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Abstract. This paper addresses the issues of handling varying size
images in convolutional neural networks (CNNs). When images of differ-
ent size are given as input to a CNN then it results in varying size set
of activation maps at its convolution layer. We propose to explore two
approaches to address varying size set of activation maps for the classifi-
cation task. In the first approach, we explore deep spatial pyramid match
kernel (DSPMK) to compute a matching score between two varying size
sets of activation maps. We also propose to explore different pooling and
normalization techniques for computing DSPMK. In the second app-
roach, we propose to use spatial pyramid pooling (SPP) layer in CNN
architectures to remove fixed-length constraint and to allow the original
varying size image as input to train and fine-tune the CNN for different
datasets. Experimental results show that proposed DSPMK-based SVM
and SPP-layer based CNN frameworks achieve state-of-the-art results
for scene image classification and fine-grained bird species classification
tasks.
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1 Introduction

Nowadays CNNs have been popular for their relevance to wide extent of appli-
cations, such as image segmentation [22], object classification [4,12,31], scene
image classification [18,41], fine-grained classification [2,9,43] and so on. Fine-
grained recognition has recently become popular [2,44], because it is applica-
ble in a variety of challenging domain such as bird species recognition [35] or
flower species recognition [27]. An important issue in fine-grained recognition is
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inter-class similarity i.e, images of birds with different species can be ambiguous
due to uncontrolled natural settings. On the other hand, generic scene image
recognition is challenging task because scene images are composed with spa-
tially correlated layout of different objects and concepts [19]. Successful recogni-
tion methods need to extract powerful visual representations to deal with high
intra-class and low inter-class variability [38], complex semantic structure [29],
varying size of same semantic concept across dataset, and so on. For addressing
such issues many CNNs like, AlexNet [23], GoogLeNet [32] and VGGNet-16 [31]
have already been trained on datasets like Places [45] and ImageNet [7] for image
recognition tasks. These deep networks can be altered and prepare to train for
other datasets and applications with less modifications. In all similar scenarios,
features acquired from pre-trained, altered or fine-tuned CNNs are used to build
standard classifier like fully connected neural network or support vector machine
(SVM).

One major drawback of these frameworks is that the CNNs require the input
images to be of fixed dimensions. For instance, GoogLeNet accepts images of
resolution “224× 224”. Although the standard datasets like SUN397 [38] or
MIT-67 [29] consist of variable resolution images which are much bigger than
“224 × 224”. Similarly, in case of CUB-200-2011 [35] bird dataset images are
varying in size. Also, as we demonstrate, it is useful to consider bird region of
interest (ROI) which focuses on the subject, and discards most of the back-
ground. In such cases, too the size of ROI can vary with the shape and size of
the birds. The traditional methods to use these CNNs is to reshape the random-
sized images to a same size. This leads to dissipation of information of the images
before giving as input to the CNN for extracting the feature. The capability of
classifier to give better results gets affected due to such usage, which is evident
from the work published in [18]. To avoid any such prior information loss, differ-
ent approaches are explored to feed varying resolution images as input to CNN.
The works in [18], eliminates the necessity of fixed resolution image by including
a spatial pyramid pooling (SPP) layer in CNN and titled the new architecture
as SPP-Net. The works in [11], follows the similar technique by evaluating the
feature maps of conv layer into a super vector using one of the encoding like
Fisher vector (FV) [41] or vector of locally aggregated descriptor (VLAD) [20]
by building the Gaussian mixture model (GMM).

As conv layers are the necessary part of convolutional neural network and
responsible for producing discriminative activation maps. Generated activation
maps are of varying resolution according to original image size and contain more
spatial layout information compared to the activation of the fc layers, as fc layer
integrates the spatial content present in the conv layer features. Inspired by
the same fact, in our previously published work [16], we focused on passing the
images in their actual size as input to the convolutional neural network and
then acquire varying size sets of deep activation maps from the last conv layer
as output.

