⊗ 1Ts

]

+
[(

NT
1

)2 ⊗ 1Ts N1

]

+
[
NT
1 ⊗ 1Ts N

2
1

]

+
[
Is ⊗ 1Ts N

3
1

]}
dvecN1. (12.42)

Substituting (12.7) for dvecN1 and simplifying using Eqs. (12.24), (12.25),
and (12.26) gives (12.35). The derivatives of the second and third moments, (12.33)
and (12.34), are obtained in similar fashion.

The recursive formula (12.36) is obtained by differentiating (12.28)

dηTk = k
(
dηTk−1

)
N1 + kηTk−1dN1. (12.43)

Apply the vec operator,

dηk = kNT
1dηk−1 + k

(
Is ⊗ ηTk−1

)
dvecN1, (12.44)

substitute (12.7) for dvecN1, and simplify, to obtain (12.36).
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Differentiating (12.29) for the variance yields

dV = dη2 − 2η1 ◦ dη1. (12.45)

Applying the vec operator gives

dV = dη2 − 2D (
η1

)
dη1. (12.46)

Substituting (12.32) for dη1 and (12.33) for dη2 gives the result (12.37). The
derivatives of the standard deviation, in (12.38), and the coefficient of variation,
in (12.39), are obtained by differentiating (12.30) and (12.31) and applying (2.83)
and (2.84).

12.4 Multiple Absorbing States and Probabilities of
Absorption

Consider a chain that includes a > 1 absorbing states. The entry mij of the a × s

submatrix M in (12.1) is the rate of transition from transient state j to absorbing
state i. The probabilities of absorption are defined as

bij = P
[
absorption in i |starting in j

]
. (12.47)

The a × s matrix B = (
bij

)
is

B = MN1 (12.48)

(Iosifescu 1980, Section 8.5.6). Column j of B is the probability distribution of the
eventual absorption state for an individual starting in transient state j . Usually a few
starting states are of particular interest (e.g., states corresponding to “birth”). Let
B(:, j) = Bej denote column j of B, where ej is the j th unit vector of length s.
Then

dB(:, j) =
(
eTj ⊗ Is

)
dvecB. (12.49)

Similarly, row i of B is B(i, :) = eTi B and

dvecB(i, :) =
(
Is ⊗ eTi

)
dvecB (12.50)

where ei is the ith unit vector of length a. The derivative of B in (12.49)
and (12.50) is

dvecB =
(
NT
1 ⊗ I

)
dvecM +

(
NT
1 ⊗ B

)
dvecU. (12.51)
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Derivations Differentiating (12.48) yields

dB = (dM)N1 + M (dN1) . (12.52)

Applying the vec operator and simplifying gives

dvecB =
(
NT
1 ⊗ I

)
dvecM + (I ⊗ M) dvecN1 (12.53)

Substituting (12.7) for dvecN1 and simplifying gives (12.51).

12.5 The Embedded Chain: Discrete Transitions Within a
Continuous Process

If a continuous-time chain is observed only at the moments when it changes state,
the result is a discrete-time process called the embedded Markov chain, or the jump
chain, associated with Q (Iosifescu 1980, Section 8.3.2). The transition matrix of
this embedded chain can be written

P̂ =
(
Û 0

M̂ Ia

)

(12.54)

where

Û = Is − UU−1
dg (12.55)

M̂ = −MU−1
dg . (12.56)

The embedded chain provides information on the number of visits to each transient
state, rather than the time spent in each transient state. The expected numbers of
such visits are given by the fundamental matrix

N̂1 = (
I − Û

)−1
. (12.57)

The sensitivity analysis of the embedded chain follows directly from the discrete-
time results in previous chapters (Chaps. 4 and 5).

In particular, the differential of N̂1 is Caswell (2006)

dvec N̂1 =
(
N̂T
1 ⊗ N̂1

)
dvec Û. (12.58)
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However, this derivative is unlikely to be the sensitivity we are looking for. The
continuous-time chain is likely to be parameterized in terms of the rate matrices U
and M, rather than the probability matrices Û and M̂. To express the perturbation
analysis of P̂ in terms of the parameters of Q requires the derivatives of the
embedded chain with respect to the continuous chain; i.e.,

dvec Û

dvec TU
and

dvec M̂

dvec TM
.

