
MIODMIT: A Generic Architecture
for Dynamic Multimodal Interactive Systems

Martin Cronel1, Bruno Dumas2, Philippe Palanque1,3(&),
and Alexandre Canny1

1 ICS-IRIT, Université Paul Sabatier – Toulouse III, Toulouse, France
martin.cronel@gmail.com, {palanque,canny}@irit.fr

2 University of Namur, Namur, Belgium
bruno.dumans@unamur.be

3 Department of Industrial Design, Technical University Eindhoven,
Eindhoven, Netherlands

Abstract. This paper proposes a generic interactive system architecture
describing in a structured way, both hardware and software components of an
interactive system. It makes explicit all the components that play a role in the
information processing from input devices to the interactive application and
back to the output devices. Along with the generic interactive system archi-
tecture the paper proposes a process for selecting and connecting those com-
ponents in order to tune the generic interactive system architecture for a specific
interactive application. This select, connect and tune-on-demand approach helps
handle complexity of interactive applications featuring innovative interaction
techniques by splitting the interactive software into dedicated functional com-
ponents. It also supports design flexibility by making explicit the components
impacted when the interaction design evolves. This interactive system archi-
tecture and its related process have been applied to the development of several
real-life interactive systems and we illustrate their application on an interactive
application offering multi-mice, multi-touch and leap motion interactions in the
context of interactive cockpits of large civil aircrafts.

Keywords: Interactive systems engineering � Input/output devices integration
Interaction techniques � Software architectures

1 Introduction

The diversification of technological platforms on which interactive systems are
designed, developed and deployed significantly increases the complexity of designers’
and developers’ tasks. At the same time, such an ever-changing context has made it

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact the owner/author(s).
© 2018 Copyright held by the owner/author(s). 0730-0301…$15.00 DOI: 124564.

© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
C. Bogdan et al. (Eds.): HCSE 2018, LNCS 11262, pp. 109–129, 2019.
https://doi.org/10.1007/978-3-030-05909-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05909-5_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05909-5_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05909-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-05909-5_7

very difficult for researchers belonging to the engineering community on interactive
systems, to provide generic approaches to support those tasks. Designers need to go
beyond the interactive application design by providing new interaction techniques that
encompass new input and output devices which can be very cumbersome to design and
evaluate (as for instance fingers clustering in multi-touch interactions [29]). Developers
of these systems are repetitively facing the same issues of: (i) new devices integration,
software redesign (due to device drivers’ evolution) and above all poor reliability of the
resulting system due to the low level of maturity of the various components to inte-
grate. Such constraints are even stronger in the area of critical systems where a failure
may lead to catastrophic consequences.

This paper addresses these issues by proposing MIODMIT (Multiple Input and
Output Devices and Multiple Interaction Techniques) generic interactive system archi-
tecture for integrating new input and output devices, along with their more and more
(potentially multimodal) sophisticated interaction techniques. MIODMIT identifies the
building components that have to be developed for integrating new devices as well as the
building components for merging information from these devices in order to offer
multimodal interaction to users. As such, MIODMIT helps developers with the design of
systems exploiting advanced interaction technologies. While this interactive system
architecture is generic (and can thus be applied to many types of interactive systems) it
also comes with a set of attributes and related trade-offs giving freedom to developers
using it, while constraining them when necessary. Due to its generic nature, MIODMIT
needs to be tuned to and adapted for the interactive system under development, espe-
cially to the input and output devices and interaction techniques considered. Two case
studies (including a real world critical system application) and two illustrative examples
illustrate how the architecture is applied, as well as the benefits it brings.

The remainder of this paper is structured as follows. Next section describes relevant
related work and characterizes input and output devices. Section 3 details MIODMIT
making explicit how it decomposes interactive systems into connected components
within a generic interactive system architecture. Section 4 presents the Tune-on-Demand
process and makes explicit how to go from a tuned MIODMIT diagram to the imple-
mentation. Section 5 presents a real world case study in the area of interactive cockpits.
As this application is rather complex, we also present a simple example of interactive
system to demonstrate along the paper the application and functioning of the tune-on-
demand process in its entirety. The last section concludes the paper, highlighting benefits
and limitations of the contributions and identifying potential extensions.

2 Related Work

2.1 Software Side of Interactive Systems Architectures

Architectural models for multimodal interactive systems have been presented in
research papers [38] and [39] as a way of explaining the various components of a given
system. More generic ones have also been presented, but they are usually bound to one
type of modality such as touch interaction [37] or speech interaction [21]. Toolkits and
frameworks for supporting the development of prototypes and demonstrations have

110 M. Cronel et al.

also been developed such as, for instance, PyMT toolkit [17] for interactive applica-
tions offering multi-touch interactions. Similarly SensScreen [34] is dedicated to
interactive applications exploiting multimodal management of sensors distributed in the
user environment and presents a very high level architecture dedicated to public dis-
plays. As far as interaction techniques are concerned, dedicated software architectures
have been proposed but focusing on a specific problem raised by a specific kind of
interaction technique in an interactive application. For instance [26] presents the
Accelerated Touch Architecture and [15] the Layered Multi-touch Architecture but
both only address specific problems related to touch input.

MUDRA [19] is one recent exception proposing a framework embedding a generic
architecture for multimodal interaction. The main limitation of MUDRA architecture
(in terms of genericity) lies in its hardware part which is restricted to a defined set of
input devices and does not provide a generic approach making explicit how new
devices can be instantiated.

Despite such architecture-based contributions for engineering systems, empirical
studies have demonstrated that, generally, developers are coding from scratch [24] as
the problem they are facing is only superficially addressed by the existing solutions.

2.2 Hardware Side of Interactive Systems Architectures: Input
and Output Devices

In order to provide generic means to deal with the extent of future input and output
devices, there is a need to characterize them and, in addition, to provide means for
integrating input devices types (according to their characteristics) rather than their
instances. Indeed, integration based on types provides an adequate mean to increase
architecture genericity. The HCI community has been proposing several taxonomies of
input devices taking into account both their hardware and software aspects.

In [6], the software side is prominent as the classification is more abstract and goes
beyond the description of the physical capabilities of the input devices. They introduced
the “virtual” and “logical” device concepts, which can be used to produce more versatile
interaction techniques. The concept of virtual devices allows reasoning in terms of
interaction methods without having to consider the input devices themselves. For
instance, instead of designing the interaction techniques with low level mouse events
(for instance using dx, dy relative quantity of movement as for a mouse), it is described
using generic pointing events such as x, y screen coordinates. This allows replacing
mouse input devices easily with other devices as long as they produce similar (com-
patible) pointing events. In order to support this, MIODMIT proposes the refinement of
the virtual device concept into two distinctive components called Virtual Device and
Logical Device as presented in the section dedicated to the architecture (see Fig. 3).

From a hardware perspective, we classify devices as in [30] as according to the
discrete versus continuous nature of events provided. At an abstract level, MIODMIT
architecture remains independent and thus generic whatever the category (continuous or
discrete) the device belongs to. Nevertheless, the device type will be taken into account
at the refinement time (i.e. during the development of the architecture components). This
way of dealing with these two types of devices has been identified when integrating
different devices such as keyboards, mice, speech recognition, touch input, and more

MIODMIT: A Generic Architecture for Dynamic Multimodal Interactive Systems 111

recently gesture input, eye-tracking and speech synthesis. The only constraint (to ensure
the correct functioning of the final system) is to make sure that data processing is
consistent both in terms of input and output for each component throughout the entire
pipe-line of information processing (from input to output) as identified in [28].

In the literature, much less work has been done on addressing the output side of
interactive systems and while a plethora of input devices taxonomies is available,
output device taxonomies are seldom. Noticeable exceptions are [18] which provides
characterization of both input and output devices and [32] which is dedicated to
multimodal output engineering. MIODMIT encompasses this work using the same
decomposition for output devices as the one for input devices presented above.

3 MIODMIT: A Generic Architecture for Interactive
Systems

The Multiple Input and Output Devices and Multiple Interaction Techniques
(MIODMIT) generic interactive system architecture explicitly depicts the various
components (both hardware and software) of an information pipe-line in modern
interactive systems. In that sense, MIODMIT is compatible with the principles and
objectives of the Model Driven Architecture approach at OMG (http://www.omg.org/
mda). Such systems contain multiple input devices each providing an information flow
that are usually fused with other ones to offer multiple (and often multimodal) inter-
action techniques. This architecture presents input and output flows as well as how they
can be integrated altogether. The following sections present an overview of MIODMIT
and detail functionalities and responsibilities of each component via an illustrative
example.

3.1 Illustrative Example with a Simple JAVA Application

In order to illustrate how MIODMIT is structured, we use a simple example application
developed with Java Swing, presented in Fig. 1. This application allows users to add,
modify and remove elements in a database. An element is composed of three attributes:
a text field (the name), an enumerated field (the number of children) and a Boolean
value (married or not). The list of elements in the database are displayed in the listbox
(called mother list). Once added to the database, elements can be selected in that listbox
to be deleted or modified.

In terms of input and output modalities, this application is standard, offering a
mouse and a keyboard for input, and a computer screen for display.

3.2 MIODMIT Overview

MIODMIT is meant as a thinking and design tool for developers working on the
development of advanced interactive systems. It seeks to clearly describe which
components are to be designed, built or reused when envisioning such systems, and the
interplay between these components.

112 M. Cronel et al.

http://www.omg.org/mda
http://www.omg.org/mda

The overview of MIODMIT is presented in Fig. 2 while the full description of the
generic architecture is provided in Fig. 3. Figure 2 is described from top (left to right)
and then towards bottom (right to left). The overview of the architecture is composed of
several components each of them represented by a rounded rectangle. When devel-
oping systems using MIODMIT developers have to describe the precise behavior of
each component. Due to space constraints, we cannot present it here but the interest
reader can access full details in [10].

The grayed out boxes labeled “Input Device Type” handle events flow for each type
of input device used (according to the classification presented in the related work
section). For instance, having two mice and a voice-recognition system would require
two separate “Input Device Type” boxes as they do not belong to the same type. The
same holds for the output processing. Following the normal flow of events (in which
the interactive system is idle waiting for input from users) a given “input device” sends
events to the “driver & Library”. The “input chain device type 1” transforms the raw
data into higher-level information (e.g. transformation of the amount of motion of a
mouse (dx, dy) into absolute coordinates for the mouse pointer).

Fig. 1. Simple JAVA application

Fig. 2. Overview of MIODMIT

MIODMIT: A Generic Architecture for Dynamic Multimodal Interactive Systems 113

F
ig
.
3.

M
ul
tip

le
In
pu

t
an
d
O
ut
pu

t
D
ev
ic
es

an
d
M
ul
tip

le
In
te
ra
ct
io
n
T
ec
hn
iq
ue
s
ex
pr
es
se
d
in

A
A
D
L

[3
3]

114 M. Cronel et al.

Such information is then processed by the “input chains manager” (e.g. picking
function connecting the input event to user interface objects) that possibly fuses
information from the various input devices types. The input chain manager and its
output counterpart are also responsible for managing dynamic reconfiguration of
interaction when a failure occurs in the flow of events, thus being compliant with [27].
Fused information is then dispatched either directly to the “Dialog” or to “Global
Interaction Technique” which behaves as a transducer as defined in [1] and then
dispatch information to the “Dialog”. Both the “Dialog” and “Application Core”
system have a similar responsibility as in standard interactive architecture models such
as Seeheim [31] or ARCH [4]. The “Functional Adapter” have a similar responsibility
as the “Functional Core Adaptor” in ARCH [4]. The output part processing is a mirror
of the input side. The “rendering system” component in the middle of the diagram
includes immediate feedback function and more sophisticated state-based rendering
functions.