In literature study, mainly two approaches are proposed to handle varying
size pattern classification using support vector machines. In the first, a varying
size set of activation maps is transformed into a fixed dimension pattern as
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in [11], and further a kernel function for fixed dimension pattern is used to build
the support vector machine classifier. In the second, a suitable kernel function
is directly designed for varying size set of activation maps. The kernel designed
for varying size set of features is called dynamic kernels [8]. The dynamic kernels
in [8,15,17,24] shows promising results for classification of varying resolution
images and speech signals. We adopt the second approach and propose to design
deep spatial pyramid match kernel (DSPMK) as dynamic kernel.

In this work, we extended the previous work of [16] and propose to explore
different pooling and normalization techniques for computing DSPMK which
is discussed in Sect. 3.2. Inspired from [18], we propose to consider the CNN
architecture for fine-tuning by passing original images as input and added spatial
pyramid pooling (SPP) layer to the network for handling the same. SPP-layer
maps varying size activation maps to fixed size for passing to fully-connected
layer. SPP-layer allows for end-to-end fine-tuning and training of the network
with variable size images. This is discussed in Sect. 3.1. The key contribution of
this work are:

– Deep spatial pyramid match kernel with different pooling and normalization
technique to find the similarity score between a pair of varying size set of
deep activation maps.

– Introducing SPP-layer [18] in between last convolutional layer and first fc-
layer, so that varying size deep activation maps of images can be converted
into fixed length representation.

– End-to-end fine-tuning of the network for different dataset with SPP-layer to
handle the images in their original size.

– We demonstrate the effectiveness of our approach and its variants, with state-
of-the-art results, over two different applications of scene image classification
and fine-grained bird image classification.

The rest of the paper is structured as follows: A review of related approaches for
image classification using CNN-based features is presented in Sect. 2. Section 3.1,
gives the detail about CNN architecture with SPP-layer. In Sect. 3.2, we discuss
the DSPMK for varying size set of deep activation maps with different pooling
and normalization technique. The experimental studies using the proposed app-
roach on scene image classification and fine-grained bird classification tasks is
presented in Sect. 4. In Sect. 5 conclusion is presented.

2 Literature Review

In this section, we revisit the state-of-the-art techniques for fine-grained image
classification and scene image classification tasks. Traditional method of image
classification includes generating the local feature vector of images using local
descriptors like, scale invariant feature transform (SIFT) [25] and histogram of
oriented gradient (HOG) [6]. Further, GMM-based or SVM-based classifier can
be built using the standard function such as Gaussian kernel, where the fea-
ture vectors are encoded into a fixed length representation. Generally bag of
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Visual Words (BoVW) [5,36,37], sparse coding [40], and Fisher vector (FV) [26]
encoding is used for fixed-dimensional representations of an image. These fixed
length vector representations does not incorporate spatial information of con-
cepts present in the image.

As an alternative, SVM-based classifiers can be learn with matching based
dynamic kernels which are designed with consideration of spatial information.
Spatial pyramid match kernel [24], class independent GMM-based intermediate
matching kernel [8] and segment-level pyramid match kernel [15] are few of the
matching based kernels for matching different size images and speech signals.
With the development of deep CNNs, conventional features and related methods
are being replaced by leaned features from datasets with linear kernel (LK) based
SVM classifier.

The eye-popping performance of various deep CNN architectures on Ima-
geNet large scale visual recognition challenge (ILSVRC) [23,31,32] has moti-
vated the research community to adapt CNNs to other challenging domain and
datasets like fine-grained classification. Initially, fc-layer features from convolu-
tional neural network were directly in use to build SVM-based classifier using
LK for any task of vision and perform batter than traditional methods [9,46].
Few researchers also encoded learned features into a novel representation e.g, in
[26] authors have transformed the features from fc layer to bag of semantics rep-
resentation. This bag of semantic representation is then summaries in semantic
Fisher vector representation. In case of fine-grained bird classification, state-of-
the-art approaches are based on deep CNNs [2,9,39,44]. These approach consider
part based and bounding box annotation for generating the final representation.
Moreover, all these approaches are based on giving fixed size input to the net-
work because of rigid nature of fc-layer as it is based on fixed number of fully
connected neurons and expects a fixed length representation of input, whereas
the convolution process is not constrained with fixed length representation. So
we can say, the necessity of fixed resolution image as input to convolutional
networks is an mandatory demand of the fc-layer.

