
Deployment of a Distributed Multi-Agent
Architecture for Transformable Assembly

Jack C. Chaplin(&) and Svetan Ratchev

Institute for Advanced Manufacturing, Advanced Manufacturing Building,
Jubilee Campus, University of Nottingham, Nottingham NG7 2GX, UK

jack.chaplin@nottingham.ac.uk

Abstract. Industry 4.0 represents a new philosophy in manufacturing systems,
based on networked, intelligent, and cooperative resources. This revolution is
necessary to make the cost-effective production of batch-size-of-one customised
items in high-value manufacturing domains such as aerospace a reality. How-
ever, there exist large numbers of legacy production cells which generate value
for enterprises which would ideally become part of a future manufacturing
system, but which lack the necessary computational or networking capabilities.
This is especially important in the case of small to medium enterprises, where
Industry 4.0 is perceived as an expensive endeavour out of reach due to cost.
There is a requirement for Industry 4.0 to be brought to existing legacy pro-
duction cells in a cost effective and standards-compliant manner. This paper
describes the technical implementation of an Evolvable Assembly Systems
deployment onto an existing legacy manufacturing cell, describing the concepts
and technical specifics of how to interface a software-based multi-agent system
with real manufacturing hardware, and demonstrates how it is possible to make a
transformable manufacturing cell which is compliant to the Industry 4.0 ideals in
a cost-effective and expedient manner.

Keywords: Industry 4.0 � Evolvable Assembly Systems � Smart manufacturing

1 Introduction

Higher product complexity in terms of physically complex designs and assemblies with
stringent tolerance requirements, demand for customer-unique customisation, and
increasingly smart products with bespoke software installed at assembly-time is a
significant challenge for modern and future manufacturing. Exacerbating this situation,
products are changing to meet customer demands increasingly quickly, reducing the
time available to develop an assembly process for a product [1].

There are numerous national and international initiatives to address the challenges
of managing the data generated by such complex manufacturing processes, so more
effective decisions can be made quicker. These include Industry 4.0 [2] and the
Industry 4.0 reference architecture RAMI4.0 [3], and the Industrial Internet Consortium
and their Industrial Internet Reference Architecture (IIRA) [4].

There is a need for distributed intelligent control that can mitigate the exponential
rise in the number of communication interconnections between increasing numbers of

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
S. Ratchev (Ed.): IPAS 2018, IFIP AICT 530, pp. 15–28, 2019.
https://doi.org/10.1007/978-3-030-05931-6_2

http://orcid.org/0000-0003-3282-2386
http://orcid.org/0000-0001-9955-2806
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05931-6_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05931-6_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05931-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-05931-6_2

networked manufacturing resources and sensors, which would enable production lines
to be agile in response to new product variants and robust to system failure.

In addition, with individually customised products becoming increasingly impor-
tant in the manufacturing economies of high-technology, high-wage cost regions, there
is a requirement to track and log data associated with every single product created, to
ensure full traceability when a product has been assembled with a unique assembly
strategy. This is particularly important in highly regulated domains such as aerospace,
pharmaceuticals, and construction.

Many modern production systems utilise Programmable Logic Controllers (PLCs)
to control manufacturing resources, and which possess the ability to exchange and
process information. However, these can often only communicate via vendor-specific
protocols, and program execution may be constrained to IEC 61131-3 programming
languages [5], limiting the opportunity for more complex algorithms. In addition, many
legacy production resources still provide value to their operators, but these may lack
any computational capacity or utilise obsolete communication methods if they possess
any communication methods at all. It is important that the fourth industrial revolution
does not pass over small to medium enterprises (SMEs), who may have higher pro-
portions of legacy equipment because they cannot afford to purchase expensive new
resources or controllers, or lack the time and expertise to invest in manufacturing
digitisation [6]. Hence, a solution must be found to include legacy resources in any
smart manufacturing system in a homogeneous, simple, and low-cost way.