3.3 Inside the Details of MIODMIT

Figure 3 presents the refinement of Fig. 2 making explicit both the content of each
component and the information flow between components. Even in its detailed
description, MIODMIT remains abstract on purpose which means that each component
may be decomposed into several classes. More details about that aspect are given in the
case studies section.

The MIODMIT architecture, presented in Fig. 3, uses the AADL notation [33], a
standard for describing software architecture which been applied in several domains
including automotive and aeronautics. Other notations could have been used but the
standard nature of AADL eases its understanding. We do not provide here a description
of the elements of AADL but a key is provided at the bottom of Fig. 3.

Input Devices
The first layer of this interactive system architecture is composed of the physical input
devices directly handled by the users. In Fig. 3, they are defined with a number cor-
responding to their type and an ID corresponding to their number within a given type.
For instance, two input devices (Input Device 1 ID 1 and Input Device n ID n)
represent the fact that both input devices are similar (two mice for instance) but with
small functionalities that need to differentiate their drivers. If two identical mice were to
be connected, ID will then allow to differentiate them. Figure 3 only details one generic
type of device. The addition of a new modality associated with a new input device
results in a new set of input devices, new driver(s) and a new input chain, represented
within a gray rectangle. In the case of our Java app example, the mouse and keyboard
are the input devices.

Drivers
Usually only one device driver is used in an operating system per type of device at a
time. This software component is in charge of retrieving (or receiving) raw information
from the hardware input device and makes it available for the upper layer.

The driver may also allow some control over the hardware components of the
physical input device such as the sampling frequency (e.g. of the touch acquisition in

MIODMIT: A Generic Architecture for Dynamic Multimodal Interactive Systems 115

[25]) or to provide user identification [36]. Drivers are either provided together with the
hardware (typically for specific non-standard input devices such as gesture tracking
cameras) or by the operating system when the input device is rather standard or has
been around for a significant amount of time (typically several years). For instance,
mouse and keyboard drivers are handled at the OS level. This component is usually OS
dependent and includes the libraries and the API needed for using the device. The API
can be a composite object in order to translate information from a low-level language or
OS level, to the higher one in the information flow.

Virtual Devices and Logical Devices
Virtual devices are necessary extensions to the logical device concept of Buxton [6] as
we take into account explicitly both hardware and software aspects.

For instance, as quickly introduced in the related work section, for a mouse, the
virtual device will be a software component mirroring the state of each physical button
(pressed or released) and the amount of motion (dx, dy), while the logical device
handles the cursor pointer positions (x, y). It is important to note that this is inde-
pendent of the rendering aspect that is handled in a dedicated set of components
(“rendering system” and “output device type” in the architecture). Indeed, these (x, y)
values are abstract and how they are presented to the user or fused before rendering is a
responsibility not belonging to the input chain.

This distinction allows using a single virtual device, with different logical devices
in order to propose different interaction techniques. For instance, with a gesture
recognition device such as Leap Motion, with one virtual device (a computerized
hand), one logical device could be dedicated to two-dimension interactions, as a
pointing device, while another could be used in a 3D environment.

Virtual and logical device components are transducers (as defined in [6]) as they
provide processed information to a higher level. Virtual devices can be dynamically
instantiated as with plug-and-play devices. Logical devices might also be dynamically
instantiated at operations time, as for multi-touch input devices where a “logical input
device” component is created each time a finger touches the device [16].

Input Manager
The “Input Manager” component manages the availability and instantiation of devices
in order to address configuration and dynamic reconfiguration. This layer is composed
of several managers, one per configuration of input devices, each of them being
responsible for handling the dynamic aspects of input devices of the same type. At
initialization time, these managers are responsible for the instantiation of the input
devices and inform “Logical Input Devices” components.

Input Configuration Manager (Input Chains Manager)
One of the specificities of MIODMIT is its intrinsic ability to support dynamic
reconfiguration of the interaction techniques. It is a functionality of paramount
importance for different systems such as: critical systems, systems with a long
exploitation life, systems with long start up procedures (such as civil aircrafts), or
systems with a high replacement cost. Indeed, if one or several modalities fail at
runtime (also called operation time), it may be critical to offer other modalities for
allowing operators to perform their tasks even with degraded or less efficient

116 M. Cronel et al.

interactions. To this end, MIODMIT includes an “input configuration manager” which
is responsible for handling reconfigurations. It is a unique software component,
whatever the amount of input devices is. At runtime, the “input configuration manager”
component links the (possibly) dynamically instantiated “logical input devices” com-
ponents to the relevant “interaction transducers” which are in charge of processing
users’ input.

Beyond that linking aspect, this manager is in charge of verifying the physical input
device configurations to ensure that the current configuration still allows users to
trigger all the needed events, and thus to produce all the information that the interactive
application is expecting. In the case of input devices failure, the manager would
reconfigure the interaction in such a way that the remaining physical input devices
could compensate the failing ones (provided that this aspect has been addressed at
design time). An example of a behavioral description of such a reconfiguration man-
ager can be found in [27] (and is highlighted in the case study section). It is important
to note that in critical systems, the failure must have been expected and so the
reconfiguration possibilities are predefined (so that operators can be trained) and not
dynamically made.

Input Device Type and Output Device Type
The gray boxes labelled Input Device Type and Output Device Type do not represent
component of the architecture. They represent the fact that the components “drivers and
libraries” and “input/output chain device type 1” have to handle all the input/output
devices of the same type. Mouse and keyboard are examples of different input device
type. A screen and a loudspeaker are examples of different output device type.

Picking Functions (Input Chains Manager)
This component channels the input event to the intended sensing zones. These func-
tions are generally handled by the OS for standard devices, but for non-standard
interaction, recipients of events must be designed and implement a picking function.