The impact of reshaping the images to a fixed size results in loss of informa-
tion [18]. On the other side, convolutional layers of CNNs accept any arbitrary
sized input image which results in random sized deep activation maps according
to the input. Deep activations maps contain the strongest response of filters on
the previous layer output and conserve the spatial information of the concepts
present in input image. From the work in [11,18], we can observe the similar
idea. The approaches in these papers considered spatial pyramid based app-
roach and scaled space of input images to incorporate the concept information
of images into the activation maps at different scales. The work in [42], focuses
on scale characteristics of images over feature activations. They consider images
at different scales to input to the CNN and obtain seven layer pyramid of dense
activation maps. Further they have used Fisher framework for encoding the acti-
vation maps to aggregate into a fixed length representation. The work proposed
in [18], considers the SPP approach to expel the essentialness of same size image
as input to convolutional networks. Here, the CNN is fed with images of original
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size. However, in [42] the CNN is fed with differently scaled images. The work in
[11], also follow the similar way and fed the original sized image to convolutional
network. However, the approach for converting into fixed size is different. Here, a
GMM using fixed size vector representation obtained from spatial pyramid pool-
ing, is built to generate the Fisher vectors [11]. Finally, all the Fishers vectors
are concatenated to form a fixed dimensional representation.

In our work, we focuses on integrating the power convolutional-based varying
size set of deep activation maps with dynamic kernel to obtain a matching value
between a pair of images of different size. We used DSPMK as dynamic kernel
rather of building GMM based dictionary on varying size conv features. In this
way, our proposed approach is computationally less expensive. Further we modify
the deep CNN architecture by adding the spatial pyramid pooling for end-to-end
fine-tuning or training. In the next Section, we discuss CNN architecture with
SPP-layer and the proposed DSPMK for the varying size set of deep activation
maps.

3 Approaches for Handling Variable Size Images
for Classification

In this section, we discuss the approaches to handle the variable size images in
CNN for classification on different domain datasets like scene image classification
dataset and fine-grained bird classification dataset.

– In Sect. 3.1, we introduce SPP-layer inspired by [18] in between last convo-
lutional layer and first dense layer so that variable size set of convolutional
activation maps of images can be converted into fixed length representation
for end-to-end training of the network.

– In Sect. 3.2, we present DSPMK proposed in [16] to compute the similarity
score between two sample images represented as varying size set of activation
maps.

3.1 CNN Architecture with Spatial Pyramid Pooling (SPP) Layer

As mentioned earlier, traditional CNN architecture like AlexNet [23], GoogLeNet
[32] or VGGNet-16 [31] are pre-trained on the dataset with images of fixed
resolution (e.g 227 × 227). Conversion of image from original size to fixed size
results in loss of information in the beginning of network. CNN architecture is
mainly the combination of convolutional (conv) layer and fully-connected (fc)
layer. The fc-layer demands fixed size input and conv-layers are free from such
restrictions. In this work, we modify the CNN architecture such that images are
allowed in its original size for input and gives varying size set of activation maps
as output from last convolutional layer.

To handle this further, we propose to use spatial pyramid pooling (SPP)
layer inspired by [18] which map varying size set of deep activation maps onto a
fixed length representation for end-to-end training. Using SPP-layer, information
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aggregation happens at later stage in the network which improve the training
process. We have considered VGG-19 architecture [30,31] and added SPP-layer
between last convolutional layer and first fc-layer. The SPP-layer sum-pools the
varying length convolutional layer activation maps at three different levels to
convert them into fixed length vector. In the first level complete convolutional
activation maps are considered and sum or max-pool is applied to obtain a fixed
length vector. In the second level, activation maps are spatially divided into 4
blocks and sum or max-pooling is applied in respective block for converting the
variable size deep activation maps to fixed length vector. In the third level, acti-
vation maps are divided into 16 blocks and so on. In this scenario we are fixing
the number of spatially divided blocks instead of block size. The fixed length
vectors obtained in each level are concatenated to form a fixed length supervec-
tor. This fixed length supervector is further passed onto fully-connected layer
for end-to-end training using back propagation. The block diagram of proposed
CNN architecture with SPP-layer is shown in Fig. 1.

Fig. 1. Block diagram of CNN architecture with SPP-layer.

3.2 Deep Spatial Pyramid Match Kernel

In this section, we present deep spatial pyramid match kernel (DSPMK) pro-
posed in [16] for matching varying size set of deep activation maps obtained from
convolutional neural network. The entire process of classification using DSPMK-
based SVM is demonstrated in block diagram of Fig. 2. As shown in diagram,
Im and In are two images given to the convolutional layer of network as input
such that we get set of deep activation maps. Different image give variant size
activation maps as output i.e, activation maps in set corresponding to image Im
is different from image In. From these different size activation maps, we propose
to compute similarity sore using DSPMK. DSPMK-based SVM classifier is learn
by association of feature maps of training images with the class label. This is in
contrast to [11], In [11] varying size activation maps are transformed into fixed
size using Fisher framework and are encoded to fixed length super vector like
Fisher vector and then LK-based SVM is used for building the classifier. Main



50 S. Gupta et al.

features of the proposed approach is that, DSPMK computes the similarity score
on different size actual images at different spatial levels ranging from 0, 1 to L
using varying size set of deep activation maps.

Fig. 2. Block diagram of DSPMK as proposed in [16].

Consider dataset of images as D = {I1, I2, . . . , Im, . . . , IN} and ‘f ’ be the
number of kernels or filters in last conv layer of pre-defined deep CNN architec-
ture. Let the mapping F , takes input, actual image and project it to set of deep
activation maps using conv layers of CNN. Mapping F is given as, Xm = F(Im).
Size of activation maps obtain from last conv layer in a set corresponding to a
image is same but vary from image to image as images are fed in its original
resolution to the CNN architecture.

Fig. 3. Illustration of computing similarity score using DSPMK between two different
resolution images Im and In, similar to the Fig. 2 of paper [16]. Here, Xm and Xn are
set of deep activation map computed using conv layer of pre-trained CNN, size of Xm

depends on size of Im, similarly size of Xn depends on size of In. The matching score
at each level l (i.e, S0, S1 and S2) is computed using Eq. (3).
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Firstly, images to pre-trained CNN is fed in its actual size. For image In,
we have a set Xn= {xn1,xn2,xn3, . . . ,xnf} consisting of ‘f ’ feature maps from
mapping F , where xni ∈ R

pn×qn and pn × qn is the size of each feature map
obtained from last conv layer which varies accordant to the input image resolu-
tion. This conclude to varying size deep activation map as shown in Fig. 3 for
images Im and In.

Secondly, deep activation maps are spatially divided into sub-blocks to form
spatial pyramid. At level-0, activation maps are considered as it is without spatial
division. At level-1, every deep activation map is divided into 4 spatial divisions
related to 4 quadrant, as depicted in Fig. 3. Consider L + 1 the total number of
levels in the pyramid start from 0, 1 till L. In At any level-l, a deep activation
map xni is spatially split into 22l blocks. At any level-l, activation values of cells
in every spatial block of all the f deep activation maps are sum or max-pooled
and concatenated to form a vector Xl

n of size f22l×1. This scenario is expatiated
in Fig. 3 by considering three different levels, l = 0, 1 and 2 and same is also
described in Algorithm 1 for L + 1 pyramid levels.

In our proposed framework, we considered three spatial pyramid levels. At
level-0, (i.e, l = 0) the complete activation maps corresponding to input image is
sum or max-pooled, in total there are f activation maps in output of conv layer
which results is f × 1 size vector representation. At level-1 (i.e, l = 1), the same
activation maps are considered again and divided into four equal spatial blocks.
Each block correspond to single activation maps are again sum or max pooled,
which results in 1 × 4 size vector. Same procedure is repeated for f activation
maps which results into a vector of 4f × 1 size. Similarly, at level-2 (i.e. l = 2),
again the same activation maps are divided into sixteen equal spatial regions
resulting into a vector of 16f × 1 dimensional vector. Corresponding to image
In, after concatenating all the sum or max pooled activation values are results
in a single vector called Xl