This requirement for an open, accessible, and low-cost solution to the digitalisation
of manufacturing processes would enable the implementation of system-wide intelli-
gence, and a strategy for sharing system-generated data to allow companies to par-
ticipate in the fourth industrial revolution. The system must facilitate the dynamic
checking of the manufacturability of new products to ensure the system can keep up
with the increasing pace of product change, and facilitate transformable manufacturing
cells able to evolve to match changing product requirements. Information on the
manufacturing process must be logged to ensure traceability of product data.

There are existing architectures for distributed system-wide intelligence that tackle
the above problems based on multi-agent systems [7–9]. These include the Product-
Resource-Order-Staff Architecture (PROSA) [10], the Adaptive Holonic Control
Architecture for Distributed Manufacturing Systems (ADACOR) [11], and Evolvable
Assembly Systems (EAS) [12]. However, how these software architectures are actually
deployed on to existing legacy manufacturing lines remains an open challenge.

This paper details the implementation of a technical solution for deploying a dis-
tributed multi-agent manufacturing intelligence architecture (specifically Evolvable
Assembly Systems) on to an existing legacy robotic manufacturing cell which lacks
inherent Industry 4.0 features. It does this in a standards-compliant, low-cost way
which would be applicable to SMEs which want to take advantage of Industry 4.0
principles, but cannot risk the high expenditure required to replace existing production
cells.

16 J. C. Chaplin and S. Ratchev

2 Scenario and Current Limitations

To demonstrate the approach described in this paper, we present a scenario using
aerospace components on a robotic assembly cell. The cell forms part of a larger
assembly line – the Future Automated Aerospace Assembly Demonstrator (FA3D) –
and prepares rib components for inclusion in a wing or fuselage assembly by applying
sealant and/or scanning the part with a line scanner to check part accuracy and the
quality of the sealant application.

This cell has two primary challenges that must be met for which the current control
method is inadequate. The first challenge is that the FA3D assembles batch-size-of-one
products, where every item being assembled is unique and must be treated differently.
The larger assembly line is required to produce aircraft components for high-
complexity, highly-customisable, and low-volume airframes while keeping costs low,
and as such each assembled airframe can be considered to be unique. Additionally, the
high precisions required of the final assembly require every part to be analysed for
deviations from specification, and the assembly process altered to compensate. As a
result, seemingly identical components being handled in the cell must be identifiable
and able to be treated differently as the quality of supply varies.

The second primary challenge for the cell is the logging of data. In highly regulated
industries such as aerospace, pharmaceuticals, or construction, logging data is essential
for tracing the root causes of problems, analysing data to identify problems before they
occur, and providing accountability for failures. This is especially important for batch-
size-of-one manufacturing, where every product is assembled in a unique manner
which may be determined automatically by intelligent manufacturing systems. The data
must be interrogable to understand why decisions were made in the event of failure, and
to understand the behaviour of the system over time.

The demonstration cell operates on rib components for aerospace assemblies. The
ribs are placed in pallets, which can then be moved around the cell. The cell utilises two
ABB IRB6700-150-320 robotic arms to perform operations on the rib components. The
robots are set-up in a master-slave configuration, with a single Siemens S7 1513-1
PN PLC controlling both. Each robot has a separate tool changing rack. The master
robot has access to a proxy sealant applicator (to facilitate testing), and a Micro Epsilon
scanCONTROL compact 2900-50/BL laser line scanner. The slave robot has access to
a bespoke pallet gripper and a bespoke rib gripper, allowing it to pick up pallets or pick
ribs out of pallets. To one side is a storage rack, where pallets with or without ribs can
be stored and retrieved.

The cell has a loading/unloading area for loading pallets and ribs onto a conveyor
system. Loaded pallets move into the slave robot’s working area, allowing the pallet or
rib to be picked up. The conveyor system is to be expanded to allow complete ribs in
pallets to be dispatched to the second cell to be assembled in a larger aerospace
assembly. The conveyor system is controlled by a Siemens SIMATIC ET 200SP Open
Controller with software-based PLC functionality (Fig. 1).