Interaction Transducers (Global Interaction Techniques)
The “interaction transducers” are responsible for generating the high level user events
used by the application to trigger the various commands it provides. Usually, one
“interaction transducer” is associated with one global interaction technique. These
“interaction transducers” perform the recognition of a specific interaction technique
which is not linked to a sensing zone such as a button (e.g. an interaction technique
such as a double click is a composition of 2 simple clicks performed within a pre-
defined temporal window and the click is a succession of a “down” event followed by
an “up” event on a button). In the case of multi-touch interaction techniques, the
transducer receives fingers’ (logical devices) movement and triggers the appropriate
high level events based on the gesture recognition or the clustering of fingers. A basic
transducer description for two mice can be found in [7], a more detailed one in [1], one
for a keyboard in [2] and one for a tactile screen in [16]. A detailed behavioral
description of such component can be found in [15]. The global interaction technique
component is thus made of multiple interaction transducers, each of them bringing
defining one or several interaction technique. The global interaction techniques are not
necessarily linked to a special zone. For example, on a Samsung smartphone with

MIODMIT: A Generic Architecture for Dynamic Multimodal Interactive Systems 117

Samsung Experience, a palm swift on the screen will take a snapshot of the screen,
whatever the state of the OS is or whatever application is launched.

Sensing Zone (Dialogue and Application Core)
To match the WIMP paradigm, “sensing zone” components include concepts such as
interactive widgets (e.g. radio boxes, buttons…). With post-WIMP interaction, those
objects are not enough, thus “sensing zones” are to be defined, containing represen-
tation parameters (coming from design), their precise behavior as well as how this
behavior is triggered (i.e. their local interaction technique). For instance, a “sensing
zone” reacts to a specific spoken sentence when highlighted, whereas the rest of the
application will not react to the same sentence. The “ok Google” sentence always
triggers an event on Android, whichever app is currently active. It is thus a nice
example of a global interaction technique whereas a sentence such as “tell me if it’s
going to rain today” triggers a result only when the Google Now app is active.

Application Dialog
The “Application Dialog” component is a composite component and represents the
functional behavior of the application as defined in ARCH [4]. The “Activation
Function” component activates or disables the “Sensing Zone” depending on the
current state of the application.

Functional Adapter and Application Core
The “Functional Adapter” component adapts the flow of information from the “Dialog”
to the “Application Core” as defined in ARCH [4]. The “Application Core” is the
component that is responsible of providing the data and services of the application.

Rendering System
The rendering system is composed of several components of two main types: the
“rendering functions” and the “rendering scenes”. The “rendering function” describes
how to present the information of a specific state which might be distributed infor-
mation in the other components of MIODMIT. The immediate feedback is an example
of such a rendering function depending mainly on the information in components
“logical devices” and “global interaction techniques”. A “Rendering Scene” component
composes all rendering function of a given type (e.g. a graphical scene, a sound
scene…). These components prepare the final composition of the information before
the output processing. They are thus connected to one or several output devices which
can effectively present the information to the users.

Output Chain Manager
The “Output Chain Manager” offers the same functionalities as the “Input Chains
Manager” presented above. Nonetheless, the main difference is that while the input is
event-based, the output is state-based, thus, there is no equivalent to the output, of the
“Global Interactions Techniques” component.

Fusion and Fission Engines: A Distributed Function
MIODMIT does not include specific components for fusion and fission as other
architecture do [38]. Indeed, in that case, only one device was used (a photo browser)
and fusion was located by the device. In MIODMIT, fusion can occur at different levels
(e.g. low level with two input devices for a CTRL+Click event or high level where

118 M. Cronel et al.

merging speech sentences with mouse event for a “Put that there” multimodal com-
mand). Fusion and fission mechanism are thus to be specified within components as for
example, fusion engines within the “Global Interaction Technique” component to fuse
two (or more) high-level events into a multimodal interaction technique. Engineering
issues of multimodal input interactions for a single user have been studied and clas-
sified in [6] and a taxonomy based on this classification has been proposed in [23].
Indeed, the various models identified in that survey spread over several components of
MIODMIT.

4 Tune-on-Demand Process

According to the type and the number of input and output devices and according to the
complexity of the multimodal interaction techniques the generic MIODMIT architec-
ture has to be adapted (tuned) to the specificities of the application under consideration.
This section presents a systematic process for tuning MIDOMIT that will be exem-
plified on case studies in Sect. 5.

4.1 Prototyping

Figure 4 presents a process to tune the generic architecture into a specific one. The top
left-hand side (labeled prototyping) represents an abstraction of the user-centered
design process of interactive systems. This part is presented in a very abstract way only
highlighting the productions that are used as input in the other parts of the process.

4.2 Tuning the Generic Interactive System Architecture

The right-hand side of the diagram (labeled tuning) corresponds to the tuning-on-
demand part of the proposed approach while the bottom part focuses on the imple-
mentation aspects. These three main phases have been highlighted using gray boxes
with dashed lines in Fig. 4. The tuning-on-demand step refines the diagram by con-
cretizing each component of MIODMIT making explicit (in the diagram):

• where software parts (e.g. API; libraries…) provided by the input device’s manu-
facturer are distributed in the architecture,

• if existing code has already been produced where it has to be distributed in the
architecture,

• which component have to be coded from scratch.

It is important to note that due to an absence of standards, provided software
packages often require to split or merge functionalities in order to fit in the structure of
the generic architecture. For instance, the Leap Motion is provided with three software
packages: the driver (for a dedicated OS), the library (making it possible to exploit the
driver on a dedicated OS and integrating C and C++ API), and a wrapper for high-level
programming language (e.g. Java). The driver corresponds to the component “Driver
instance” in MIODMIT while the functions in the Leap Motion library cover the
“virtual device” component and several interaction transducers (e.g. detection of a

MIODMIT: A Generic Architecture for Dynamic Multimodal Interactive Systems 119

circle called CircleGesture) located in the “Global Interaction Techniques” component.
The wrapper provides functions for all the other components of the input flow but only
covers a very limited set of functionalities. The provided set of interaction techniques is
basic and has to be extended according to the expected use of the Leap Motion in the
application. This is a clever design choice made by Motion manufacturers to allow
direct exploitation of the Leap within an application by providing standard interaction
techniques but making it also possible to easily extend this set according to the
designers’ needs.