n.
The Xl

m can now be seen as representation of image Im at level-l of pyra-
mid. At this stage, we propose to compute deep spatial pyramid match ker-
nel (DSPMK) to match two images rather than deriving Fisher vector (FV) rep-
resentation as in [11]. Our proposed approach avoids building GMM to obtain FV
and hence reduces the computation complexity as compared to [11]. The process
of computing DSPMK is motivated from spatial pyramid match kernel (SPMK)
[24]. SPMK involves the histogram intersection function that match the fre-
quency based image representation or normalized vector representation of two
images at every levels of pyramid [24]. However, Xl

m is not in the normalized
vector representation of image Im. We propose to normalized Xl

m using �1 and
�2 to obtain normalized vector representation.

Let Xl
m and Xl

n be the representation at level-l corresponding to two images
Im and In respectively. The normalized vector representation of Xl

m and Xl
n is

obtained using �1 or �2 normalization as given in Eqs. (1) and (2)

̂Xl
m =

Xl
m

||Xl
m||1 , ̂Xl

n =
Xl

n

||Xl
n||1 (1)



52 S. Gupta et al.

Algorithm 1 . Deep spatial pyramid matching kernel KDSPMK(Xm, Xn) .

Require:
(i) Activation maps set Xm and Xn

Xm = {xm1, ...,xmi, ...,xmf}; where xmi ∈ R
pm×qm

Xn = {xn1, ...,xni, ...,xnf}; where xmi ∈ R
pn×qn

(ii) L + 1: number of pyramid levels.
1: Procedure:
2: for l=0 to L do
3: Divide each activation map of Xm into 22l equal spatial blocks.

X l
m =

{xl
m1(1)...x

l
m1(22l), ...,x

l
mi(1)...x

l
mi(22l), ...,x

l
mf(1)...x

l
mf(22l)}

4: Apply sum or max-pooling over each block such that
xl
mi(j) =

∑
u

∑
v x

l
mi(j)(u, v)

Xl
m =

{xl
m1(1)...x

l
m1(22l), ..., x

l
mi(1)...x

l
mi(22l), ..., x

l
mf(1)...x

l
mf(22l)}

∈ R
f22l×1

5: Normalize the generated feature vector Xl
m using �1 or �2 norm

X̂
l

m =
{x̂l

m1(1)...x̂
l
m1(22l), ..., x̂

l
mi(1)...x̂

l
mi(22l), ..., x̂

l
mf(1)...x̂

l
mf(22l)}

∈ R
22l×f×1

6: Repeat step 3 to 5 for computing X̂
l

n for image In

7: Compute intermediate similarity score Sl between X̂
l

m and X̂
l

n using Equa-
tion (3).

8: end for
9: Compute final similarity score between Xm and Xn using Equation (4).
Ensure:
9: KDSPMK(Xm, Xn)

̂Xl
m =

Xl
m

||Xl
m||2 , ̂Xl

n =
Xl

n

||Xl
n||2 (2)

The Histogram intersection (HI) function is used to compute intermediate

matching score Sl between ̂X
l

m and ̂X
l

n at each level l as,

Sl =
f

∑

j=1

22l
∑

k=1

min(x̂l
mj(k), x̂

l
nj(k)) (3)

Here, the intermediate similarity score Sl found at level-l also includes all the
matches found at the finer level l + 1. As a result, the number of new matches
found at level l is given by Sl − Sl+1 for l = 0, . . . , L − 1. The DSPMK is
computed as a weighted sum of the number of new matches at different levels of
the spatial pyramid. The weight associated with level l is set to 1

2(L−l) , which is
inversely proportional to width of spatial regions at that level.
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The DSPMK kernel is computed as,

KDSPMK(Xm,Xn) =
L−1
∑

l=0

1
2L−l

(Sl − Sl+1) + SL (4)

The main advantages of proposed approach is that it incorporate any size
image without any resizing loss and it combines the convolutional varying size
deep activation maps with dynamic kernel named DSPMK based SVM.

