Skip to main content

Deep Active Learning for In Situ Plankton Classification

  • Conference paper
  • First Online:
Pattern Recognition and Information Forensics (ICPR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11188))

Included in the following conference series:

Abstract

Ecological studies of some of the most numerous organisms on the planet, zooplankton, have been limited by manual analysis for more than 100 years. With the development of high-throughput video systems, we argue that this critical bottle-neck can now be solved if paired with deep neural networks (DNN). To leverage their performance, large amounts of training samples are required that until now have been dependent on manually created labels. To minimize the effort of expensive human experts, we employ recent active learning approaches to select only the most informative samples for labelling. Thus training a CNN using a nearly unlimited amount of images while limiting the human labelling effort becomes possible by means of active learning. We show in several experiments that in practice, only a few thousand labels are required to train a CNN and achieve an accuracy-level comparable to manual routine analysis of zooplankton samples. Once trained, this CNN can be used to analyse any amount of image data, presenting the zooplankton community the opportunity to address key research questions on transformative scales, many orders of magnitude, in both time and space, basically only limited by video through-put and compute capacity.

T.J.W. Walles was supported by a Leibniz Competition grant ILES “Illuminating Lake Ecosystems”, and technical investment was supported by IGB-startup funds to J.C. Nejstgaard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benfield, M.C., et al.: RAPID: research on automated plankton identification. Oceanography 20, 172–187 (2007)

    Article  Google Scholar 

  2. Connor, R.: The United Nations World Water Development Report 2015: Water for a Sustainable World. UNESCO Publishing, Paris (2015)

    Google Scholar 

  3. Cowen, R.K., Guigand, C.M.: In situ ichthyoplankton imaging system (ISIIS): system design and preliminary results. Limnol. Oceanogr. Methods 6, 126–132 (2008)

    Article  Google Scholar 

  4. Dai, J., Wang, R., Zheng, H., Ji, G., Qiao, X.: ZooplanktoNet: deep convolutional network for zooplankton classification. In: OCEANS (2016)

    Google Scholar 

  5. Douglas, K., Juniper, S., Jenkyns, R., Hoeberechts, M., Macoun, P., Hillier, J.: Developing spatial management tools for offshore marine protected areas. In: OCEANS-Anchorage (2017)

    Google Scholar 

  6. Hofmann, E.E., Klinck, J.M.: Future marine zooplankton research - a perspective. Marine Ecol. Progress Ser. 222, 297–308 (2001)

    Article  Google Scholar 

  7. Gorriz, M., Carlier, A., Faure, E., Giro-i Nieto, X.: Cost-effective active learning for melanoma segmentation. arXiv preprint arXiv:1711.09168 (2017)

  8. Gorsky, G., et al.: Digital zooplankton image analysis using the zooscan integrated system. J. Plankton Res. 32, 285–303 (2010)

    Article  Google Scholar 

  9. Hirata, N.S., Fernandez, M.A., Lopes, R.M.: Plankton image classification based on multiple segmentations. In: ICPR CVAUI Workshop (2016)

    Google Scholar 

  10. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: International Conference for Learning Representations (2015)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  12. Lee, H., Park, M., Kim, J.: Plankton classification on imbalanced large scale database via convolutional neural networks with transfer learning. In: IEEE International Conference on Image Processing (2016)

    Google Scholar 

  13. Lin, L., Wang, K., Meng, D., Zuo, W., Zhang, L.: Active self-paced learning for cost-effective and progressive face identification. IEEE Trans. Pattern Anal. Mach. Intell. 40, 7–19 (2018)

    Article  Google Scholar 

  14. MacLeod, N., Benfield, M., Culverhouse, P.: Time to automate identification. Nature 467, 154 (2010)

    Article  Google Scholar 

  15. Orenstein, E.C., Beijbom, O., Peacock, E.E., Sosik, H.M.: WHOI-plankton-a large scale fine grained visual recognition benchmark dataset for plankton classification. arXiv preprint arXiv:1510.00745 (2015)

  16. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  17. Scheffer, T., Decomain, C., Wrobel, S.: Active hidden Markov models for information extraction. In: International Symposium on Intelligent Data Analysis (2001)

    Chapter  Google Scholar 

  18. Settles, B.: Active learning literature survey. Computer Sciences Technical report 1648 (2010)

    Google Scholar 

  19. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5, 3–55 (2001)

    Article  Google Scholar 

  20. Stanitsas, P., Cherian, A., Truskinovsky, A., Morellas, V., Papanikolopoulos, N.: Active convolutional neural networks for cancerous tissue recognition. In: IEEE International Conference on Image Processing (2017)

    Google Scholar 

  21. Vörösmarty, C.J., et al.: Global threats to human water security and river biodiversity. Nature 467, 555 (2010)

    Article  Google Scholar 

  22. Wang, C., Yu, Z., Zheng, H., Wang, N., Zheng, B.: CGAN-plankton: towards large-scale imbalanced class generation and fine-grained classification. In: IEEE International Conference on Image Processing (2017)

    Google Scholar 

  23. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE TCSVT 27, 2591–2600 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Bochinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bochinski, E., Bacha, G., Eiselein, V., Walles, T.J.W., Nejstgaard, J.C., Sikora, T. (2019). Deep Active Learning for In Situ Plankton Classification. In: Zhang, Z., Suter, D., Tian, Y., Branzan Albu, A., Sidère, N., Jair Escalante, H. (eds) Pattern Recognition and Information Forensics. ICPR 2018. Lecture Notes in Computer Science(), vol 11188. Springer, Cham. https://doi.org/10.1007/978-3-030-05792-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05792-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05791-6

  • Online ISBN: 978-3-030-05792-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics