
An Efficient Method for Determining Full
Point-to-Point Latency of Arbitrary

Indirect HPC Networks

Chengchun Liu1, Zhang Yang2(B), Limin Xiao1(B), Baicheng Yan1,
Zhihao Wang1, and Hongyun Tian2

1 School of Computer Science and Engineering, Beihang University,
Beijing 100191, China
xiaolm@buaa.edu.cn

2 Institute of Applied Physics and Computational Mathematics,
No. 2 East Fenghao Road, Haidian District, Beijing 100094, China

yang zhang@iapcm.ac.cn

Abstract. Point-to-point latency is one of the most important metrics
for high performance computer networks and is used widely in commu-
nication performance modeling, link-failure detection, and application
optimization. However, it is often hard to determine the full-scale point-
to-point latency of large scale HPC networks since it often requires mea-
surements to the square of the number of terminal nodes. In this paper,
we propose an efficient method to generate measurement plans for arbi-
trary indirect HPC networks and reduces the measurement requirements
from O(n2) to m, which is often O(n) in modern indirect networks con-
taining n nodes and m links, thus significantly reduces the latency mea-
sure overhead. Both analysis and experiments show that the proposed
method can reduce the overhead of large-scale fat-tree networks by orders
of magnitudes.

1 Introduction

Point-to-point latency is a fundamental metric of high performance computer
networks, and is widely used in network performance modeling [1,2], commu-
nication performance optimization [3], and high performance computer main-
tenance. The first and formost step to make use of the latency is to measure
the latency. A common method to get the latency is to measure the round-trip
time (RTT) between any pair of nodes. While one measurement of RTT is quick
enough, obtaining the full-network point-to-point latency can be extremly time-
consuming since it involves n(n − 1)/2 (or O(n2)) measurements, where n is the
number of terminal nodes. One may use parallel measurements to reduce the
round of measurements, but parallel measurements can interfere with each other
and reduce the accuracy of the results. Thus, it is essential to reduce the total

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018
F. Zhang et al. (Eds.): NPC 2018, LNCS 11276, pp. 52–63, 2018.
https://doi.org/10.1007/978-3-030-05677-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05677-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-05677-3_5


An Efficient Method for Determining Full Point-to-Point Latency 53

number of measurements, so as to make it possible to use these latency-based
methods on modern super-computers with tens of thousands of computer nodes.

In this paper, we propose a minimal and parallel method for full-scale point-
to-point latency measurements on super-computers with indirect networks (such
as fat-tree, dragonfly and slimfly networks), abbreviated as PMM. Our method
first construct a minimal set of node pairs between which the RTT is measured,
given the network topology and the routing table, then compute a measurement
plan to make use of the parallelism between the measurements with the gurantee
that concurrent measurements will not interfere with one another. The minimal
set of node pairs goes from n(n−1)/2 to m, where m is the number of links con-
necting the network interface and the routers, which is often proportional to the
number of nodes, thus reduces the number of measurements from O(n2) to O(n).
The parallel measurement plan can further reduce the round of measurements,
for example, by 33.3% in our experimental settings.

The reset of this paper is organized as follows. In Sect. 2, we introduce some
related works on network latency measurement. In Sect. 3, we present our latency
measurement method in detail. In Sect. 4, we prove the effectiveness of our meth-
ods by theoretical analysis and experiments. We also present performance anal-
ysis of the method itself. In Sect. 5, we discuss the possible applications of our
proposed method. In the last section comes the conclusions.

2 Related Works

Communication latency or distance measurement are investigated in some litera-
tures. Authors in [4] proposed a latency system based on GNP for fast obtaining
latency information between arbitrary web client pairs distributed in wide area
networks. This method has been used in the Google’s content distribution net-
work which helps to find the nearest data center for a web client. This method
can estimate latency results quickly only with a small number of CDN modifi-
cations and decouples with web client, but is not suitable for the dense network
such as HPC network or data center network. The literatures [5,6] also aim to
obtain the latency in wide area network environment in different ways, but those
methods are not suitable for dense networks.

Authors in [7] proposed a system called Pingmesh for latency measurement
and analysis in large scale data center networks. The latency measurement sys-
tem represents the network topology as three complete graphs, namely the server
complete graph, the switch complete graph, and the data center complete graph.
The method needs to select some representative node pairs and measure the
latency information between those nodes. With these information, the method
can approximately estimate the latency between different nodes in the same
switch, in different switches, or in different data centers. But this method mea-
sures only partially the network and can not be used in full-network measure-
ments.

The work [8] is the most similar to our work. They proposed a method to mea-
sure the communication distance between nodes on the Internet. This method



54 C. Liu et al.

also needs to construct the communication distance equations through a large
number of measurements and then solve the least squares solution of the equa-
tions, which is considered as the distance. The main concern of the method is
whether the calculation result of the communication distance is accurate with-
out considering the time cost caused by the inappropriate measurement set. In
contrast, our method carefully selects a minimal measurement set and then mea-
sures the latency between node pairs in the set in parallel to reduce the total
time cost.

3 The PMM Method

3.1 Definitions

In order to simplify the introduction of our measurement method, we intro-
duce some definitions, mathematical symbols and necessary assumptions in this
section. Data transmission in the network is a complex process, which is affected
by communication protocol, network topology, and hardware architecture. Since
point-to-point latency on direct networks can be easy, we only focus on indirect
networks in this paper. The data is transmitted from the source NIC, through
the links, to routers, and direct to other routers, and finally to the destination
NIC, as shown in Fig. 1. The NIC is connected to a computing node, which is
called a terminal node. We also assume the network uses static routing instead
of adaptive routing.

Fig. 1. Data transmission in indirect networks. The data is transmitted from the source
terminal node to the destination through links and routers.

Definition 1. a single link refers to a physical link between any adjacent devices
in an indirect network. The latency of a single link refers to the time for a
measuring packet to pass through the link from the buffer of the device at one
end of the link to the buffer of the device at another end.

Definition 2. a measuring path refers to the entire path contained in the trans-
mission of data between two communication nodes in an indirect network, which
passes through some middle routing devices and physical links. The latency of
the measuring path refers to the sum of latency of all single links in the path.



An Efficient Method for Determining Full Point-to-Point Latency 55

Definition 3. an aggregated link refers to a subpath of a measuring path which
consists of one or more adjacent links. The method is not able to calculate the
latency of any single link in an aggregated link, but is able to calculate the latency
of the aggregated link.

We provide some mathematical symbols to represent the elements in the
method, as shown in Table 1.

Table 1. All mathematical symbols used in the method

Symbol Description

kx Computing node

Px,y The measuring path from node x to node y

P rtt
x,y The round-trip measuring path between node x and node y

lx Single link

a<x,y>,z The times the single link z appears in the path P rtt
x,y

α<x,y> The vector form of a path whose elements are a<x,y>,z

ox The latency of link x

Ox The latency of path x

S The set of path whose elements are α<x,y>

S
′
x A maximal linearly independent subset of S

3.2 Method

Now we describe our latency measurement method in detail. Our method
assumes that one can get the route of arbitrary node pairs. Through our paper,
we use a simple network as shown in Fig. 2 for illustration. The network consists
of 3 switches, 6 nodes and 8 single links. We can find many redundant measure-
ments when we measure the latency between all node pairs. We take the 4 nodes
connected by r1 as an example. When measuring all pairs, we need to measure
the latency of 6 paths, i.e., P rtt

k1,k2
, P rtt

k1,k5
, P rtt

k1,k6
, P rtt

k2,k5
, P rtt

k2,k6
, P rtt

k5,k6
. But if we

just measure P rtt
k1,k2

, P rtt
k1,k5

, P rtt
k1,k6

, P rtt
k2,k5

for latency, and make use of the fact
link latency is additive, we can get Eq. 1.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ol1 + ol2 = 1/2·OP rtt
k1,k2

ol1 + ol7 = 1/2·OP rtt
k1,k5

ol1 + ol8 = 1/2·OP rtt
k1,k6

ol2 + ol7 = 1/2·OP rtt
k2,k5

(1)