The cell in its current state has several technical limitations. With the expansion to
the conveyor system planned to link the cell to the wider FA3D production line, these

Deployment of a Distributed Multi-Agent Architecture 17

limitations must be overcome if the cell is able to contribute to high-precision, batch-
size-of-one products.

The first limitation is that the demonstration cell has no networking between its
components; the PLCs for the robots and for the conveyor system are not connected,
and instead rely on user interfaces with which a worker can execute several pre-
specified actions manually.

The second limitation is that it does not have any system-wide control that allows
for automated production of parts. For batch-size-of-one products, this approach is
insufficient as the worker must understand the production plan for a potentially com-
plex part sufficiently to correctly pick the order of operations, as well as to know when
to perform any manual operations such as loading/unloading parts. Additionally, with

Fig. 1. (Top) Schematic layout of the demonstrator cell. (Bottom) View of the cell from in front
of the storage rack, showing the two robots.

18 J. C. Chaplin and S. Ratchev

no networking, the system cannot communicate with the wider production line, which
is a significant problem if this cell is to be integrated with the FA3D.

The third limitation is that data collected by the system is transitory and not stored,
which does not allow for retrospective analysis of cell performance or identification of
errors. Additionally, data generated by the laser line scanner is saved as a file, which
must then be manually transferred to the FA3D via USB drive. To remove this manual
step, it would be preferable for data to be transferred automatically to the appropriate
resources.

The fourth limitation is that the actions which can be performed by the robots and
the conveyor system are fixed. The commissioning of the cell included programming
the PLCs and specifying the actions performable by the robots, and changing these
risks violating the safety certification of the cell necessary to have the cell open for
manual worker access.

3 Enabling Technologies for Low-Cost Industry 4.0
Implementation

To address these limitations and upgrade the cell, we propose the use of technologies
which directly tackle the issues of networking, system-wide intelligence, and data
logging, and also mitigate the issue of fixed actions which are inherent to including
legacy production cells into Industry 4.0-compliant manufacturing lines. These tech-
nologies and approaches are discussed here.

3.1 Data Distribution Services

Increasing the number of devices within manufacturing production lines, combined
with a requirement for devices to talk to other devices in the line requires an expo-
nential number of interconnects. Though service-orientated architectures are an
improvement on existing point-to-point solutions, this still requires a client/server
relationship. Instead, the approach taken by the Industrial Internet Consortium [4] to
decouple industrial manufacturing as much as possible is the use of Data Distribution
Services (DDS) [13], which is a standard administered by the Object Management
Group (OMG).

DDS is a networking middleware designed to decouple the origins and consumers
of data within a specified domain. Nodes in the DDS that produce data are called
publishers, and publish pieces of information (called samples) to topics. A publisher
can publish data without needing to know what (if any) nodes will consume this data.
Nodes which consume data are called subscribers, and subscribe to topics to receive
samples published there. Similarly, a subscriber can subscribe to topics without
needing to know the origin node of the data.

The result is a data-driven communication system, where the most important ele-
ment – the data – drives the operation of the manufacturing system. Nodes in the
system do not communicate directly, but instead form a shared system context where a
single canonical view of the state of the system is distributed between the nodes, and
from which nodes can selectively subscribe to information relevant to them.

Deployment of a Distributed Multi-Agent Architecture 19

The lack of a communication broker, or direct interconnects between resources in
the system serves two important roles in the context of a manufacturing system. Firstly,
there is no single point of failure and data is replicated by the middleware between
nodes (in most DDS implementations), leaving a robust system that can continue
execution even if nodes fail. Secondly, with no explicit network structure, the system
can be reconfigured and nodes added or removed without having to alter the net-
working configuration. Additionally, if the networking uses wireless methods (as with
this demonstration), there is no requirement to alter the physical networking infras-
tructure either.

