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Abstract. Biomass is an important indicator to evaluate vegetation life activ-
ities and hyperspectral imagery from unmanned aerial vehicle (UAV) supplied
with abundant texture features shows a great potential to estimate crop biomass.
In this paper, principal component analysis (PCA) was used to select the prin-
cipal component bands from UAV hyperspectral image. Eight texture features
from the principal component bands were extracted by Gray Level Co-
occurrence Matrix method, and the sensitive texture features were finally
selected to construct the biomass estimation model. The results show that:
(1) Texture features mean, ent, sm, hom, con, dis of the first principal compo-
nent (pca1) and the mean of the third principal component (pca3) were signif-
icantly correlated with the biomass. (2) The biomass model by multiple texture
features (R2 = 0.654, RMSE = 0.808 (103 kg/hm2)) demonstrated better fitting
effect than that by single texture feature (R2 = 0.534, RMSE = 0.960
(103 kg/hm2)). The biomass estimation model based on the texture features of
multiple principal components had a good fitting effect. Therefore, texture
features of the UAV platform can accurately predict the winter wheat biomass.
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1 Introduction

Biomass is an important indicator to evaluate vegetation life activities and can be used
as an important basis for growth monitoring and remote sensing estimation [1, 2]. The
traditional method of biomass acquisition is not only destructive, consuming time and
energy, but also difficult to achieve large area monitoring [3]. In recent years, hyper-
spectral remote sensing has been widely used in quantitative remote sensing of veg-
etation biomass with its advantages of timely, non-destructive, large monitoring area
and high spectral resolution [3]. Many researchers have used satellite and the other
remote sensing data to study the estimation of vegetation biomass. Chen et al. [4] using
HJ-1C images, constructed a biomass estimation model based on the common vege-
tation index of NDVI, OSAVI, MSAVI, SAVI, MTVI2, finally, the result showed that
the biomass model based on MTVI2 has the best performance to estimate grassland
biomass. Fan et al. [5] constructed a linear regression biomass model, a multivariate
linear regression biomass model and a partial least squares regression biomass model
using spectral feature that extracted from hyperspectral data, which indicates that the
three models have a good fitting effect to estimate biomass with the R2 value of more
than 0.9. The research of Gao et al. [6] showed that a multivariate regression biomass
model constructed by TVI, MTVI2, GNDVI, NLI, MSR, RDVI and IPVI has a good
inversion accuracy to shrubs. Satellite remote sensing technology can achieve large-
scale remote sensing monitoring of agronomic parameter, however, the cycle time for
acquiring data is long and the ground resolution of remote sensing image is not high
enough, leading to a limited application in precision agriculture [7]. Meanwhile, the
UAV platform for remote sensing technology, with the advantages of low maintenance
costs, lightweight, flexible, can also obtain high spatial resolution and temporal reso-
lution of remote sensing data, so it has become a hot topic in precision agriculture [8].
Yang [9] achieved biomass inversion of winter wheat based on the UAV platform laser
radar technology. Zhang et al. [10] made use of UAV images to construct an estimation
models between different vegetation index and grassland biomass, and the model
constructed by NGRDI has a good fitting effect with the R2 value of 0.856. Lu et al.
[11] obtained hyperspectral data through the UAV platform, and establish a stagewise
estimation model of soybean biomass by spectral characteristics and plant height,
which indicates a good fitting effect. Although many scholars has used spectral
information for biomass inversion, but there was still saturation phenomenon exist. It is
difficult to solve the above problems according to the simple spectral information,
while, remote sensing technology based on UAV platform can obtain abundant texture
information and can provide support for the retrieval of biomass. Nichol et al. [12]
found that the accuracy of biomass estimation model based on AVNIR-2 and SPOT-5
multispectral data can be improved in combination with texture features compared to
single spectral features. The results of Xu et al. [13] show that there was a strong
correlation between texture features and biomass using Landsat 8 OLI multispectral
image data. Mu et al. [14] indicated that texture features of vegetation indices have
higher ability to estimate biomass than vegetation indices. Therefore, in this study, we
attempted to use principal component analysis to transform the original hyperspectral
image acquired by UAV platform, and extract texture feature from the principal
component bands containing most of the information, then estimating winter wheat
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biomass by texture features. This research provided a way for hyperspectral remote
sensing estimation of biomass based on the UAV platform.