4.3 Illustration of the Process with the Java Application Example

The result of the application of the tune-on-demand process described above on the
Java Application illustrative example is presented in Fig. 5. The Figure can be split in
three sections. The left-hand side represent the physical input and output devices used
with the Java Application. The center represents the MIODMIT components that are
taken care of by the operating system (surrounded by a grey box named “Black Box:
OS Windows”). While no access to the Windows source code is given, it remains
possible to describe the OS behavior using MIODMIT. Indeed, drivers for a keyboard,
mouse and screen as well as part of the rendering system are an integral part of modern
OS. The OS merges input and output aspects at hardware level and thus only one

Fig. 4. Process of tuning-on-demand

120 M. Cronel et al.

component handling both input and output devices drivers is represented. The input
and output chains components are merged handling both abstract input abstraction,
immediate feedback (position of the mouse cursor on the screen) and graphical ren-
dering (related to the presentation part of the widgets, e.g. display of items in the list
box). The window manager of the OS handles picking function (identification of the
widgets which are recipients of user input) thus merging input and output chain
managers. The right-hand side describe the four components from the MIODMIT
architecture that have to be implemented.

5 A Real World Case Study: A Weather Radar

This case study demonstrates a more complex tuning of the generic interactive system
architecture and addresses the issues of integration of input devices as well as the
possibility to reconfigure the interaction techniques dynamically. This case study
comes from the field of aeronautical critical systems and thus must follow development
processes such as the DO178C [12] and certification specifications as defined in CS-25
[11]. In the context of this paper these standards make it impossible to use in critical
applications software components for which the code is not available. This prevents
using Operating Systems offering integrated handling of devices, drivers… as was the
case in the previous example. Indeed, every component of the architecture must be
specified and developed from scratch and may be subject to inspection by the certifi-
cation authorities.

The case study corresponds to a subset of an envisioned weather radar system of
civil aircraft providing atmospheric data to the flying crew. This weather radar is
controlled by a set of input devices (allowing input from the flying crew) and the
processed information is graphically rendered on a computer screen in the cockpit
(usually called Navigation Display). This application uses colors and shapes to present
information such as dimensions, distance and density of clouds (as visible on the
bottom of Fig. 6).

Fig. 5. MIODMIT tuned for Java Application: most of the components of the architecture are
integrated within the operating system (especially management input and output devices).

MIODMIT: A Generic Architecture for Dynamic Multimodal Interactive Systems 121

1. The central lower part of the interface is composed of a map and a custom selector:

• The map displays the aircraft’s position and current heading (small numbers
from 0 to 360 on the outside circle) as nearby traffic (small blue plane near 40.0
number on the inner circle) and weather information (colored zone on the right-
hand side of the image).

• The custom selector (the small circle at the edge of the biggest circle) controls
the heading of the aircraft. When modified, it modifies the information presented
in the map display.

2. The upper left part of the interface is composed of three toggle buttons and a custom
discrete slider. They provide the following controls:

• The “HEADING” toggle button (top) controls the heading validation and trig-
gers heading changes,

• The “ARC” and “ROSE” toggle buttons control the two mutually exclusive
display modes of the navigation display,

• The custom slider (labeled “RANGE SLIDER”) defines the zoom level of the
navigation display in nautical miles (10 nm, 20 nm…). Current selection is
160 nm.

3. The right upper part of the interface of Fig. 6 called Weather radar control is
composed of two widgets:

• A toggle button “WXR” control the weather visibility on the navigation display,
• A custom discrete slider controls the weather radar orientation.

5.1 Informal Description (Prototyping Step of the Process)

The informal description provided below is representative of the potential use of
several redundant modalities for such application. It is important to note that design
aspects of this application is beyond the scope of this paper both in terms of usability

Fig. 6. User interface of the weather radar application

122 M. Cronel et al.

and operational validity. In the proposed case study, operators are able to use multiple
input devices, modalities and interaction techniques:

• Input devices: interaction can take place using a KCCU (Keyboard Cursor Control
Unit) which blends a graphical designator (a track-ball) and a keyboard. Two
KCCUs are available in the cockpit (one for each pilot) thus enabling parallel
interaction with two mice. Such interactions and input devices are available in most
recent large civil aircrafts e.g. Airbus A380, A350 and Boeing 787. In the case
study, it is also possible to interact in a tactile way using the multi-touch screen
presented in Fig. 6.

• Interaction techniques and modalities: on top of these input devices, interaction
can take place in various ways. Using the multi-touch screen, operators can perform
“Flick 2 fingers”, “Tap”, “Tap long” and “Drag” which are global interaction
techniques (i.e. they can be performed everywhere on the screen). Mice are used for
triggering events on the WIMP interactors while multimodal events (e.g. “Flick 2
fingers”) are assigned (as defined in CARE properties [9]) to the touch screen. In
case of a touch screen failure, the mice can be used to trigger high level events
previously devoted to the touch screen. In that case the application must be able to
switch from one configuration to another. While multi-user interactions with two
mice for triggering equivalent multi-touch interactions might be cumbersome,
guaranteeing the possibility of events triggering in presence of faulty touch devices
was a requirement.

5.2 Overview of the Tuned Generic Interactive System Architecture

According to the process in Fig. 4, the first step, from the prototyping phase, is to refine
MIODMIT by specifying all the components. During this refinement, it is important to
make explicit where the software provided by the input devices manufacturers is
located in the diagram. It is important to note that currently, software packages pro-
vided by manufacturers often require splitting or merging in order to fit in the structure
of the architecture.

As for the description of MIODMIT in previous sections, Fig. 7 presents an
overview of the architecture tuned for the weather radar case study.

Fig. 7. MIODMIT tuned for the Weather Radar Application

MIODMIT: A Generic Architecture for Dynamic Multimodal Interactive Systems 123

The gray boxes on the left-hand side of the figure correspond to the input and
output devices available in the case study. These components will be detailed further in
the following sections. The input devices provide input to the “Input chains manager”
component. The “input chains manager” component is able to switch between two
predetermined input configurations:

• The normal one where touch and mice are available,
• The degraded configuration (resulting from a loss of tactile functionality). This

behavior is similar to the one proposed in [27] where reconfiguration was performed
at the interaction technique level for keyboards and mice.

As there is only one output device in this case study, there cannot be several output
configurations. The “output configuration manager” component is therefore not
necessary.

The “Global Interaction Techniques” component contains several transducers that
produce high-level events such as “flick-2-fingers”, “Combined-Click”, “Tap”, “Drag”,
etc. Part of the behavior of those transducers consists of fusing input from multiple
input devices thus implementing functionalities of fusion engines. As the weather radar
application is a real case study in aeronautics, the behavior of the “Core Application”,
“Functional Adapter”, “Dialog” and a part of the “rendering system” has already been
coded. The process of tuning the architecture to include touch and mice interactions
does not deeply impact the existing application. Those modifications mainly consist of
ensuring that the components connect (plug) and function altogether (play).

The remainder of the “rendering system” concerns mostly the immediate feedback
that has to be linked to the two input chains and more particularly, to the “abstract
cursor” from the mice input chain and to the “finger” from the touch input chain. These
aspects, which are at the center of the contribution, are detailed in the following
section.

5.3 Application to the Case Study: Tuning MIODMIT

Input Device Type 1: Touch Screen
Figure 8 presents the tuning of the gray box “Input Device Type 1” from Fig. 3 for a
touch-screen device. Adding a touch screen device requires a touch driver (see [13]).
All the components within the “Input Chain Touch Screen” are within the Java Virtual
Machine (JVM) via the use of a dedicated Java library (JavaFX). These events are
retrieved by the “virtual screen” component while the “Touch Screen Manager”
instantiates the various logical input devices (fingers in this case) one each time a finger
is detected. The “Touch Screen manager” link Fingers events and data to the registered
interaction transducers (within the “Global Interaction Techniques” component) as, for
instance, the “Flick 2 Fingers” one detecting the eponym interaction.

Input Device Type 2: Two Mice
Even though the mouse is a standard input device, as we use multi-mice interactions,
we cannot use drivers provided natively by the operating system. The data from mice is
accessed by having a thread polling the JInput library information (e.g. JInput.dll for

124 M. Cronel et al.

windows). The two mice are then handled by the “mice manager” (Fig. 9) that
instantiates two virtual mice and two abstraction of cursors. The “mice manager” links
these cursors to “interaction transducers” within “Global Interaction Techniques” that
recognize high level events such as Click, DoubleClick, etc. and possibly multimodal
ones such as combined clicks as defined in [1].

Output Device: Screen
The management of the screen is straightforward as there is no multiplicity of devices.
As there are no redundancies of output modalities in this case study, there is no need
for an “output chain manager” component (see Fig. 10).

5.4 Application to the Case Study: Implementation

Following the process in Fig. 4 after MIODMIT tuning, each remaining component has
to be implemented. Implementation concerns the definition of the behavior of each
component of the tuned architecture. Such implementation can be done using different

Fig. 8. Tuning MIODMIT for a touch-screen device

Fig. 9. Tuning MIODMIT for two mice

Fig. 10. Tuning MIODMIT for the screen device

MIODMIT: A Generic Architecture for Dynamic Multimodal Interactive Systems 125

programming languages being formal or not. In previous work ICO-based descriptions
were used for some of the components (e.g. “Global Interaction Technique” component
[21], “Dialogue” [16] component…). Work such as [13] has provided C implemen-
tation of all the components of the “Input Chain Kinect”. In section “Tune on Demand
Process” we have detailed the various implementation steps that are thus not duplicated
here as they are generic to every type of application.

5.5 Application to the Case Study: Adding a Device

One of the most important aspects of MIODMIT is its modularity providing flexibility
and modifiability to the applications designed. This section highlights the modifications
to be made when an additional input device is added, here a Leap Motion (see Fig. 11).
Once the device is chosen, two processes can be done in parallel. The first one is to
prototype the interaction using the new device (design, evaluation… etc.). The other is
to tune MIODMIT for the chosen device and integrate the tuning within the existing
application. In the following, we describe how to add a Leap Motion hand gestures
tracker as well as corresponding gesture-based commands to our case study.

The Leap Motion is provided with three software packages as explained in
Sect. 4.2.

While the wrapper provides functions for several components of the input chain
(namely “Virtual Hands”, “Leap Manager”, “Global Interaction Technique”) it only
covers a very limited set of expected functionalities for instance only basic interactions
(e.g. KeyTap or CircularGesture) are recognized (in the “Global Interaction Tech-
nique”), partial transducer for the cursor is provided…

As the case study uses a non-provided interaction technique named Hand-Flick
(corresponding to a mid-air “Flick 2 Fingers”) the “Global Interaction Technique”
component has to be programmed exploiting the functions of the API. Adding this new
device as an equivalent modality does not impact the rest of the implementation as long
as it provides the same high level events.

Fig. 11. Tuning MIOMIT for a Leap Motion Device

126 M. Cronel et al.

6 Conclusion and Perspectives

This paper presented a generic interactive system architecture and its associated tuning
process for the engineering of interactive systems. It addresses the issue of the com-
plexity of engineering current interactive systems integrating non-standard input and
output devices and offering multimodal interactions. Both hardware and software
aspects are described within a single framework.

The generic interactive system architecture makes explicit the relationships between
input devices and interaction techniques. It also makes explicit how such elements are
related to implementation considerations involving various software entities such as
device drivers, transducers, toolkits and APIs. As such, the integration of novel
interaction techniques such as gesture interaction is simplified and better structured,
and can be tuned depending on the needs of specific applications. The illustrated
development process presented helps demonstrating how the MIODMIT generic
interactive system architecture can be applied. An example in the field of critical
systems, in our case a weather radar panel for civilian aircrafts, shows a real world
application of our approach.