These derivatives are

dvec Û =
[
−

(
U−1
dg ⊗ Is

)
+

(
U−1
dg ⊗ UU−1

dg

)
D (vec Is)

]
dvecU (12.59)

dvec M̂ = −
(
U−1
dg ⊗ Ia

)
dvecM (12.60)

+ (Is ⊗ M)
(
U−1
dg ⊗ U−1

dg

)
× D (vec Is) dvecU.

Using (12.59) and (12.61), one can write

dvec N̂1

dθT
=

(
N̂T
1 ⊗ N̂1

) dvec Û

dvec TU

dvecU

dθT
. (12.61)

Derivation Differentiate Û in (12.55),

dÛ = − (dU)U−1
dg − U

(
dU−1

dg

)
, (12.62)

apply the vec operator, and use (2.82) and (11.12) for dvecU−1
dg . The result is

dvec Û = −
[(

U−1
dg

)T ⊗ Is

]

dvecU − (Is ⊗ U) dvecU−1
dg

= −
(
U−1
dg ⊗ Is

)
dvecU + (Is ⊗ U)

(
U−1
dg ⊗ U−1

dg

)
D (vec Is)dvecU

which simplifies to give (12.59). Similarly, differentiating M̂ in (12.56) and applying
the vec operator gives

dvec M̂ = −
(
U−1
dg ⊗ Ia

)
dvecM − (Is ⊗ M) dvecU−1

dg . (12.63)

Using (2.82) and (11.12) for dvecU−1
dg and simplifying gives (12.61).
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12.6 An Example: A Model of Disease Progression

An important area of application of continuous-time Markov chains is the modelling
of transitions among disease states. In this context, the time to absorption is
longevity, and the time spent in various transient states has implications for the
quality of life during the disease. Fix and Neyman (1951) introduced the idea and
proposed a 4-state model for cancer, with two transient states (under treatment or
not) and two absorbing states (death from cancer or from other causes). Kay (1986)
proposed a model with k disease states and an absorbing state representing death.
There is now a large literature on such models and their estimation. Recently, studies
have proliferated that use Markov chain models of disease transmission to explore
the cost-effectiveness of screening and treatment procedures (e.g., Kuo et al. 1999;
Chen et al. 1999; Wu et al. 2006; Sonnenberg and Beck 1993).

Sensitivity analysis reveals how these demographic properties respond to
changes in parameters. As an example, I consider a model for the progression
of colorectal cancer (CRC) that was developed to study the cost-effectiveness of a
new CRC screening technique based on DNA testing of stool samples (Wu et al.
2006). The model includes 7 transient states (normal, small and large adenoma,
early and late preclinical CRC, and early and late clinical CRC) and 2 absorbing
states (death from CRC and death from other causes); see Fig. 12.1. Parameters
were estimated from the literature and from clinical studies in Taiwan.

This model, which describes the so-called natural history of the disease, was
embedded in a larger decision model to compare the cost-effectiveness of screening
strategies. The intensity matrix (12.1) corresponding to Fig. 12.1 is

Fig. 12.1 State transition diagram for an absorbing Markov chain model of colorectal cancer
(CRC) progression. The model includes 7 transient states based on the stage of development of
adenoma (polyps) or cancer, and two absorbing states corresponding to death from CRC and death
from other causes (OCD). Transition rates are given by λi , and mortality rate from other causes by
μ. (Modified, under the terms of a Creative Commons Attribution License, from Figure 1 of Wu
et al. 2006)
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Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−λ1 − μ 0 0 0 0 0 0 0 0
λ1 −λ2 − μ 0 0 0 0 0 0 0
0 λ2 −λ3 − μ 0 0 0 0 0 0
0 0 λ3 −λ4 − λ5 − μ 0 0 0 0 0
0 0 0 λ4 −λ6 − μ 0 0 0 0
0 0 0 λ5 0 −λ7 − μ 0 0 0
0 0 0 0 λ6 0 −λ8 − μ 0 0
0 0 0 0 0 λ7 λ8 0 0
μ μ μ μ μ μ μ 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(12.64)

The λi are transition rates; μ is the mortality rate from other causes of death. The
incidence rate of small adenoma (λ1) and the mortality rate due to other causes
of death (μ) are age-dependent. Here I have analyzed values for age 70; based
on figures in Wu et al. (2006). This leads to a parameter vector (all rates are per
year):

θ =

⎛

⎜
⎜
⎜
⎝

λ1
...

λ8

μ

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.52 × 10−2

3.46 × 10−2

2.15 × 10−2

3.70 × 10−1

2.38 × 10−1

4.85 × 10−1

3.02 × 10−2

2.10 × 10−1

2.20 × 10−2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12.65)

12.6.1 Sensitivity Results

The fundamental matrix (12.2) is

N1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

26.9 0 0 0 0 0 0
7.2 17.7 0 0 0 0 0
5.7 14.0 23.0 0 0 0 0
0.2 0.5 0.8 1.6 0 0 0
0.1 0.4 0.6 1.2 2.0 0 0
0.9 2.2 3.6 7.2 0 19.2 0
0.3 0.7 1.2 2.4 4.1 0.00 4.3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12.66)

Thus, given these rates, a 70-year old normal condition individual would expect
to spend 27 years in stage 1, and only 0.9 and 0.3 years in stages 6 and 7 (early
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and late clinical CRC).1 Individuals in more advanced stages can expect to spend
progressively longer periods in stages 6 and 7 (compare across rows 6 and 7 of N1).

The standard deviations (12.13) of the times spent in the transient states are

SD
(
νij

) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

26.9 0 0 0 0 0 0
14.2 17.7 0 0 0 0 0
15.2 21.2 23.0 0 0 0 0
0.8 1.1 1.4 1.6 0 0 0
0.7 1.1 1.4 1.8 2.0 0 0
5.8 8.9 11.2 15.0 0 19.2 0
1.6 2.4 3.0 3.9 4.3 0 4.3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12.67)

Clearly, considerable variation can be expected in the times spent in the various
states; the standard deviation equals or exceeds the mean in every case.

Considering the sensitivity analysis of the time spent in transient states, focus on
the fate of a normal (state 1) individual. The expected times spent in each state by
such an individual are give by N1(:, 1). From (12.7) and (2.55) the sensitivity and
elasticity of N(:, 1) are

dN1(:, 1)
dθT

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−722.6 0 0 0 0 0 0 0 −722.6
280.9 −127.5 0 0 0 0 0 0 −321.6
223.4 64.5 −132.0 0 0 0 0 0 −387.8

7.6 2.2 4.6 −0.3 −0.3 0 0 0 −13.5
5.6 1.6 3.4 0.2 −0.2 −0.3 0 0 −10.2

34.8 10.0 21.0 −1.4 2.3 0 −17.1 0 −79.0
11.6 3.4 7.0 0.3 −0.5 0 0 −1.3 −22.5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

εN1(:, 1)
εθT

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.4 0 0 0 0 0 0 0 −0.6
0.6 −0.6 0 0 0 0 0 0 −1.0
0.6 0.4 −0.5 0 0 0 0 0 −1.5
0.6 0.4 0.5 −0.6 −0.4 0 0 0 −1.5
0.6 0.4 0.5 0.4 −0.4 −1.0 0 0 −1.5
0.6 0.4 0.5 −0.6 0.6 0 −0.6 0 −1.9
0.6 0.4 0.5 0.4 −0.4 0.0 0 −0.9 −1.7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12.68)

These elasticities imply that a 1% increase in λ1 will (to first order) cause about
a 0.4% decrease in the mean time spent in the normal state and a 0.6% increase in
the mean time spent in each other state. A 1% increase in λ4 (the rate of transition
between early and late preclinical CRC) creates a 0.6% decrease in the time spent

1This calculation holds the mortality rate fixed at its values at age 70; in reality it increases with
age. Wu et al. (2006) included age variation by providing values of λ1 (the rate of progression
from normal to small adenoma) specific to 5-year intervals from 50 to 70 years of age; all other
parameters were age-invariant.
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in stages 4 and 6 (the early CRC stages) and a 0.4% increase in the time spent in
stages 5 and 7 (the late CRC stages). An increase in the mortality rate μ due to other
causes of death reduces the time spent in any of the transient states.

The elasticity of the variance in the time spent in the transient states by an
individual in state 1 is

εV (νi1)

εθT
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.8 0 0 0 0 0 0 0 −1.2
0.4 −1.2 0 0 0 0 0 0 −1.2
0.5 0.3 −1.0 0 0 0 0 0 −1.8
0.5 0.4 0.5 −1.2 −0.8 0 0 0 −1.5
0.6 0.4 0.5 0.4 −0.4 −1.9 0 0 −1.6
0.6 0.4 0.5 −0.6 0.6 0 −1.2 0 −2.3
0.6 0.4 0.5 0.4 −0.4 0.0 0 −1.8 −1.7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12.69)

The sign pattern is the same as that of the elasticities of the mean times in (12.68),
so we conclude that any parameter change that increases the mean time spent in
a transient state will also increase the variance in that time. The elasticities of the
variance are comparable to those of the mean (cf. (12.68) and (12.69)), showing that
the means and the variance respond with roughly equal proportional changes.

Longevity is measured by the time to absorption, and is a primary concern in
analyses of screening or treatment protocols. The vectors of the mean, standard
deviation, and coefficient of variation of longevity are

η1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

41.4
35.5
29.1
12.4
6.1
19.2
4.3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

SD(η) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

37.4
30.3
25.8
14.1
4.7

19.2
4.3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

CV (η) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.9
0.9
0.9
1.1
0.8
1.0
1.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12.70)

The sensitivity and elasticity of expected longevity (life expectancy) with respect to
θ are

dη1

dθT
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−158.7 −45.8 −96.0 −1.2 1.3 −0.2 −17.1 −1.3 −1557.2
0 −112.2 −234.9 −3.0 3.2 −0.6 −41.9 −3.2 −1089.1
0 0 −384.2 −5.0 5.3 −1.0 −68.6 −5.2 −756.5
0 0 0 −10.0 10.7 −2.1 −138.8 −10.4 −176.0
0 0 0 0 0 −3.5 0 −17.8 −29.8
0 0 0 0 0 0 −367.0 0 −367.0
0 0 0 0 0 0 0 −18.6 −18.6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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εη1

εθT
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.06 −0.04 −0.05 −0.01 0.01 −0.00 −0.01 −0.01 −0.83
0 −0.11 −0.14 −0.03 0.02 −0.01 −0.04 −0.02 −0.68
0 0 −0.28 −0.06 0.04 −0.02 −0.07 −0.04 −0.57
0 0 0 −0.30 0.21 −0.08 −0.34 −0.18 −0.31
0 0 0 0 0 −0.28 0 −0.61 −0.11
0 0 0 0 0 0 −0.58 0 −0.42
0 0 0 0 0 0 0 −0.91 −0.09

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12.71)

Almost all the nonzero elements are negative, because increasing any of the
rates leading towards clinical CRC reduces life expectancy, as does increasing the
mortality rate due to other causes of death. The exceptions are the sensitivities and
elasticities of η1 to λ5 (in column 5 of these matrices), which are positive because
λ5 delays the onset of clinical CRC (cf. Fig. 12.1).

The elasticities of E(η1), the life expectancy of a normal individual, to a change
in θ , appear in the first row of (12.71). The largest of these (except for the last
column, representing mortality from other causes of death) are to changes in
λ1, λ2, and λ3, the rates of transition from normal to small adenoma, small to
large adenoma, and large adenoma to preclinical CRC. The rates λ2 and λ3 have
large effects on E(η2), and λ3 has a large effect on E(η3). These transitions are
targets of screening and early treatment; this analysis quantifies the effect that such
interventions could have.

The sensitivity and elasticity of the standard deviation of longevity are

dSD (η)

dθT
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.27 −0.07 −0.16 −0.00 0.00 −0.00 −0.03 −0.00 −1.19
0 −0.13 −0.31 −0.00 0.00 −0.00 −0.06 −0.00 −0.76
0 0 −0.43 −0.00 0.00 −0.00 −0.09 −0.00 −0.61
0 0 0 −0.01 0.01 0.00 −0.27 0.00 −0.27
0 0 0 0 0 −0 0.00 −0.02 −0.02
0 0 0 0 0 0 −0.37 0 −0.37
0 0 0 0 0 0 0 −0.02 −0.02

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

× 103

(12.72)
and

εSD (η)

εθT
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.11 −0.06 −0.09 −0.02 0.01 −0.00 −0.02 −0.01 −0.70
0 −0.15 −0.22 −0.04 0.03 −0.00 −0.06 −0.01 −0.55
0 0 −0.36 −0.05 0.05 −0.00 −0.11 −0.01 −0.52
0 0 0 −0.23 0.23 0.01 −0.58 0.00 −0.43
0 0 0 0 0 −0.16 0.00 −0.75 −0.09
0 0 0 0 0 0 −0.58 0 −0.42
0 0 0 0 0 0 0 −0.91 −0.09

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12.73)

These have the same sign pattern as the sensitivity of η1, indicating that any
increase in life expectancy will be accompanied by an increase in the variance
of longevity. The coefficient of variation takes this joint change into account;
from (12.39),
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εCV (η)

εθT
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.04 0.02 0.03 0.00 −0.00 −0.00 0.01 −0.00 −0.31
0 −0.00 0.02 −0.01 0.00 −0.01 0.01 −0.01 −0.38
0 0 −0.01 −0.03 0.01 −0.02 0.01 −0.04 −0.21

0.00 0.00 0.00 −0.00 −0.07 −0.08 0.32 −0.14 0.19
0 0 0 0.00 0.00 −0.30 0.00 −0.27 −0.09
0 0 0 0 0 0.00 0.00 0.00 0.00
0 0 0 0 0 0 0 0.00 0.00

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12.74)

Most of these elasticities are small, suggesting that the mean and standard
deviation respond roughly proportionally, so that the CV does not change much.

The matrix B in (12.48), giving the ultimate probability of death from CRC (row
1) or other causes of death (row 2) is

B =
(
0.1 0.2 0.4 0.7 0.9 0.6 0.9
0.9 0.8 0.6 0.3 0.1 0.4 0.1

)

. (12.75)

Focusing on the probability of death due to CRC, the sensitivity and elasticity,
from (12.50), are

dvecB(1, :)
dθT

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3.5 1.0 2.1 0.0 −0.0 0.0 0.4 0.0 −7.1
0 2.5 5.2 0.1 −0.1 0.0 0.9 0.1 −11.5
0 0 8.4 0.1 −0.1 0.0 1.5 0.1 −12.5
0 0 0 0.2 −0.2 0.1 3.0 0.2 −8.5
0 0 0 0 0 0.1 0.00 0.4 −5.4
0 0 0 0 0 0 8.1 0 −11.1
0 0 0 0 0 0 0 0.4 −3.9

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

εvecB(1, :)
εθT

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.6 0.4 0.5 0.1 −0.1 0.0 0.1 0.1 −1.7
0 0.4 0.5 0.1 −0.1 0.0 0.1 0.1 −1.2
0 0 0.5 0.1 −0.1 0.0 0.1 0.1 −0.8
0 0 0 0.1 −0.1 0.0 0.1 0.0 −0.3
0 0 0 0 0 0.0 0 0.1 −0.1
0 0 0 0 0 0 0.4 0 −0.4
0 0 0 0 0 0 0 0.1 −0.1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The probability of death from CRC could be reduced by increasing the mortality
rate due to other causes (last column), although this is not an attractive treatment
option. A more useful interpretation of the last column is as an indication of the
increase in death from CRC that would result from reducing other causes of death.

For normal individuals, the risk of death from CRC is most elastic to changes in
λ2, λ3, and λ4 (row 1). The row sums of the elasticity matrix, corresponding to the
effects of a proportional change in all rates, sum to zero because a change of time
scale does not affect the probability of absorption.
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12.6.2 Sensitivity of the Embedded Chain

The transition matrix P̂ in (12.54) for the embedded chain is

P̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0 0
0.41 0 0 0 0 0 0 0 0

0 0.61 0 0 0 0 0 0 0
0 0 0.49 0 0 0 0 0 0
0 0 0 0.59 0 0 0 0 0
0 0 0 0.38 0 0 0 0 0
0 0 0 0 0.96 0 0 0 0
0 0 0 0 0 0.58 0.91 0 0

0.59 0.39 0.51 0.03 0.04 0.42 0.09 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12.76)

The fundamental matrix N̂1 from (12.57) is

N̂1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.0 0 0 0 0 0 0
0.4 1.0 0 0 0 0 0
0.2 0.6 1.0 0 0 0 0
0.1 0.3 0.5 1.0 0 0 0
0.1 0.2 0.3 0.6 1.0 0 0
0.1 0.1 0.2 0.4 0 1.0 0
0.1 0.2 0.3 0.6 1.0 0 1.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12.77)

In this continuous-time chain, states cannot be re-entered (cf. Fig. 12.1). Because a
state can be visited at most once, the mean number of visits is also the probability
of ever entering the state. Thus the probabilities that a normal individual will
ever suffer early or late clinical CRC are N̂1(6, 1) = 0.1, and N̂1(7, 1) = 0.07,
respectively. These probabilities increase for individuals in successively later stages;
for an individual with large adenoma the probabilities are N̂1(6.3) = 0.2 and
N̂1(7, 3) = 0.3, respectively.

Focusing sensitivity analysis on individuals in the normal state (state 1), the
sensitivities and elasticities of the number of visits are

dN̂1(:, 1)
dθT

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0 0
15.9 0 0 0 0 0 0 0 −11.0
9.7 2.8 0 0 0 0 0 0 −11.1
4.8 1.4 2.9 0 0 0 0 0 −8.3
2.8 0.8 1.7 0.1 −0.1 0 0 0 −5.0
1.8 0.5 1.1 −0.1 0.1 0 0 0 −3.2
2.7 0.8 1.6 0.1 −0.1 0.0 0 0 −4.9

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(12.78)
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and

εN̂1(:, 1)
εθT

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0 0
0.6 0 0 0 0 0 0 0 −0.6
0.6 0.4 0 0 0 0 0 0 −1.0
0.6 0.4 0.5 0 0 0 0 0 −1.5
0.6 0.4 0.5 0.4 −0.4 0 0 0 −1.5
0.6 0.4 0.5 −0.6 0.6 0 0 0 −1.5
0.6 0.4 0.5 0.41 −0.4 0.04 0 0 −1.5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12.79)

The sensitivities and elasticities of the probability of contracting clinical CRC are
given by the last two rows. These probabilities are highly elastic to λ1, λ2 and λ3.
The elasticities toμ indicate that every 1% reduction in mortality due to other causes
will cause about a 1.5% increase in the probability of experiencing clinical CRC.

12.7 Discussion

The results of this chapter have been presented in terms of differentials of, or
derivatives with respect to, a general vector θ of parameters. The nature of these
parameters and their relation to Q, U, or M can be very general. At its simplest,
θ could consist of some subset of the elements of Q. This is the case in the
CRC example (Sect. 12.6), in which the parameters are transition rates λi and
mortality rates μi . More generally, the transition rates might themselves be written
as functions of other variables. For example, in Van Den Hout and Matthews

(2009a,b) the rates are written as qij = exp
(
βT

ij z
)
, i �= j , where z is a vector of

covariates (e.g., age, medical care) and βij is a vector of coefficients to be estimated.
The results presented here can be applied directly to such cases, and indeed to even
more complicated functional dependencies, using the chain rule. Thus, focusing
on parametric dependence is not only scientifically valuable (these are, after all,
the relationships of interest in applications of Markov chains) but also extremely
general.

Epidemic models are often written as continuous-time Markov chains, specified
in terms of rates of movement among infection states. Gómez-Corral and López-
García (2018) extended the methods of this chapter to a model in which individuals
are classified by two state variables (a level-dependent quasi-birth-death process).
The model may be considered a continuous-time analog of the age×stage models of
Chap. 6 (Caswell 2012; Caswell and Salguero-Gómez 2013; Caswell et al. 2018).
Their approach takes advantage of the block structure of the intensity matrix for such
processes. They have also applied the approach to receptor-ligand complexes within
cells (López-García et al. 2018). As far removed from demography as molecules
may seem, the concepts of i-state transitions, of inferring population behavior from
individual trajectories, and of sensitivity analysis still apply. That’s a good thing.
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