By solving Eq. 1, we can obtain ol1 , ol2 , ol7 , ol8 and calculate OP rtt
k2,k6

= 2·(ol2 +
ol8), OP rtt

k5,k6
= 2·(ol7 + ol8). Further more, there are redundant measurements



56 C. Liu et al.

between the nodes connected to different switches. Suppose we have measured
the path latency between some nodes directly connected to the same switch.
We need to measure P rtt

k1,k3
, P rtt

k1,k4
, P rtt

k2,k3
, P rtt

k2,k4
, P rtt

k5,k3
, P rtt

k5,k4
, P rtt

k6,k3
, P rtt

k6,k4
for

latency when measuring one by one. In fact, we can only measure P rtt
k1,k3

to get
ol1 +ol3 +ol4 +ol5 = OP rtt

k1,k3
and calculate ol3 +ol4 . In addition, we can measure

node pairs which do not share any link in parallel. For example, we can measure
the latency of P rtt

k1,k2
and P rtt

k3,k4
in parallel.

Fig. 2. A sample network with 6 nodes, 8 single links and 3 switches. Only 7 rather
than 15 measurements are necessary for full-network point-to-point latency.

The example above illustrates the core idea of our method. By assuming the
node-to-node latency is the addition of link latencies, we can select a number
of node pairs which covers all links in the network and measure the node-to-
node latencies, then recover the link latencies by solving a linear equation. The
measurement can further be done in parallel. Although we only consider link
latency here, our method applies to cases where both link and router latency are
included, since they only add more variables and does not change the additive
nature of latency.

Concretely, for a network containing n nodes and m links, the method
includes the following steps.

a. Construct full measurement path set S, which contains all measuring paths.

By querying routing information, we can get the single link set of any path
between node ki and kj . The lateny of path P rtt

ki,kj
can be expressed as

Latency(P rtt
ki,kj

) = a<i,j>,1·ol1 + a<i,j>,2·ol2 + · · · + a<i,j>,m·olm = α<i,j> · β

where α<i,j> = (a<i,j>,1, a<i,j>,2, · · · , a<i,j>,m−1, a<i,j>,m), β = (ol1 , ol2 , · · · ,
olm−1 , olm). The full measuring path set S={α<1,2>,α<1,3>,· · ·, α<n−2,n>,
α<n−1,n>} which consists of n(n − 1)/2 measuring paths. For the net-
work shown in Fig. 2, S = {α<k1,k2>, α<k1,k3>, α<k1,k4>, α<k1,k5>, α<k1,k6>,
α<k2,k3>, α<k2,k4>, α<k2,k5>, α<k2,k6>, α<k3,k4>, α<k3,k5>, α<k3,k6>, α<k4,k5>,
α<k4,k6>, α<k5,k6>}. Taking α<k1,k2> as an example. α<k1,k2> = (2, 2, 0, 0,
0, 0, 0, 0) means that the measuring path P rtt

k1,k2
consists of l1, l2, l2, l1.



An Efficient Method for Determining Full Point-to-Point Latency 57

b. Select the minimal measurement path set S
′
, which is the subset after remov-

ing redundant measurement path in S.

By linear algebra theory, any element in S can be expressed as a linear com-
bination of the maximal linearly independent subset of S. Thus, we choose the
maximal linearly independent subset of S as the minimal measurement path set
S

′
, and name it as MMSets. The maximal number of elements in any MMSet

is never greater than the dimension of the linear space, which is the number of
single links m. Thus, if we can find the MMSets, we can reduce the number of
measurements from n(n− 1)/2 to m. Given the fact that HPC networks contain
links only proportional to the number of terminal nodes, m = O(n), we reduce
the total number of measurements from O(n2) to O(n), which is very significant.

The MMSets can be found using the Gaussian elimination method. Due to
different order of elements in S, the Gaussian elimination method can result in
different valid MMSets. This suggests we have different minimal measurement
path sets. For the previous sample network, we can obtain three different MMSets
which are:

S
′
1 = {α<k1,k2>, α<k1,k3>, α<k1,k4>, α<k1,k5>, α<k1,k6>, α<k2,k5>, α<k3,k4>},

S
′
2 = {α<k1,k2>, α<k1,k3>, α<k1,k4>, α<k1,k5>, α<k1,k6>, α<k2,k6>, α<k3,k4>},

S
′
3 = {α<k1,k2>, α<k1,k3>, α<k1,k4>, α<k1,k5>, α<k1,k6>, α<k5,k6>, α<k3,k4>}

c. Measure the latency of paths in S
′
in parallel.

We can simultaneously measure the latency of paths that do not contain the same
single link. We define a measuring path graph MPG<V,E> in which each vertex
represents a measuring path and edge between the two vertexes indicates that the
two measuring paths represented by these two vertex share at least one simple
link. We propose an innovative method based on graph coloring to divide the
graph into a number of subsections and simultaneously measure the latency of
all paths in the same subsections. The method stipulates that adjacent vertexes
can not have same color. Finally, according to the graph coloring results, we can
determine the number of parallel measurements and the path set to be measured
in each measuring round. For graph coloring is essentially NP-Hard problem, we
use an adaptive coloring algorithm, such as the Welch Powell algorithm, when
the graph is large. Only when the measurement set is small enough, we make
use of the divide algorithm to get an optimal scheme.

It should be noted that there are often multiple S
′
for the same S. Although

different S
′
have the same number of measuring paths, the layout of measuring

paths in those set are different, which bring different coloring results. For small
networks, we determine an optimal S

′
as the final MMset by comparing the

coloring results of all S
′
. For large scale networks, we randomly select some sets

from all S
′
and find out the one with best dyeing scheme as the final optimized

MMSet. In the previous network, we select S
′
1 as the final MMSet because there

are the same coloring results for all three S
′
. The MPG<V,E> colored is showen

in Fig. 3. Five rounds of measurement will be carried out finally.



58 C. Liu et al.

Fig. 3. A coloring result of MMSet. Five instead of 7 rounds of measurement is needed
finally. (Color figure online)

d. Construct single link latency equations to calculate the latency of all paths
in S.

Let O
′

= (O1, O2, · · · , Ox) be the latency of all paths in MMset after parallel
measuring. We construct a matrix C which contains x rows and m columns whose
rows correspond to the single link composition of measuring paths in MMset. We
can get a general solution by solving equation C · βT = O

′
. Any solution can be

used to calculate the unique latency of all measuring paths in S
′
, which means

that we can also calculate the unique latency of all measuring paths in S. For the
previous network, suppose that the real latency of each path in the network are
Oprtt

k1,k2
= 16, Oprtt

k1,k3
= 37, Oprtt

k1,k4
= 36, Oprtt

k1,k5
= 18, Oprtt

k1,k6
= 17, Oprtt

k2,k3
= 39,

Oprtt
k2,k4

= 38, Oprtt
k2,k5

= 20, Oprtt
k2,k6

= 19, Oprtt
k3,k4

= 25, Oprtt
k3,k5

= 41, Oprtt
k3,k6

= 40,
Oprtt

k4,k5
= 40, Oprtt

k4,k6
= 39, Oprtt

k5,k6
= 21. After only measuring the latency of x

paths in S
′
, we get a solution ol1 = 3.5, ol2 = 4.5, ol3 = 8.5, ol4 = 0, ol5 = 6.5,

ol6 = 6, ol7 = 5.5, ol8 = 5 which can be used to calculate the latency of all paths
in S.

Although it is not necessary to calculate all aggregated links’ latency for
getting path latency, the latency of the aggregated link reflects the character-
istics of the network in more detail. It is useful in some application scenarios,
such as link fault detection. According to step b, we know rank(C) ≤ m. When
rank(C) = m, the equation has unique solution. When rank(C) < m, the equa-
tion has countless solutions which means that some single links’ latency in the
network can not by accurately calculated. We propose a method of link aggre-
gation, which can merge several single links into an aggregated link to ensure
all aggregated links’ latency in network is accurate and unique. We construct
augmented matrix (C|O′

) and transfer it into row canonical form matrix G. All
non-zero columns in a row correspond to all single links in aggregated link and
the last column represents the latency of the aggregated link. In our example, the
matrix (C|O′

) and G are shown in Eq. 2. The latency of all aggregated links are



An Efficient Method for Determining Full Point-to-Point Latency 59

ol1 = 3.5, ol2 = 4.5, ol3 + ol4 = 8.5, ol5 = 6.5, ol6 = 6, ol7 = 5.5, ol8 = 5. l3 and l4
make up an aggregation link, which is reasonable for that they always transmit
the data at the same time.

(C|O′
) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 2 0 0 0 0 0 0 16
2 0 2 2 2 0 0 0 37
2 0 2 2 0 2 0 0 36
2 0 0 0 0 0 2 0 18
2 0 0 0 0 0 0 2 17
0 2 0 0 0 0 2 0 20
0 0 0 0 2 2 0 0 25

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 3.5
0 1 0 0 0 0 0 0 4.5
0 0 1 1 0 0 0 0 8.5
0 0 0 0 1 0 0 0 6.5
0 0 0 0 0 1 0 0 6
0 0 0 0 0 0 1 0 5.5
0 0 0 0 0 0 0 1 5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

4 Validation and Analysis

4.1 Exprimental Settings

Since our method is based on rigorous mathematical process, the method is
applicable to arbitrary indirect networks. Thus as a validation, we only evalu-
ate the effectiveness of our method in synthesised fat-tree networks. We imple-
ment a source routing fat tree network simulator using the topology described
in [9], to simulate fat-tree networks commonly used in data centers and super-
computers. p− port q − tree InfiniBand network which contains 2×(p/2)q nodes
and 2×q×(p/2)q single links are simulated. To simulate typical fat-tree networks,
we choose 7 different fat-tree configurations as shown in Table 2.

Table 2. Fat-tree configurations used in the experiments

Configuration Number of terminal nodes Number of links

4 − port2 − tree 8 16

4 − port3 − tree 16 48

6 − port3 − tree 54 162

8 − port3 − tree 128 384

10 − port3 − tree 250 750

12 − port3 − tree 432 1296

16 − port3 − tree 1024 3072

4.2 Accuracy of the Measurement

We first show our method can recover the link latency of the network. We design
the following experiments: Firstly, We set every link in the network a random
latency. Secondly, we compute a parallel measurement plan using our method.
We carry out the measurement by simply aggregating the link latencies along
the measuring path. Thirdly, we calculate the latency of all measuring paths and



60 C. Liu et al.

aggregated links in the network. Finally, we check those calculated link latency
with the preset values. Our method finds the correct values for all the links.
Table 3 shows that the calculated latency of all measuring paths is the same as
the actual values in 4-port 2-tree network separately. In fact, we get the same
conclusion as this example in the other 6 networks.

Table 3. Actual latency and calculated latency of all measuring paths in 4 − port
2 − tree network

(a) Actual latency of all mea-
suring paths

Node 1 2 3 4 5 6 7 8
1 0 25 54 51 67 49 58 54
2 25 0 55 52 68 50 59 55
3 54 49 0 25 61 53 52 58
4 57 52 25 0 64 56 55 61
5 67 55 61 61 0 31 65 64
6 62 50 56 56 31 0 60 59
7 58 53 52 59 65 57 0 30
8 60 55 54 61 67 59 30 0

(b) Calculated latency of all
measuring paths

Node 1 2 3 4 5 6 7 8
1 0 25 54 51 67 49 58 54
2 25 0 55 52 68 50 59 55
3 54 49 0 25 61 53 52 58
4 57 52 25 0 64 56 55 61
5 67 55 61 61 0 31 65 64
6 62 50 56 56 31 0 60 59
7 58 53 52 59 65 57 0 30
8 60 55 54 61 67 59 30 0

4.3 Measurement Reduction

We then show that our method can greatly reduce the number of measurements
in full-network point-to-point latency measurements. We compute the measure-
ment plan for 6 different network configurations, and compute the round of
measurements required. Each round of measurements involves a collection of
measurements can be done concurrently. We assume one measurement takes
T seconds, and compare the total measurement execution time in Fig. 4. We
compare our method with the brute-force one-by-one measurement of all node
pairs. In the brute-force method, it takes us (n×(n−1)/2)T seconds to measure
the latency of all paths serially. In our measurement method, it takes about m
T seconds to serially measure the latency of all paths in MMset. In the net-
work with 3-tree, the total measurement time can be further reduced by 33.3%
compared with the serial measurement. With parallel measuring the latency of
paths in the same MMset, only n T seconds are needed. We can conclude that
the proposed methods can reduce the overhead of large-scale fat-tree networks
containing thousands of nodes by three orders of magnitude.

4.4 Complexity Analysis of the PMM Method

Although the proposed method reduces the time costed in measuring the latency,
it brings additional computing overhead. We analyze the complexity of the extra



An Efficient Method for Determining Full Point-to-Point Latency 61

computing here. We choose the time during which CPU completes an arithmetic
operation or access a variable in memory as the unit.

The first part of the computing overhead comes from generating the mea-
surement scheme. We use Gaussian elimination to transfer matrix A into row
echelon form for getting all maximal linear independent subsets of S, during
which about m eliminations are required. In each elimination, we need to look
up an main row from n(n−1)/2 rows firstly, and then carry out n(n−1)/2 elemen-
tary transformations. Thus the average time overhead of Gaussian elimination
is T1.

T1 = m(mn(n − 1)/2 + mn(n − 1)/2) = m2n(n − 1). (3)

The second part of the computing overhead comes from deriving
MPG<V,E> to get parallel measurement scheme. We use Welch Powell algo-
rithm to get an optimized solution of the NP-Hard Graph Dying problem in
large-scale network. The time complexity of the algorithm is O(m3).

The third part of the computing overhead comes from calculating the latency
of all paths and links. Our method use Gaussian elimination to solve m linear
equations for getting the latency of all aggregated links, and then calculate the
latency of all paths. The average time overhead is T2

T2 = 2m3 + n(n − 1)/2 (4)

For p − port q − tree network, n < m < n(n − 1)/2. As a result, a loose time
complexity of our method is O(n2·m2).

We further investigate reducing the computing overhead by parallel comput-
ing. We substitute the Gaussian elimination with a MPI based implementation
and run the computing of a 12 − port 3 − tree with 432 nodes and 1296 links on
Tianhe-2 super computer. The timing results are shown in Fig. 5 and it shows
than we can compute the measurement plan in less than 30 s with 116 MPI
processes, which is pretty acceptable in HPC environments.

Fig. 4. The measurement time of two
methods. Each measurement takes T
seconds.

Fig. 5. The computing overhead of
generating measurement plan and cal-
culating the latency of all paths and
links in 12 − port 3 − tree network in
parallel settings



62 C. Liu et al.

5 Applications

Being a low level method, our PMM method can be used in many application
scenarios where full point-to-point latency is required. We discuss some of these
applications in this section.

5.1 Communication Performance Modeling and Prediction

In many cases we want to model the communication network, so as to predicate
the application performance on given supercomputers, to inspect the communi-
cation bottlenecks of parallel applications, and to compare design alternatives
of network parameters. For example, when we optimize the application commu-
nication performance, we can use trace simulators such as LogGOPSim [10] to
simulate the communication and find the bottlenecks. The LogGOPSim relies
on point-to-point latency to make an accurate predication for small messages,
which often require one to measure the full-network point-to-point latency of a
given super-computer. Our methods can greatly reduce the number of measure-
ments and thus improve the model accuracy by being able to incorporate the
difference of per node pair latencies.

5.2 Transitional Link Failure Detection

Transitional link failures happens a lot on large scale high performance computer
networks, which often results in downgraded communication performance, and
gradual system failures. Extra hardware can be built into the network to moniter
each link to detect these problematic states, but this is not practical on many
networks. Our method provides a software-based alternative. One can generate
a measurement plan for any suspecting subnet and measure the point-to-point
latency quickly to obtain per-link latency, and flag links with larger latency than
expected as problematic for further investigation.