4 Experimental Studies

In this section, the efficacy of the proposed framework is studied on scene image
and bird species classification task using SVM-based classifier. In experiments,
we cover mainly two aspects for handling varying nature of image; one by com-
puting the varying size deep activation maps from last convolutional layer and
compute the classification score using DSPMK, and the other by adding the spa-
tial pyramid pooling layer to the network for handling varying nature of image
and fine-tuned it with respective dataset for computing the fully trained features.

4.1 Datasets

We tested our proposed approach on two different kinds of datasets one for
scene classification which includes datasets such as MIT-8 Scene [28], Vogel-
Schiele (VS) [34], MIT-67 [29] and SUN-397 [38], and the other for fine-grained
bird species classification with the CUB-200-2011 [35] dataset.

MIT-8-scene: This dataset contain total of 2688 scene images belonging to
8 different semantic classes, like, ‘coast’, ‘mountain’, ‘forest’, ‘open-country’,
‘inside-city’, ‘highway’, ‘tall building’ and ‘street’. We randomly select 100 scene
images from each class for training the model and keep remaining images for
testing. We consider 5 such sets. The final classification scores computed in this
paper correspond to the average classification accuracy for 5 trials.

Vogel-Schiele: This dataset contain total of 700 scene images belonging to
6 different semantic classes, viz., ‘forests’, ‘mountains’, ‘coasts’, ‘river’, ‘open-
country’, and ‘sky-clouds’. We consider 5-fold stratified cross validation and
present the result as average classification score of 5-fold.

MIT-67: This is indoor scene dataset. Most of the scene recognition models
work well for outdoor scenes but perform poorly in the indoor domain. This
dataset contain 15,620 images with 67 scene categories. All images have a mini-
mum resolution of 200 pixels in the smallest axis. It is a challenging dataset, due
to the less in-class variability. The standard division [29] for this dataset consist
of approximately 80 images of each class for training and 20 images for testing.

SUN397: This database contains 397 categories used in the benchmark of
several paper. The number of images varies across categories like indoor, urban
and nature but there are at least 100 images per category, and 108,754 images
in total. We consider publicly available fixed train and test splits from [38], where
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each split has 50 training and 50 testing images per category. We consider the
first five split set and the result computed is the average classification accuracy
for 5 splits.

Caltech-UCSD Birds CUB-200-2011 dataset consists of 11,788 images of
birds belonging to 200 different species. The standard division for this dataset
consist of 5994 images for training and 5794 for testing [35] with approximately
30 images per species in the training class, and the rest in test class. Bird data
suffers from high intra-class and low inter-class variance. Dataset is available
with bird bounding boxes and other annotations. In this work, we evaluate our
methods in two scenarios one with the bounding-box which enables one to focus
on the bird region rather then background and other without bounding-box
information considered at training and test time.

4.2 Experiment Studies for Scene Image Classification Task

In our studies of scene image classification, we have consider different CNN
architectures for extracting the features like, AlexNet [23], GoogLeNet [32] and
VGGNet-16 [31] which are pre-trained on three different datasets, i.e, Ima-
geNet [7], Places205 and Places365 [45] datasets. Reason behind using the differ-
ent pre-trained networks (on different datasets) is that all used datasets consist
of variety of images. In this context, ImageNet dataset contains mainly object
centric images and it shows activations for object-like structures, whereas Places
dataset comprise of largely indoor/outdoor scene images. We believe that CNNs
trained on Places dataset activate for landscapes, natural structure of scenes
with more spatial features, and indoor scene patterns.

In all the convolutional networks, pre-trained weights are kept consistent
without fine-tuning. These networks are in use without its fc-layers in our exper-
imental studies so that input images of arbitrary size can be accepted. As dis-
cussed in Sect. 3.2, we have passed the original image of arbitrary size as input
to deep CNNs and extracted varying size set of deep activation maps from last
convolutional layer. The size of set of activation map corresponding to an image
depends on the filter size, number of filters f in last convolutional layer and
input image size. The number of filters f , in last convolution layer of AlexNet,
GoogLeNet and VGGNet-16 are 256, 1024 and 512 respectively. The architec-
ture of these CNNs also differs from each other. So, activation map size will vary
from image to image and architecture to architecture.

DSPMK between varying size deep activation map for pair of images is com-
puted as in Fig. 3 using Eq. (1) to (4). We consider L + 1 = 3 as the number
of levels in spatial pyramid. In computation of DSPMK, we have performed the
experiments with both sum and max-pooling techniques. Reason behind using
different pooling technique is, max-pooling extracts the most activated feature
like edges, corner and texture, whereas, sum-pooling smoothen out the activa-
tion map and measures the sum value of existence of a pattern in a given region.
Although results with both the pooling technique are comparable as shown in
Tables 1 and 2, we observed that max-pooling works a bit better then sum-
pooling in our case. It is seen that performance of SVM-based classifier with
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Table 1. Comparison of classification accuracy (CA) (in %) with 95% confidence
interval for the SVM-based classifier using DSPMK computed using sum-pooling
on different datasets, similar to study shown in Table 1 of paper [16]. Base features for
the proposed approach are extracted from different CNN architecture like, AlexNet,
GoogLeNet and VGGNet which are pre-trained deep network on ImageNet, Places-365
and Places-205 dataset respectively.

Different pre-trained
deep CNN
architectures used to
build DSPMK with
sum-pooling

MIT-8 scene Vogel-Schiele MIT-67 SUN-397

ImageNet-AlexNet [23] 93.52±0.13 79.46±0.23 62.46 45.46±0.12

Places205-AlexNet [46] 93.56±0.12 82.21±0.25 62.24 53.21±0.23

Places365-AlexNet [45] 94.15±0.11 82.90±0.31 66.67 55.43±0.24

ImageNet-GoogLeNet
[32]

92.02±0.06 82.30±0.25 71.78 50.32±0.31

Places205-GoogLeNet
[46]

92.15±0.18 85.84±0.36 75.97 57.43±0.26

Places365-GoogLeNet
[45]

93.70±0.16 85.54±0.21 75.60 59.89±0.21

ImageNet-VGG [31] 93.90±0.07 84.62±0.31 75.78 53.67±0.25

Places205-VGG [46] 94.54±0.03 86.92±0.26 81.87 61.86±0.24

Places365-VGG [45] 95.09±0.14 84.68±0.28 77.76 62.31±0.25

DSPMK obtained using deep features from VGGNet-16 is significantly better
than that of SVM with DSPMK obtained using deep features from GoogLeNet
and AlexNet. Reason being VGGNet-16 has very deep network compare to other
architectures and it learns the hierarchical representation of visual data more effi-
ciently. We consider LIBSVM [3] tool to build the DSPMK-based SVM classifier.
Specifically, we uses one-against-the-rest approach for multi-class scene image
classification. In SVM for building the classifier, we use default value of trade-off
parameter C = 1. In our further study, we fine-tuned the VGG-16 architecture
for respective datasets by adding the spatial pyramid pooling (SPP) layer to the
network as shown in Fig. 2. We computed the spatial pyramid pooling features
and train the neural network based classifier. We consider the neural network
with two hidden layer and one soft-max layer. Dropout is chosen as 0.5 learning
rate as 0.01 and 2048 neurons in the hidden layers. We observe that results are
comparable with DSPMK-based SVM approach.

Table 3 presents the comparison of scene image classification accuracy of
proposed DSPMK-based SVM classifier and the SPP-based neural network clas-
sifier with that of state-of-the-art approaches. From Table 3, it is seen that both
of our proposed approaches are giving better performance in comparison with



56 S. Gupta et al.

Table 2. Comparison of classification accuracy (CA) (in %) with 95% confidence
interval for the SVM-based classifier using DSPMK computed using max-pooling
on different datasets, similar to study shown in Table 1 of paper [16]. Base features for
the proposed approach are extracted from different CNN architecture like, AlexNet,
GoogLeNet and VGGNet which are pre-trained deep network on ImageNet, Places-365
and Places-205 dataset respectively.