3.2 Embedded Computers

With a data-driven approach, there is no direct communication between resources in the
manufacturing system. As a result, there is no single orchestrator that instructs each
resource as to what to do and when to do it, in contrast to traditional monolithic
architecture. Instead, each resource must be smart enough to analyse the state of the
system in the shared system context and make decisions as to what to do. For this,
every resource in the system requires a degree of computing power, which is not
something that can be assumed for legacy systems. Neither can it be assumed that
resources with computing abilities (such as those with Programmable Logic Con-
trollers) are provided as open by their vendors and hence capable of running the
necessary decision making algorithms or DDS implementation.

To solve this problem, the approach given here uses embedded computers to handle
decision making and communication, as this allows for the execution of general-
purpose code and use of communication standards which might not otherwise by
available. This approach removes vendor-specific implementation considerations at the
earliest possible stage, and transforms all control and information into homogeneous
and open methods. This does require an interface between the embedded computer and
the resource controller, which may be a modern PLC with interface APIs, a legacy
controller with no consideration for external interfacing, or a human worker which will
require a smart or wearable device to communicate information.

Embedded computers also provide local data storage capacity, and the ability to
connect to larger capacity database, enabling the storage of large quantities of opera-
tional data that would otherwise be lost, which could be pre-processed and analysed at
the edges of the system to extract events and filter out unneeded data.

Combined with the data distribution services, the use of embedded computer solves
the challenges of networking and lost data. However, the challenges of system-level
intelligence and fixed actions remain. To solve this limitation, we utilise intelligent
agents.

3.3 Intelligent Agents

Each module in an Industry 4.0 enabled cell requires localised intelligence to make
decisions, be context aware, and share information with the rest of the production line.
These intelligences represent the production resources which carry out operations on
parts in line with their capabilities.

20 J. C. Chaplin and S. Ratchev

To implement localised intelligence, we utilise Belief-Desire-Intention (BDI) [14,
15] intelligent agents (or simply ‘agents’) [7–9] which are independent, self-contained
software entities which use the BDI model of planning, allowing a decoupling of the
agent’s perceptions of the world, the selection of plans, and the execution of plans.
These agents execute on the embedded computers, and are the interface with the wider
production line, publishing and subscribing to the shared system context, and making
decisions based on the state of the cell as to when to execute capabilities. Upon these
agents, we implement the Evolvable Assembly Systems architecture.

4 Technical Implementation of Evolvable Assembly Systems

The three key technologies of DDS, embedded computers, and intelligent agents can be
used together to create an implementation of a smart Industry 4.0-compatible manu-
facturing system. Combined with the data distribution services, the use of embedded
computers solves the challenges of networking and lost data. However, the challenge of
system-wide intelligence remains despite the use of intelligent agents – agents are a
general purpose solution and not tailored to manufacturing cells. To solve this chal-
lenge, we employ Evolvable Assembly Systems.

Evolvable Assembly Systems [7, 8] is a manufacturing paradigm defining trans-
formable, responsive production lines for effectively producing low-volume products.
It focuses on the use of multiple independent and modular components to allow for
rapidly reconfigurable and transformable production cells. The use of intelligent agents
to execute the Evolvable Assembly System paradigm to make decisions as to what
actions to perform based on the state of the system as per the shared system context
satisfies the requirement for system-wide intelligence, as this enables batch-size-of-one
production where each step in manufacturing is defined in a recipe. Our software
implementation of EAS is detailed in [12, 16], and utilises agents to implement dis-
tributed intelligence in manufacturing systems, the automated checking of the manu-
facturability of submitted batch-size-of-one product recipes against the capabilities of a
production cell or line, and allocation of requirements to manufacturing resources.
However, the technical challenges remain of how the agents are deployed, and how the
determined requirements are automatically executed on manufacturing resources. This
is solved with the approach detailed in this section, resulting in a functional demon-
strator of an Evolvable Assembly systems deployment.

4.1 Embedded Computers and Smart Devices

To implement our approach, we used embedded computers. A wide variety of
embedded computers are available, ranging from the basic Raspberry Pi Zero W [17],
to more fully featured products such as the Siemens SIMATIC IOT2000 Intelligent
Gateway series [18]. The exact model used will depend on the interface requirements
with the resource controller. As our implementation is hardware agnostic, a mixture of
embedded computer models could be used.

In our case, the Siemens SIMATIC S7 1513-1 PN PLC and SIMATIC ET 200SP
Open Controller offer interfacing via Ethernet connections, so any embedded computer

Deployment of a Distributed Multi-Agent Architecture 21

would require an Ethernet port. Our code, including BDI agents, networking middle-
ware, and manufacturability analysis implementation described in [16], is implemented
in Java so any model chosen must support this. Communication via the data-centric
shared system context between nodes is also required. As the demonstrator used in this
example is not physically reconfigurable, wireless networking has less merit than in
other more modular reconfigurable demonstrators such as those presented in [12, 16].
However, wireless communication is important when a human worker is involved in
the process as with this demonstrator, as the human will be mobile and utilising a smart
device to interface with the system. Additionally, there are few models of embedded
computer with two Ethernet ports (as one is required to connect to the PLC), and so
wireless networking was determined as preferential over wired technologies.

To satisfy these requirements, we selected one of the most widely available single-
board computers to use as our standard model of embedded computer – the Raspberry
Pi 3 Model B [19]. The Raspberry Pi is globally available, low cost, open, and flexible,
and features all the connectivity we require, including in-built wireless connectivity. It
is powered via a micro-USB 2.5A power source.

Though more computationally powerful or more fully featured single board com-
puters exist, the Raspberry Pi is useful as a baseline for demonstrating this approach, as
a successful implementation on a Raspberry Pi would also function on other more
powerful and more expensive models. These embedded computers enable the execu-
tion of intelligent agents which communicate and cooperate, giving the demonstration
cell system-wide intelligence and context awareness as required.

Human workers in the production line also require interfacing to the wider system
intelligence. This is achieved through the use of mobile smart devices. For now, we
utilise Lenovo X260 Ultrabooks, though future work will include the deployment of
the interfaces to low-cost tablet computers (Fig. 2).

4.2 Interfaces with Resources

The intelligent agents executing on the embedded computers and smart devices require
interfaces with the resources (or human workers), enabling the requesting of capability
instantiation and collection of data.

This approach suggests use of service-orientated architecture such as OPC Unified
Architecture [20] where the resource advertises services (i.e. the instantiation of
capabilities) and the embedded computer acts as the client to select these. However,

Fig. 2. A legacy production resource can be considered to be advertising its capabilities via a
user interface. A smart manufacturing system such as an Evolvable Assembly System wishes to
instantiate these capabilities. But how can the intelligent agents actually interface with the
resource?

22 J. C. Chaplin and S. Ratchev

retrofitting these capabilities into existing production lines (such as this demonstration
cell) does not necessarily allow for such idealised solutions. PLC code may have been
tested and proven correct for years prior to the decision being made to include Industry
4.0 technologies, and stakeholders may not want to risk sweeping changes to PLC
execution. Additionally, some legacy resources may not be able to execute OPC UA
(or similar) at all. An alternative solution must be found.

As the demonstration cell was designed to be used manually, the PLCs to control
the robots and to control the conveyor system both have user interfaces by which a
worker can instantiate capabilities by pressing virtual buttons on a touch screen
interface. Though not designed with service-orientation in mind, a user interface
essentially allows the resource to advertise capabilities in the form of buttons or other
UI elements, and to receive requests from a client in the form of button presses.

To leverage this indirect service orientation, the embedded computers must be able
to simulate a button press on the user interface, which enables automated execution of
PLC code without modifying the PLC code itself. The precise manner in which this is
achieved will necessarily vary depending on the user interface and vendor in question.
Presented here is the method used for both the Siemens SIMATIC S7 1513-1 PN PLC
and SIMATIC ET 200SP Open Controller used for the robots and conveyor system
respectively.

User interfaces for Siemens PLCs are created using SIMATIC WinCC [21]. This
executes on the PLC, but in a separate memory space to the main PLC code. Buttons
are created and have actions associated with them when the button is pressed; the
general pattern is for a bit in memory to be set when the button is depressed and reset
when the button is released. Code in the PLC checks the state of the bit associated with
the button and performs actions if the bit is set. Despite both the S7 and Open Con-
troller PLCs having different internal architectures, they both follow this pattern (with
minor deviations as both were commissioned by different organisations).

S7Connector is an open source Java library for interfacing with S7 PLCs via
Ethernet [22]. As the ET 200SP is based on an S7-1500 CPU, both PLCs are com-
patible with this approach. It allows for reading and writing values to the memory of
the PLC via a Java program executing on a connected device. This permits the con-
nected device to alter the bit that is set by pressing a button on the user interface,
simulating a button press.

One limitation of this approach is that it requires knowledge of the memory location
of the bit connected to the button on the user interface, which in turn means access to
the original project files for the PLC. Interfacing with a user interface via an embedded
computer without access to the source for the PLC program would be challenging, and
other solutions may be required, such as having the resource embedded computer using
its own interface on a smart device to instruct a worker to press the required button.

With the same approach, any data made available to the user interface (resource
status or data generated by the line scanner for example) can be retrieved in the same
manner by reading the variable which controls the UI element display. This allows the
embedded computer to know what the attached resource is doing, and read (and
optionally publish) data it generates.

Human workers are also perceived in Evolvable Assembly Systems as manufac-
turing resources, and hence require an interface between the smart device on which

Deployment of a Distributed Multi-Agent Architecture 23

code executes and the worker themselves. This takes the form of a user interface,
instructing the operator what tasks to perform at a given time, and offering the user the
ability to specify the completion of work (Figs. 3 and 4).

Fig. 3. The communication stack for an agent to execute a capability on a resource, using the
example of the master/slave robots.

Fig. 4. (Left) A Raspberry Pi 3 Model B is networked to the conveyor PLC. (Right) A worker is
instructed to load a pallet onto the conveyor system by the worker resource interface.

24 J. C. Chaplin and S. Ratchev

4.3 Networking and Data Collection

Networking resources in the production cell allows for data to be published and sub-
scribed to via DDS and the shared system context. As the Raspberry Pi 3 Model Bs and
Lenovo X260s feature built-in Wi-Fi, and as the Raspberry Pi Ethernet ports are used to
interface with the PLCs, a wireless network was created using a TP-LINK TD-W8970
router. The wireless networking allows for the mobility of the human workers with
laptops (and later, tablets or other smart devices), and simplifies system reconfigura-
tion. To operate using a data-centric model, we use DDS. For this implementation, we
use RTI’s Connext DDS Professional [23], which is a fully featured and compliant
implementation of the OMG DDS standard [13]. It has Java libraries and native support
for Raspberry Pi single board computers.

With advances in data storage and data-centric manufacturing systems, it’s now
possible to store all data on a product being assembled, including a digital ‘black box’
of why decisions were made, to facilitate the tracing of errors and verification of system
behaviour. We call this ProductDNA, and it includes all data generated by the involved
resources, any metrology data produced including environmental data, tolerances and
deviations, and system decisions made and the reasons why.

To achieve this, an additional ProductDNA agent is added to the manufacturing
cell, executing on a Dell Precision 7510 laptop. This agent, like other agents in an
Evolvable Assembly System, can subscribe to topics to receive data. To gather all
possible data, it subscribes to all topics available using Connext DDS’ discovery
service, and saves every sample to file (organised by topic) for future analysis (Fig. 5).

Fig. 5. Use of data in the solution. The agent (on the embedded computer) is able to retrieve
information about the resource provided that information is presented on the resource user
interface. This is shared (with optional pre-processing) to the shared system context, where other
agents in the system can select what information they require to make optimum decisions. All
data is stored by the ProductDNA agent.

Deployment of a Distributed Multi-Agent Architecture 25

4.4 Agents

Each resource in the system is controlled by an intelligent agent running on the
embedded computer or smart device. We programmed agents in Java using the Java
Agent Development Framework (JADE) [24, 25] which is an open source and flexible
agent framework. On top of this, a BDI framework [15] was developed by which the
agents reason about the demonstration cell.