2 Materials and Methods

2.1 Study Area

Field experiment was conducted in the 2014–2015 winter wheat growing season at
Xiaotangshan National Experiment Station for Precision Agriculture, Changping Dis-
trict, Beijing, China. Changping district has a moderate climate and four distinctive
seasons, which is located in 40°00′–40°21′N, 116°34′–117°00′E with an altitude of
36 m. The previous crop is maize, and the type of soil is silt loam in the experiment field.

The experiment was designed with an orthogonal experiment of variety, nitrogen
fertilization and irrigation (Fig. 1). Experiment area were divided into 48 plots and set
to three replications. The two varieties of winter wheat were Jing9843 and Zhong-
mai175. Nitrogen fertilizer application rates included four levels, 0 kg/hm2,
195 kg/hm2, 390 kg/hm2, 780 kg/hm2. The irrigation included three levels, rainfall,
normal irrigation with100 mm and excess irrigation with 200 mm.

Fig. 1. Location of study area and experiment design
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2.2 Field Measurements

Above ground biomass data was collected in the experiment at booting stage (26 April
2015) of winter wheat. A fixed area 0.3 m2 was surveyed for the population density.
20 representative wheat tillers were selected from each plot. The samples were sepa-
rated to stems and leaves, then stored in paper bags to be dried. Until the sub-organ
samples became constant weight (about 24 h–48 h) in the oven, the dry weight of each
sample can be obtained. Then biomass of winter wheat in per unit area was calculated
by population density and dry weight of sample.

2.3 Hyperspectral Data and Pre-processing

Hyperspectral image at UAV platform (Fig. 2) was obtained at same time (April 26,
2015). The spectrometer was UHD 185, which is a new type of snapshot hyperspectral
sensor and weighs 470 g. Its sensor can capture 450 nm–950 nm wavelengths with a
sample interval of 4 nm. Finally, hyperspectral image and panchromatic image can be
obtained both from the UHD 185.

According to the needs of this paper, we use Cubert-Pilot (Cubert, Germany) for
image fusion of hyperspectral image and panchromatic images, and use Photoscan
(Agisoft, Russia) for image stitching [15]. Then, the hyperspectral image was processed
with ENVI software (Exelis Visual Information Solutions, USA) for radiation cor-
rection, atmospheric correction, and cutting [16].

2.4 Methods

The original hyperspectral image was transformed by principal component analysis,
and the principal component bands containing much information were selected for
texture analysis. Eight texture features, Mean, Variance, Homogeneity, Contrast,
Dissimilarity, Entropy, Second Moment, and Correlation (Table 1) were extracted from
the principal component bands at different window sizes (3 � 3, 5 � 5, 7 � 7, 9 � 9,.
11 � 11, 15 � 15, 21 � 21) by Gray Level Co-occurrence Matrix method. The region

Fig. 2. UAV platform with UHD 185
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of interest from texture images of different bands were extracted by ArcGIS 10.3.1
(Esri, USA), then texture feature values of the extracted regions were obtained. The
biomass estimation model was constructed by the sensitive texture features after ana-
lyzing the correlation between texture features and above ground biomass using
Pearson correlation analysis in SPSS 22.0 (IBM, USA).

3 Results

3.1 Selection of Texture Bands

As is shown in Fig. 3, the first three principal components explain more than 99% of
the hyperspectral image (pca1, pca2, and pca3 contained 67%, 32% and 0.5% infor-
mation of the hyperspectral image respectively), which can account for most of the
variance of the original image. These principal components (pca1, pca2, pca3) were
selected for texture features analysis.

3.2 Correlation Analysis Between Texture Features and Biomass

The relationship between principal components textures and biomass is shown in
Table 2. Most of the texture features of pca1 were significantly correlated with biomass
and the correlation coefficients(r) distributed between 0.5 and 0.7. Pca1_3_sm (rep-
resenting texture feature ‘sm’ of pca1 band at the 3 � 3 window) was sensitive to
biomass with r value of −0.673. As the window size changed, r values between texture
features mean, hom, con, dis and biomass changed slightly. Mean of pca3 was sig-
nificantly correlated to biomass with r value of 0.726, and other texture features of
pca2, pca3 had a low correlation with biomass, which correlation coefficients were

Table 1. Texture features and its formulas in this study

Texture feature Formulas

Mean (mean) mean ¼ PN�1
i;j¼0 iP i; jð Þ

Variance (var) var ¼ PN�1
i;j¼0 iPi;j i� meanð Þ2

Homogeneity (hom) hom ¼ PN�1
i;j¼0 i

Pi;j

1þ i�jð Þ2
Contrast (con) con ¼ PN�1

i;j¼0 iPi;j i� jð Þ2
Dissimilarity (dis) dis ¼ PN�1

i;j¼0 iPi;j i� jj j
Entropy (ent) ent ¼ PN�1

i;j¼0 iPi:j �InPi;j
� �

Second Moment (sm) sm ¼ PN�1
i;j¼0 iPi:j

2

Correlation (corr) corr ¼ PN�1
i;j¼0 iPi:j½ i�meanð Þ j�meanð Þffiffiffiffiffiffiffiffiffiffiffi

varivarj
p �

Note: P i; jð Þ ¼ Vi;jPN�1

i;j¼0
Vi;j

, where Vi, j represents the pixel

brightness value of the (i, j)th element, and N represents
the window size of the texture analysis.
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under 0.35. Therefore, pca1_3_mean, pca1_3_hom, pca1_3_con, pca1_3_dis,
pca1_3_ent, pca1_3_sm, pca1_3_var, pca3_3_mean were selected as indexes of bio-
mass estimation.

Fig. 3. Cumulated percentage variance in hyperspectral data of a number of PCs.

Table 2. Pearson’s correlation coefficients(r) between texture features and biomass

Principle
component

Window Texture feature

mean ent sm var hom con dis corr

pca1 3 � 3 −0.588* 0.657* −0.673* 0.584* −0.638* 0.600* 0.626* −0.171
5 � 5 −0.588* 0.639* −0.664* 0.561* −0.638* 0.600* 0.626* −0.077

7 � 7 −0.588* 0.628* −0.656* 0.548* −0.638* 0.600* 0.626* −0.149
9 � 9 −0.587* 0.621* −0.648* 0.544* −0.638* 0.600* 0.626* −0.182

11 � 11 −0.587* 0.619* −0.645* 0.551* −0.638* 0.600* 0.626* −0.187
15 � 15 −0.587* 0.621* −0.646* 0.562* −0.638* 0.600* 0.626* −0.179
21 � 21 −0.587* 0.631* −0.655* 0.583* −0.638* 0.600* 0.626* −0.137

pca2 3 � 3 −0.134 −0.064 0.092 −0.086 0.035 −0.033 −0.035 −0.083
5 � 5 −0.134 −0.135 0.171 −0.194 0.035 −0.032 −0.034 −0.407*

7 � 7 −0.134 −0.193 0.232 −0.267 0.035 −0.032 −0.035 −0.465*
9 � 9 −0.134 −0.231 0.272 −0.301 0.035 −0.033 −0.035 −0.482*

11 � 11 −0.134 −0.248 0.293 −0.309 0.035 −0.033 −0.035 −0.486*

15 � 15 −0.134 −0.238 0.295 −0.278 0.035 −0.033 −0.035 −0.476*
21 � 21 −0.133 −0.218 0.284 −0.235 0.036 −0.033 −0.035 −0.443*

pca3 3 � 3 −0.726* −0.257 0.258 −0.224 0.251 −0.230 −0.248 0.470*
5 � 5 −0.726* −0.256 0.257 −0.214 0.252 −0.230 −0.249 0.235
7 � 7 −0.726* −0.247 0.247 −0.198 0.252 −0.231 −0.249 0.203

9 � 9 −0.726* −0.227 0.225 −0.159 0.253 −0.231 −0.250 0.311
11 � 11 −0.726* −0.195 0.193 −0.096 0.253 −0.232 −0.250 0.338

15 � 15 −0.726* −0.108 0.107 0.081 0.254 −0.232 −0.251 0.438*
21 � 21 −0.726* −0.031 0.042 0.270 0.255 −0.233 −0.252 0.568*

Note: * It means the correlation is significant at 0.01 level.
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3.3 Biomass Estimation Model by Single Texture Feature

Linear, power, logarithmic and exponential function were used to construct biomass
model based on the selected texture features, and the best models were selected to show
in Table 3. As is shown in Table 3, determination coefficients (R2) of biomass esti-
mation model are maintained at 0.4. The logarithmic function model based on texture
pca3_3_mean has the best fitting effect with R2 value of 0.534, RMSE value of 0.960
(103 kg/hm2). The exponential function model based on texture pca1_3_sm has a R2

value of 0.466, RMSE value of 0.806 (103 kg/hm2) ranking the second (Fig. 4).

