
Balancing the QOS and Security in Dijkstra
Algorithm by SDN Technology

Zhao JinJing1(&), Ling Pang1, Xiaohui Kuang1, and Rong Jin2

1 National Key Laboratory of Science and Technology on Information System
Security, Beijing 100101, China

misszhaojinjing@hotmail.com, lingpang313@yahoo.com
2 Beijing Space Information Relay and Transmission on Technology Centre,

Beijing 100094, China

Abstract. Dijkstra algorithm is widely used in a lot of common network
routing protocols. We consider the problem of quality of service (QoS) and the
Security features of the network routing area using software defined networks
(SDN). The SDN framework enables an efficient decoupled implementation of
dynamic routing protocols which could aware the communication network
status. In this work we consider the varying delay status of the communication
network along with other network security parameters. The routing problem is
formulated as a multi-constrained shortest path problem. A new improved
Dijkstra algorithm is presented named as QS-Dijkstra. The implement and
experiment show that QS-Dijkstra algorithm is able to minimize traffic routing
through vulnerable links while satisfying the QoS constraints of the network.

1 Introduction

Dijkstra algorithm is widely used in a lot of common network routing protocols, like
OSPF and IS-IS. The main idea of Dijkstra algorithm is how to find a shortest path
from a source node to a destination node in a network. So each network link has a cost
value to present its status, and this cost is used to calculate the shortest path. In the
practice, the link cost is defined as a static cost value in OSPF protocol, as the reference
bandwidth divided by interface bandwidth or simply as 1 to reduce the shortest path
weight to a hop count. The reason is that it’s a very easy way in practice. But as the
value of the link cost, it could not cover the feathers and status of the link.

In this work we present a practical way to calculate a more reasonable link cost in
Dijkstra algorithm and consider the problem of QoS and the security features of the
network routing procedure using SDN technology [1–3]. The SDN framework provides
an approach to calculate the shortest path between source and destination based on
dynamic link statuses through SDN’s high network monitoring capability. A lot of
useful link information, like link type, link ownership, interface bandwidth, transition
delay and historical record, can be collected and computed by the SDN controller to
enable more safe, reliable and efficient paths. In this way, we can consider the varying
delay status of the communication network along with other network security
parameters and get a presence of a passive/active adversary in the network routing area.

© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018
F. Zhang et al. (Eds.): NPC 2018, LNCS 11276, pp. 126–131, 2018.
https://doi.org/10.1007/978-3-030-05677-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05677-3_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05677-3_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05677-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-05677-3_11

The remainder of this paper is organized as follows: double constrained shortest
path problem is discussed and the derivation of QoS constraints and related cost metrics
are presented in Sect. 2, the implementation details are provided in Sect. 3, Sect. 4
investigates the performance of the proposed framework. Conclusions and final
remarks are discussed in Sect. 5.

2 System Model

Consider a graph representation of the communication network. G(V, E, x) is a
weighted undirected graph model and describes an N nodes and E links network. The
node set is V ¼ v1; . . .; vNf g, and the edge set is E ¼ eij i; j ¼ 1; 2; . . .;Nj� �

. The weight
xij on the edge eij is defined as the cost of the link. In this article, the interplaying
between QOS and security features is concerned in the network routing process. The
security metrics of the link between nodes i and j could include these features as:

(1) History LijH: a link that was previously targeted by an attacker in a particular time
could be more likely to be attacked again.

(2) Security installed measures LijS: a link with high encryption is typically hard to be
listened or hijacked. So LijS values are dependent on the pre-installed and pre-
configured security measures of nodes of the link.

(3) Bandwidth LijB: A link with high bandwidth is more difficult to be congested by
data flow.

(4) Ownership LijO: a self-owned or in the same domain channel is more secure than
a shared or leased channel by other domains.

The vulnerability metric LijM should reflect the attributes that make a link more
security.

LijM ¼ LijH � aLijSþ bLijBþ cLijO
� � ð2Þ

Where a, b, and c are the weights of LijS, LijB and LijO depending on the impact
importance of the considered security parameters.

Assume every link eij 2 E has two weights cij [0 and dij [0 (cij is cost and dij
means delay). For source and destination nodes (s, t), let Pst denote the set of paths
from s to t. Further, for any path p define

c pð Þ ¼
X

i;jð Þ2p LijM ð3Þ

d pð Þ ¼
X

i;jð Þ2p dij ð4Þ

The routing problem seeks to find the paths between s and t nodes with minimum
link cost c pstð Þ, which satisfies d pstð Þ� Tmax. This is a typical NP problem named
constrained shortest path (CSP) [4, 5], which can be solved by the Lagrangian
Relaxation Based Aggregated Cost (LARAC) algorithm [6].

Balancing the QOS and Security in Dijkstra Algorithm 127

3 Implementation

The architecture of SDN network comprised of Floodlight controller and Mininet
switches. In the floodlight controller, applications can be written in Java and can
interact with the built-in controller modules via a JAVA API. Other applications can be
written in different languages and interact with the controller modules via the
REST API. And the controller allows the implementation of built-in modules that can
communicate with their implementation of the OpenFlow controller (i.e. OpenFlow
Services). The controller, on the other hand, can communicate with the switches via the
OpenFlow protocol through the abstraction layer present at the forwarding hardware.