The proposed approach brings multiple benefits including the division of complex
interactive systems into generic components loosely coupled and highly coherent thus
enforcing the locality of modifications. It also brings research work achieved in the area
of critical interactive systems (such as self-checking interactors 35 and reconfigura-
tions) to the broader world of mainstream interactive multimodal systems.

Due to its white box principle (each component of the architecture contributes to
the processing of input and the production of output) the approach is particularly
suitable for interactive critical systems where each component has to be auditable.
However, as demonstrated by the classical interactive application example it is also
applicable to the engineering of more mainstream interactive systems. The only dif-
ference is that some components are directly managed by the programming environ-
ment (Java and Java VM) or the operating system on which they are executed.

References

1. Accot, J., Chatty, S., Palanque, P.: A formal description of low level interaction and its
application to multimodal interactive systems. In: Bodart, F., Vanderdonckt, J. (eds.) Design,
Specification and Verification of Interactive Systems. Eurographics, pp. 92–104. Springer,
Heidelberg (1996). https://doi.org/10.1007/978-3-7091-7491-3_5

2. Accot, J., Chatty, S., Maury, S., Palanque, P.: Formal transducers: models of devices and
building bricks for the design of highly interactive systems. In: Harrison, M.D., Torres, J.C.
(eds.) Design, Specification and Verification of Interactive Systems. Eurographics, pp. 143–
159. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-7091-6878-3_10

3. Bass, L.: Software Architecture in Practice. Pearson Education India, Gurgaon (2007)
4. Bass, L., et al.: The arch model: Seeheim revisited. In: User Interface Developpers’

Workshop (1991)

MIODMIT: A Generic Architecture for Dynamic Multimodal Interactive Systems 127

http://dx.doi.org/10.1007/978-3-7091-7491-3_5
http://dx.doi.org/10.1007/978-3-7091-6878-3_10

5. Bastide, R., Navarre, D., Palanque, P., Schyn, A., Dragicevic, P.: A model-based approach
for real-time embedded multimodal systems in military aircrafts. In: Proceedings of the 6th
International Conference on Multimodal Interfaces (ICMI 2004), pp. 243–250. ACM,
New York (2004)

6. Buxton, B.: Developing a Taxonomy of Input, chapter 4. http://www.billbuxton.com/
input04.Taxonomies.pdf. Accessed 15 January

7. Buxton, B.: A three state model of graphical input. In: Diaper, D., et al. (eds.) Human-
Computer Interaction - INTERACT 1990, pp. 449–456. Elsevier Science Publishers (1990)

8. Campos, J.C., Harrison, M.D.: Formally verifying interactive systems: a review. In:
Harrison M.D., Torres J.C. (eds.) Design, Specification and Verification of Interactive
Systems. Eurographics, pp. 109–124. Springer, Heidelberg (1997). https://doi.org/10.1007/
978-3-7091-6878-3_8

9. Coutaz, J., Nigay, L., Salber, D., Blandford, A., May, J., Young, R.M.: Four easy pieces for
assessing the usability of multimodal interaction: the care properties. In: Nordby, K.,
Helmersen, P., Gilmore, D.J., Arnesen, S.A. (eds.) Human—Computer Interaction. IFIP
Advances in Information and Communication Technology, pp. 115–120. Springer,
Heidelberg (1995). https://doi.org/10.1007/978-1-5041-2896-4_19

10. Cronel, M.: Une approche pour l’ingénierie des systèmes interactifs critiques multimodaux et
multi-utilisateurs: Application à la prochaine génération de cockpit d’aéronefs, thèse de
doctorat, Université Paul Sabatier, octobre 2017

11. CS-25 - Amendment 17 - Certification Specifications and Acceptable Means of Compliance
for Large Aeroplanes. EASA (2015)

12. DO-178C/ED-12C, Software Considerations in Airborne Systems and Equipment Certifi-
cation, published by RTCA and EUROCAE (2012)

13. Deshayes, R., Palanque, P., Mens, T.: A generic framework for executable gestural
interaction models. In: VL/HCC 2013, pp. 35–38 (2013)

14. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The architecture analysis & design language (AADL):
An introduction (No. CMU/SEI-2006-TN-011). Carnegie-Mellon Univ Pittsburgh PA
Software Engineering Inst (2006)

15. Hamon, A., Palanque, P., André, R., Barboni, E., Cronel, M., Navarre, D.: Multi-touch
interactions for control and display in interactive cockpits. In: HCI’Aero 2014. ACM DL
(2014)

16. Hamon, A., Palanque, P., Silva, J.L., Deleris, Y., Barboni, E.: Formal description of multi-
touch interactions. In: 5th ACM SIGCHI EICS, pp. 207–216. ACM (2013)

17. Hansen, T.E., Hourcade, J.P., Virbel, M., Patali, S., Serra, T.: PyMT: a post-WIMP multi-
touch user interface toolkit. In: ACM ICITS, pp. 17–24. ACM (2009)

18. Hinckley, K., Jacob, R.J.K., Ware, C., Wobbrock, J., Wigdor, D.: Input/output devices and
interaction techniques. In: Computing Handbook, 3rd edn., Chap. 21, pp. 1–54 (2014)

19. Hoste, L., Dumas, B., Signer, B.: Mudra: a unified multimodal interaction framework. In:
ICMI 2011, pp. 97–104. ACM (2011)

20. Kammer, D., Keck, M., Freitag, G., Wacker, M.: Taxonomy and overview of multi-touch
frameworks: architecture, scope and features. In: Workshop on EPMI (2010)

21. Kraleva, R., Kralev, V.: On model architecture for a children’s speech recognition interactive
dialog system. In: Proceedings of International Scientific Conference on Mathematics and
Natural Sciences (2009). https://arxiv.org/pdf/1605.07733