The use of BDI agents has several advantages in this context. Firstly, there are
strong synergies between the concept of beliefs and the use of a belief set in the BDI
model, and of the use of data-centric communication, as the belief set of an agent is a
subset of the shared system context representing the entire system, and the beliefs can
be updated as the shared system context changes. Secondly, the BDI model decouples
the storage of beliefs and the development of plans, from the execution of plans. As
each agent may have a unique interface with its resource (or it may be a user interface
in the case of a human worker), this simplifies the insertion of bespoke code whilst the
rest of the code base remains homogenous.

The method by which the agents analyse recipes and determine how to execute
capabilities to create a unique batch-size-of-one product is detailed in [16]. Users are
able to submit recipes to the production line via an interface also running on the Dell
laptop, which submits the recipe to the shared system context where the agents will
check manufacturability and assign tasks.

5 Conclusions

This paper has presented a technical method for implementing Industry 4.0 and
Evolvable Assembly Systems concepts on pre-existing legacy manufacturing cells,
utilising data-centric communication, and intelligent agents executing on embedded
computers which interface with their respective manufacturing resources. This method
allows for a cost-effective manner in which smart manufacturing could be achieved by
SMEs looking to include their production cells in the fourth industrial revolution.

One limitation of this approach is in not solving the issue of fixed actions. The use
of capability topologies [10] helps mitigate the restriction of fixed actions, though does
not solve the problem. The issue is inherent to the design of manufacturing cells, and in
particular those not designed with maximum flexibility in mind.

Moving forwards, we aim to implement the user interfaces for human workers on
smart devices such as tablet computers or smart watches, to make receiving and auc-
tioning instructions, as well as relaying information back to the shared system context
simpler. The entire demonstration cell will be integrated with the wider FA3D cell,
during which the implementation will be extended to include the entire manufacturing
cell, including challenges relating to interfacing with the more complex control system
of the FA3D. We will also use additional models of embedded computer, including the
Siemens IOT2000 [18] to experiment with system heterogeneity.

26 J. C. Chaplin and S. Ratchev

Acknowledgements. The reported research has been funded by the EPSRC grant
EP/K018205/1, the support of which is gratefully acknowledged. We would also like to thank
RTI for providing a license for Connext DDS Professional as part of their University Program.

References

1. Rhodes, C.: Manufacturing: statistics and policy, p. 13. House of Commons Library (2014)
2. Kagermann, H., et al.: Recommendations for implementing the strategic initiative

INDUSTRIE 4.0: securing the future of German manufacturing industry; final report of
the industrie 4.0 working group. Forschungsunion (2013)

3. Adolphs, P., et al.: Reference architecture model industrie 4.0 (rami4.0). VDI/VDE Society
Measurement and Automatic Control (GMA) (2015)

4. Lin, S-W., et al.: The industrial internet of things volume G1: reference architecture.
Industrial Internet Consortium (2017)

5. International Electrotechnical Commission: IEC 61131-3:2013 in programmable controllers
- part 3: programming languages (2013)

6. Sommer, L.: Industrial revolution-industry 4.0: are German manufacturing SMEs the first
victims of this revolution? J. Ind. Eng. Manag. 8(5), 1512 (2015)

7. Jennings, N.R.: On agent-based software engineering. Artif. Intell. 117(2), 277–296 (2000)
8. Weiss, G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence.

MIT press, Cambridge (1999)
9. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev.

10(2), 115–152 (1995)
10. Van Brussel, H., et al.: Reference architecture for holonic manufacturing systems: PROSA.