We propose a Vulnerable-Link Avoidance Dijkstra (QS-Dijkstra) algorithm to
capture the problem of best-effort avoiding vulnerable links while maintaining the
delay constraint. QS-Dijkstra algorithm uses the previously-defined vulnerability
metric in Eq. (2) to arrive at a set of feasible paths between source node s and desti-
nation node t.

The flowchart of the QS-Dijkstra algorithm that is implemented is shown in Fig. 1.
The algorithm is separated into two parts, the switch side and the controller side. The
algorithm of the controller side performs the following tasks:

The Switches Side)bThe Controller Side)a

Fig. 1. QS-Dijkstra algorithm implementation. The algorithm is separated into two parts; a
controller function which is implemented in Floodlight using Java, and a switch function
implemented in Mininet using Python.

128 Z. JinJing et al.

(1) Listening to messages from switches and calculating link-delay value of each link,
and then constructing the link-delay cost matrix.

(2) Calculating the link-vulnerability cost matrix according to the metric developed in
formula (2); this matrix can be modified and calibrated by network operators or
managers.

(3) Running a topology-update thread, and checking the link-vulnerability cost matrix
updates every Ts; if a change is detected, the controller recalculates the routing
paths.

(4) Calculating the routing paths based on the link cost metrics of interest, and
updating the flow table of each switch by advertise a PACKET OUT message to
switches.

The main function of the algorithm in the switches side is to collect the values of
link-delays for the directly connected switches. This is done through an independent
thread responsible for periodically testing the link between that switch and all con-
nected switches with higher ID. The sampling time is parametric and is tuneable by the
network managers; in our simulation environment, Tsd is set to 60 s. Link delay testing
is done 3 times every Tsd and the average value is then compared with the last known
value. If the new delay is significantly different from the previous value, the switch
updates the controller accordingly.

4 Simulation and Results

We build two large scale network environment with the same topology and route
information. One is running the Dijkstra routing protocol, the other is for QS-Dijkstra.
In order to reach a high performance, in each environment, we use the high-
performance workstation with 10 Intel Xeon Westmere EP six-core processors. Whose
maximum process speed could reach 11.251Tflops. Thus, the whole network includes
260 routers and a controller. For every node, we pick a random number from [1, 10] for
its connection number. And the commercial network flow generator Spirent TestCentre
is chosen to generate some popular network application data, like http, IP, TCP,
UDP. And it sends the same packets to the two networks synchronously.

Fig. 2. The number of transmitted packets on un-safe links. There are 20 links which have very
high vulnerable level.

Balancing the QOS and Security in Dijkstra Algorithm 129

In this test case, the link cost and link delay is randomized in the [0–100]. The
maximum path delay constraint T still set as 1000 s. After calculating the link vul-
nerability metric, there are 20 links which have very high vulnerable level. We sampled
the packets number transmitted through these links every 200 s and calculate the
average value on each links. The result is shown in Fig. 2, which shows that the
packets transmitted on these un-safe links in QS-Dijkstra are much less than in Dijkstra.

From the results shown in Fig. 3, the conclusion could be proved that the network
performance in QS-Dijkstra does not lost much except for a few short intervals, and the
maximum responds time in these intervals is still could be acceptable.

5 Conclusion

In this paper, we consider the varying delay status of the communication network along
with other network security parameters. Our approach capitalizes on the SDN frame-
work and technology. The implement and experiment show that QS-Dijkstra algorithm
is able to minimize traffic routing through vulnerable links while satisfying the QoS
constraints of the network.

In the future work, the algorithm could consider more security and performance
features of links and routing nodes, to make a more effective routing protocol.

References

1. Nunes, B., Mendonca, M., Nguyen, X.-N., Obraczka, K., Turletti, T.: A survey of software-
defined networking: past, present, and future of programmable networks. IEEE Commun.
Surv. Tutor. 16, 1617–1634. https://doi.org/10.1109/surv.2014.012214.00180.pdf

2. Software-Defined Networking. http://en.wikipedia.org/wiki/Software-defined_networking
3. Open Networking Foundation: Software-defined networking: the new norm for networks.

ONF White paper (2012)

Fig. 3. The average response time of routers. In order to evaluate the network performance in
the two networks, the average response times are recorded every 15 s.

130 Z. JinJing et al.

http://dx.doi.org/10.1109/surv.2014.012214.00180.pdf
http://en.wikipedia.org/wiki/Software-defined_networking

4. Xiao, Y., Thulasiraman, K., Xue, G., Juttner, A.: The constrained shortest path problem:
algorithmic approaches and an algebraic study with generalization. AKCE Int. J. Graphs
Comb. 2, 63–86 (2005)

5. Kuipers, F., Van Mieghem, P., Korkmaz, T., Krunz, M.: An overview of constraint-based
path selection algorithms for QOS routing. IEEE Commun. Mag. 40, 50–55 (2002)

6. Jüttner, A., Szviatovski, B., Mécs, I., Rajkó, Z.: Lagrange relaxation based method for the
QOS routing problem. In: Twentieth Annual Joint Conference of the IEEE Computer and
Communications Societies, vol. 2, pp. 859–868 (2001)

Balancing the QOS and Security in Dijkstra Algorithm 131

	Balancing the QOS and Security in Dijkstra Algorithm by SDN Technology
	Abstract
	1 Introduction
	2 System Model
	3 Implementation
	4 Simulation and Results
	5 Conclusion
	References