22. Ladry, J.-F., Navarre, D., Palanque, P.: Formal description techniques to support the design,
construction and evaluation of fusion engines for sure (safe, usable, reliable and evolvable)
multimodal interfaces. In: ACM ICMI, pp. 185–192 (2009)

23. Lalanne, D., Nigay, L., Palanque, P., Robinson, P., Vanderdonckt, J., Ladry, J.F.: Fusion
engines for multimodal input: a survey. In: ICMI, pp. 153–160. ACM (2009)

128 M. Cronel et al.

http://www.billbuxton.com/input04.Taxonomies.pdf
http://www.billbuxton.com/input04.Taxonomies.pdf
http://dx.doi.org/10.1007/978-3-7091-6878-3_8
http://dx.doi.org/10.1007/978-3-7091-6878-3_8
http://dx.doi.org/10.1007/978-1-5041-2896-4_19
https://arxiv.org/pdf/1605.07733

24. Latoschik, M.E., Reiners, D., Blach, R., Figueroa, P., Dachselt, R.: SEARIS: software
engineering and architectures for realtime interactive systems. In: 24th ACM SIGPLAN
OOPSLA, pp. 721–722 (2009)

25. Lee, J.S., et al.: A 0.4 V driving multi-touch capacitive sensor with the driving signal
frequency set to (n + 0.5) times the inverse of the LCD VCOM noise period. In: IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 682–685 (2014)

26. Ng, A., Lepinski, J., Wigdor, D., Sanders, S., Dietz, P.: Designing for low-latency direct-
touch input. In: 25th ACM UIST Conference, pp. 453–464. ACM (2012)

27. Navarre, D., Palanque, P., Basnyat, S.: A formal approach for user interaction reconfig-
uration of safety critical interactive systems. In: Harrison, Michael D., Sujan, M.-A. (eds.)
SAFECOMP 2008. LNCS, vol. 5219, pp. 373–386. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87698-4_31

28. Nigay, L., Coutaz, J.: Multifeature systems: from HCI properties to software design. In:
Proceedings of First International Workshop on Intelligence and Multimodality in
Multimedia Interfaces. AAAI Press Publ. (1995)

29. Morris, M., Huang, A., Paepcke, A., Winograd, T.: Cooperative gestures: multi-user gestural
interactions for co-located groupware. In: ACM CHI Conference 2006, pp. 1201–1210
(2006)

30. Palanque, P., Bastide, R., Navarre, D., Sy, O.: Computer discretized interaction: from
continuous to discrete and back again. In: Workshop on Continuity in Human Computer
Interaction, CHI 2000, The Hague (2000)

31. Pfaff, G.E. (ed.): User Interface Management Systems. Springer, Heidelberg (1985). https://
doi.org/10.1007/978-3-642-70041-5

32. Rousseau, C., Bellik, Y., Vernier, F.: Multimodal output specification/simulation platform.
In: ACM ICMI 2005, pp. 84–91 (2005)

33. SAE-AS5506B: SAE Architecture Analysis and Design Language (AADL), International
Society of Automotive Engineers, Warrendale, PA, USA, September 2012

34. Schneegass, S., Alt, F.: SenScreen: a toolkit for supporting sensor-enabled multi-display
networks. In: Gehring, S. (ed.) Proceedings of the International Symposium on Pervasive
Displays (PerDis 2014). ACM, New York (2014). 6 pages

35. Tankeu-Choitatk, A., Navarrek, D., Palanquek, P., Delerisk, Y., Fabrek, J.-C., Fayollask, C.:
Self-checking components for dependable interactive cockpits using formal description
techniques. In: PRDC 2011, pp. 164–173 (2011)

36. Vu, T., et al.: Distinguishing users with capacitive touch communication. In: Mobicom 2012,
pp. 197–208. ACM (2012)

37. Echtler, F., Klinker, G.: A multitouch software architecture. In: Proceedings of the 5th
Nordic Conference on Human-Computer Interaction: Building Bridges (NordiCHI 2008),
pp. 463–466. ACM, New York (2008)

38. Vennelakanti, R., Dey, P., Shekhawat, A., Pisupati, P.: The picture says it all!: Multimodal
interactions and interaction metadata. In: Proceedings of the 13th International Conference
on Multimodal Interfaces (ICMI 2011), pp. 89–96. ACM, New York (2011)

39. Kousidis, S., Kennington, C., Baumann, T., Buschmeier, H., Stefan, K., Schlangen, D.: A
multimodal in-car dialogue system that tracks the driver’s attention. In: Proceedings of the
16th International Conference on Multimodal Interaction (ICMI 2014), pp. 26–33. ACM,
New York (2014)

MIODMIT: A Generic Architecture for Dynamic Multimodal Interactive Systems 129

http://dx.doi.org/10.1007/978-3-540-87698-4_31
http://dx.doi.org/10.1007/978-3-540-87698-4_31
http://dx.doi.org/10.1007/978-3-642-70041-5
http://dx.doi.org/10.1007/978-3-642-70041-5

	MIODMIT: A Generic Architecture for Dynamic Multimodal Interactive Systems
	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Side of Interactive Systems Architectures
	2.2 Hardware Side of Interactive Systems Architectures: Input and Output Devices

	3 MIODMIT: A Generic Architecture for Interactive Systems
	3.1 Illustrative Example with a Simple JAVA Application
	3.2 MIODMIT Overview
	3.3 Inside the Details of MIODMIT

	4 Tune-on-Demand Process
	4.1 Prototyping
	4.2 Tuning the Generic Interactive System Architecture
	4.3 Illustration of the Process with the Java Application Example

	5 A Real World Case Study: A Weather Radar
	5.1 Informal Description (Prototyping Step of the Process)
	5.2 Overview of the Tuned Generic Interactive System Architecture
	5.3 Application to the Case Study: Tuning MIODMIT
	5.4 Application to the Case Study: Implementation
	5.5 Application to the Case Study: Adding a Device

	6 Conclusion and Perspectives
	References