Comput. Ind. 37(3), 255–274 (1998)
11. Barbosa, J., et al.: Dynamic self-organization in holonic multi-agent manufacturing systems:

the ADACOR evolution. Comput. Ind. 66, 99–111 (2015)
12. Chaplin, J., et al.: Evolvable assembly systems: a distributed architecture for intelligent

manufacturing. IFAC-PapersOnLine 48(3), 2065–2070 (2015)
13. Object Management Group Inc.: Data Distribution Service (DDS) Version 1.4 (2015). http://

www.omg.org/spec/DDS/1.4/. Accessed 12 Nov 2017
14. Faccin, J., Nunes, I.: Modelling and reasoning about remediation actions in BDI agents. In:

2017 Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems.
International Foundation for Autonomous Agents and Multiagent Systems (2017)

15. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: ICMAS (1995)
16. de Silva, L., et al.: Realisability of production recipes. In: 22nd European Conference in

Artificial Intelligence (ECAI 2016), The Hague, Netherlands (2016)
17. Raspberry Pi Foundation: Raspberry Pi Zero W (2017). https://www.raspberrypi.org/

products/raspberry-pi-zero-w/. Accessed 6 Dec 2017
18. Siemens AG: The intelligent gateway for industrial IoT solutions: SIMATIC IOT2000

(2017). http://w3.siemens.com/mcms/pc-based-automation/en/industrial-iot/pages/default.
aspx. Accessed 6 Dec 2017

19. Raspberry Pi Foundation: Raspberry Pi 3 Model B (2017). https://www.raspberrypi.org/
products/raspberry-pi-3-model-b/. Accessed 7 Dec 2017

20. OPC Foundation: Unified Architecture (2016). https://opcfoundation.org/about/opc-
technologies/opc-ua/. Accessed 5 Dec 2017

Deployment of a Distributed Multi-Agent Architecture 27

http://www.omg.org/spec/DDS/1.4/
http://www.omg.org/spec/DDS/1.4/
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
http://w3.siemens.com/mcms/pc-based-automation/en/industrial-iot/pages/default.aspx
http://w3.siemens.com/mcms/pc-based-automation/en/industrial-iot/pages/default.aspx
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/

21. Siemens AG: SIMATIC WinCC V7 - maximum plant transparency and productivity (2017).
http://w3.siemens.com/mcms/human-machine-interface/en/visualization-software/scada/
simatic-wincc/pages/default.aspx. Accessed 7 Dec 2017

22. S7Connector Members: S7Connector: Java library for S7 PLCs (2016). https://s7connector.
github.io/s7connector/. Accessed 7 Dec 2017

23. Real-Time Innovations: RTI connext DDS professional (2017). https://www.rti.com/
products/dds. Accessed 6 Dec 2017

24. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: Jade — a Java agent development
framework. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-
Agent Programming. MSASSO, vol. 15, pp. 125–147. Springer, Boston, MA (2005). https://
doi.org/10.1007/0-387-26350-0_5

25. Bellifemine, F., Poggi, A., Rimassa, G.: JADE–A FIPA-compliant agent framework. In:
Proceedings of PAAM, London (1999)

28 J. C. Chaplin and S. Ratchev

http://w3.siemens.com/mcms/human-machine-interface/en/visualization-software/scada/simatic-wincc/pages/default.aspx
http://w3.siemens.com/mcms/human-machine-interface/en/visualization-software/scada/simatic-wincc/pages/default.aspx
https://s7connector.github.io/s7connector/
https://s7connector.github.io/s7connector/
https://www.rti.com/products/dds
https://www.rti.com/products/dds
http://dx.doi.org/10.1007/0-387-26350-0_5
http://dx.doi.org/10.1007/0-387-26350-0_5

	Deployment of a Distributed Multi-Agent Architecture for Transformable Assembly
	Abstract
	1 Introduction
	2 Scenario and Current Limitations
	3 Enabling Technologies for Low-Cost Industry 4.0 Implementation
	3.1 Data Distribution Services
	3.2 Embedded Computers
	3.3 Intelligent Agents

	4 Technical Implementation of Evolvable Assembly Systems
	4.1 Embedded Computers and Smart Devices
	4.2 Interfaces with Resources
	4.3 Networking and Data Collection
	4.4 Agents

	5 Conclusions
	Acknowledgements
	References