5.3 Parallel Communication Optimization

Automatic optimization of communication performance often requires knowing
the inter-node message latency of the running nodes, which can only be mea-
sured online. For example, in topology-aware process mapping algorithms, one
often needs to model the per-note message latency, and accurate online model-
ing of these latency is essential for real-world parallel applications. Our method
can help by generating the measurement plan and measure the point-to-point
latency on the fly quickly, thus make the optimization applicable to any indirect
networks.

6 Conclusion

In this paper, we propose an efficient method, namely PMM, to generate full-
network point-to-point latency measurement plans for arbitrary indirect HPC



An Efficient Method for Determining Full Point-to-Point Latency 63

networks. Our method reduces the measurements required from O(n2) to O(n)
for modern high performance computer networks such as fat-tree based infini-
band networks, and can be extremely useful in communication performance mod-
eling, transitional link failure detection, and parallel communication optimiza-
tion.

Although being effective, there are still aspects to improve in our methods.
We go through some or all MMsets to find out an optimized one in our method,
which is ineffective. We also consider find out heuristics to locate measurement
plans with the maximal parallelism. We can also make the measurement additive
to allow for continuously monitoring link latencies.

Acknowledgement. This work in this paper is supported by the National Key R&D
Program of China under Grant NO. 2018YFB0203901, Science Challenge Project, NO.
TZ2016002, and the National Natural Science Foundation of China under Grant No.
61772053. The authors would like to thank the reviewers for their valuable comments.

References

1. Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.: LogGP: incorporat-
ing long messages into the LogP model. J. Parallel Distrib. Comput. 44, 71–79
(1995)

2. Ino, F., Fujimoto, N., Hagihara, K.: LogGPS: a parallel computational model for
synchronization analysis. ACM SIGPLAN Not. 36, 133–142 (2001)

3. Bhanot, G., Gara, A., Heidelberger, P., Lawless, E., Sexton, J.C., Walkup, R.:
Optimizing task layout on the Blue Gene/L supercomputer. IBM J. Res. Dev. 49,
489–500 (2005)

4. Szymaniak, M., Presotto, D., Pierre, G., Steen, M.V.: Practical large-scale latency
estimation. Comput. Netw. 52, 1343–1364 (2008)

5. Sen, S., Wang, J.: Analyzing peer-to-peer traffic across large networks. In: Pro-
ceedings of the 2nd ACM SIGCOMM Workshop on Internet measurement, no. 2,
pp. 137–150 (2002)

6. Liu, J., Zhang, X., Li, B., Zhang, Q., Zhu, W.: Distributed distance measurement
for large-scale networks. Comput. Netw. 41, 177–192 (2003)

7. Guo, C., et al.: Pingmesh: a large-scale system for data center network latency mea-
surement and analysis. In: ACM SIGCOMM Computer Communication Review,
vol. 45, pp. 139–152 (2012)

8. Shavitt, Y., Sun, X., Wool, A., Yener, B.: Computing the unmeasured: an algebraic
approach to Internet mapping. IEEE J. Sel. Areas Commun. 22, 67–78 (2004)

9. Lin, X,Y., Chung, Y,C., Huang, T,Y.: A multiple LID routing scheme for fat-tree-
based InfiniBand networks. In: Parallel and Distributed Processing Symposium,
18, p. 11 (2004)

10. Hoefler, T., Schneider, T., Lumsdaine, A.: LogGOPSim: simulating large-scale
applications in the LogGOPS model. In: Proceedings of ACM International Sym-
posium on High Performance Distributed Computing, 19, pp. 597–604 (2010)


	An Efficient Method for Determining Full Point-to-Point Latency of Arbitrary Indirect HPC Networks
	1 Introduction
	2 Related Works
	3 The PMM Method
	3.1 Definitions
	3.2 Method

	4 Validation and Analysis
	4.1 Exprimental Settings
	4.2 Accuracy of the Measurement
	4.3 Measurement Reduction
	4.4 Complexity Analysis of the PMM Method

	5 Applications
	5.1 Communication Performance Modeling and Prediction
	5.2 Transitional Link Failure Detection
	5.3 Parallel Communication Optimization

	6 Conclusion
	References