3.4 Biomass Estimation Model by Multiple Texture Features

The biomass model based on the texture features of all principal components (Fig. 5)
were built by multiple stepwise regression method. The R2 and RMSE values between
simulated and measured biomass were 0.654 and 0.808(103 kg/hm2), respectively.

The results demonstrated that the fitting effect of biomass model based on multiple
texture features is better than that by single texture feature. Texture information were

Table 3. Biomass estimation model by single texture feature

Principal component Texture feature Modeling equation R2 RMSE (103 kg/hm2)

pca1 pca1_3_mean y = 25.223e−0.094x 0.318 0.933
pca1_3_ent y = 1.692x3.292 0.463 0.490
pca1_3_sm y = 45.146e−7.366x 0.466 0.806
pca1_3_var y = 12.801x1.163 0.396 0.889
pca1_3_hom y = 1405.527e−7.839x 0.399 0.856
pca1_3_con y = 7.356x1.258 0.409 0.875
pca1_3_dis y = 14.062x1.948 0.428 0.849

pca3 pca3_3_mean y = 55.506−16.224In(x) 0.534 0.960

Fig. 4. Biomass estimation model by single texture feature; a. pca1_3_sm; b. pca3_3_mean;
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not completely taken into consideration when constructing the biomass model by single
texture feature, while the biomass model based multiple texture features took advantage
of several textures so that the estimation accuracy were improved. Using multiple
texture features a potential prospect in estimating winter wheat biomass.

3.5 Thematic Map of Winter Wheat Biomass

Thematic map of winter wheat biomass at booting stage was constructed by the bio-
mass model based on the texture features of all principal components (Fig. 6). The map
showed the winter wheat biomass of each plot in the experiment area. There were little
biomass in the southwest and southeast, but much more biomass in the middle plots of
the experiment area. The difference in biomass was resulted from different nitrogen
fertilizer levels and irrigation levels. W3 treatment has higher biomass than W1 and W2
treatment, and W1 treatment has the lowest biomass. It is clear that sufficient irrigation

Fig. 5. Relationship between measured biomass and predicted biomass

Fig. 6. Thematic map of winter wheat biomass at flagging stage

248 C. Liu et al.



was beneficial for the growth of winter wheat biomass. N1 treatment had the lowest
biomass. There was little difference between biomass of N2 and N3 treatment. When
compared to N3 treatment, the biomass of N4 treatment increased slightly, sometimes it
had no increase in biomass even decrease, which demonstrated that a suitable nitrogen
fertilizer application rate can result in a faster grow in biomass of winter wheat.

4 Conclusions

In this study, the principal component bands were selected for texture feature analysis,
and sensitive texture features that obtained from the principal component bands were
used to construct the biomass estimation model. The results show that (1) mean, ent,
sm, hom, con, dis of the first principal component (pca1) and the mean of the third
principal component (pca3) were significantly correlated with the biomass at 0.01 level.
(2) As the window size grows, the correlation coefficients between texture features
mean, hom, con, dis and biomass changed slightly, which was almost stay in a steady
state. (3) Biomass model by multiple texture features (R2 = 0.654, RMSE = 0.808
(103 kg/hm2)) demonstrates better fitting effect than that by single texture feature
(R2 = 0.534, RMSE = 0.960 (103 kg/hm2)). The results suggest that the texture fea-
tures of the UAV platform has a good application prospect in predicting winter wheat
biomass, which can provide theoretical support and timely information for winter
wheat growth monitoring and field production management.

Acknowledgments. This study was supported in part by the National Key Technologies of
Research and Development Program (2016YFD0300602) and National Natural Science Foun-
dation of China (Grant no. 61661136003, 41601346, 41471285, 441601346).

References

1. Du, X., Meng, J.H., Wu, B.F., et al.: Overview on monitoring crop biomass with remote
sensing. Spectrosc. Spectr. Anal. 30(11), 3098–3102 (2010)

2. Zhang, K., Wang, R.Y., Wang, X.P., et al.: Hyperspectral remote sensing estimation models
for above ground fresh biomass of spring wheat on Loess Plateau. J. Chin. J. Ecol. 28(6),
1155–1161 (2009)

3. Zhuang, D.Y., Li, W.G., Wu, L.Q.: Estimating winter wheat biomass based on satellite
remote sensing. J. Arid Land Resour. Environ. 27(10), 158–162 (2013)

4. Chen, P.F., Wang, J.L., Liao, X.Y., et al.: Using data of HI-1A/B Satellite for hulunbeier
grassland aboveground biomass estimation. J. Nat. Resour. 25(7), 1122–1131 (2010)

5. Fan, Y.B., Zhao, W.J., Gong, Z.N., et al.: Inversion methods for above-ground dry biomass
of phragmites australis and typha angustifolia based on hyperspectral information. Wetl. Sci.
14(5), 654–664 (2016)

6. Gao, M.L., Gong, Z.N., Zhao, W.J., et al.: The study of vitex negundo shrubs canopy
biomass inversion in Beijing Jundu mountainous area based on vegetation indices. Acta
Ecol. Sin. 34(5), 1178–1188 (2014)

Monitoring of Winter Wheat Biomass Using UAV Hyperspectral Texture Features 249



7. Gao, L., Yang, G.J., Wang, B.S., et al.: Soybean leaf area index retrieval with UAV
(unmanned aerial vehicle) remote sensing imagery. Chin. J. Eco-Agric. 23(7), 868–876
(2015)

8. Li, C.C., Niu, Q.L., Yang, G.J., et al.: Estimation of leaf area index of soybean breeding
materials based on UAV digital images. Trans. Chin. Soc. Agric. Mach. 48(8), 147–158
(2017)

9. Yang, F.: Estimation of winter wheat aboveground biomass with UAV LiDAR and
hyperspectral data. Xi’an University of science and technology, Shaanxi (2017)

10. Zhang, Z.J., Li, A.N., Bian, J.H., et al.: Estimation aboveground biomass of grassland in
zoige by visible vegetation index derived from unmaned aerial vehicle image. Remote Sens.
Technol. Appl. 31(1), 51–62 (2016)

11. Lu, G.Z., Yang, G.J., Zhao, X.Q., et al.: Inversion of soybean fresh biomass based on multi-
payload unmanned aerial vehicles (UAVs). Soybean Sci. 36(1), 41–50 (2017)

12. Sarker, L.R., Nichol, J.E.: Improved for set biomass estimates using ALOS AVNIR-2
Texture indices. Remote Sens. Environ. 115(4), 968–977 (2011)

13. Xu, T.: Method and application of forest biomass estimation based on LiDAR and OLI
multispectral data. Nanjing Agricultural University, Jiangsu (2015)

14. Mu, Q.E., Gao, Z.H., Bao, Y.H., et al.: Estimation of sparse vegetation biomass based on
Grey-Level Co-occurrence Matrix of vegetation indices. Remote Sens. Inf. 31(1), 58–63
(2016)

15. Yue, J.B., Yang, G.J., Li, C.C., et al.: Estimation of winter wheat above-ground biomass
using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height
improved models. Remote Sens. 9(70), 801–819 (2017)

16. Deng, S.B.: ENVI Remote Sensing Image Processing Method. Science Publishing, Beijing
(2010)

250 C. Liu et al.


	Monitoring of Winter Wheat Biomass Using UAV Hyperspectral Texture Features
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Study Area
	2.2 Field Measurements
	2.3 Hyperspectral Data and Pre-processing
	2.4 Methods

	3 Results
	3.1 Selection of Texture Bands
	3.2 Correlation Analysis Between Texture Features and Biomass
	3.3 Biomass Estimation Model by Single Texture Feature
	3.4 Biomass Estimation Model by Multiple Texture Features
	3.5 Thematic Map of Winter Wheat Biomass

	4 Conclusions
	Acknowledgments
	References