Different pre-trained
deep CNN
architectures used to
build DSPMK with
max-pooling

MIT-8 scene Vogel-Schiele MIT-67 SUN-397

ImageNet-AlexNet [23] 94.12±0.11 80.17±0.16 63.67 46.12±0.13

Places205-AlexNet [46] 94.11±0.13 83.18±0.21 63.56 54.01±0.21

Places365-AlexNet [45] 94.65±0.08 83.11±0.20 68.21 56.12±0.23

ImageNet-GoogLeNet
[32]

91.12±0.09 83.21±0.27 72.99 52.12±0.28

Places205-GoogLeNet
[46]

93.14±0.12 86.91±0.31 76.82 56.12±0.24

Places365-GoogLeNet
[45]

92.89±0.13 86.67±0.24 77.22 60.13±0.23

ImageNet-VGG [31] 93.86±0.11 85.21±0.33 75.99 54.91±0.22

Places205-VGG [46] 95.56±0.06 87.81±0.21 82.83 62.76±0.22

Places365-VGG [45] 96.21±0.09 85.66±0.30 78.16 63.12±0.21

traditional feature based approaches in [21,25] and also with CNN-based
approaches in [11,13,26,42,46].

The works in [25], uses scale invariant feature transform (SIFT) descriptors to
represent images as set of local feature vectors, which are further converted into
bag-of-visual word (BOVW) representation for classification using linear kernel
based SVM classifier. The works in [21] uses the learned bag-of-part (BoP) rep-
resentation and combine with improved Fisher vector for building linear kernel
based SVM classifier. The works in [13] extracted CNN-based features from mul-
tiple scale of image at different levels and performs orderless vectors of locally
aggregated descriptors (VLAD) pooling [20] at every scale separately. The rep-
resentations from different level are then concatenated to form a new represen-
tation known as multi-scale orderless pooling (MOP) which is used for training
linear kernel based SVM classifier. The works in [46] uses more direct app-
roach, where a large scale image dataset (Places dataset) is used for training the
AlexNet architecture and extracted fully-connected (fc7) layer feature from the
trained network. The basic architecture of their Places-CNN is same as that of
the AlexNet [23] trained on ImageNet. The works in [46] trained a Hybrid-CNN,
by combining the training data of Places dataset with ImageNet dataset. Here,
features from fully-connected (fc7) layer are then used for training linear kernel
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Table 3. Comparison of classification accuracy (CA) (in %) with 95% confidence
interval of proposed approach with state-of-the-art approaches on MIT-8 scene, Vogel-
Schiele, MIT-67 Indoor and SUN-397 dataset, similar to study shown in Sect. 4, Table
2 of paper [16]. (SIFT: Scale invariant feature transform, IFK: Improved Fisher ker-
nel, BoP: Bag of part, MOP: Multi-scale orderless pooling, FV: Fisher vector, DSP:
Deep spatial pyramid, MPP: Multi-scale pyramid pooling, DSFL: Discriminative and
shareable feature learning and NN: Neural network).

Method MIT-8-Scene Vogel Schiele MIT-67 SUN-397

SIFT+BOVW [25] 79.13±0.13 67.49±0.21 45.86 24.82±0.34

IFK+BoP [21] 85.76±0.12 73.23±0.23 63.18 -

MOP-CNN [13] 89.45±0.11 76.81±0.27 68.88 51.98±0.24

Places-CNN-fc7 [46] 88.30±0.09 76.02±0.31 68.24 54.32±0.14

Hybrid-CNN-fc7 [46] 91.23±0.04 78.56 ±0.21 70.80 53.86±0.21

fc8-FV [26] 88.43±0.08 79.56±0.23 72.86 54.40±0.30

VGGNet-16 + DSP
[11]

92.34±0.12 81.34±0.27 76.34 57.27±0.34

MPP(Alex-fc7)+DSFL
[42]

93.21±0.14 82.12±0.25 80.78 -

VGG16 +
SPP-feature + NN
based classifier
(Ours)

94.01±0.11 85.89±0.23 80.94 -

VGG16 +
DSPMK-based
SVM with
max-pooling (Ours)

96.21±0.09 87.81±0.21 82.83 63.12±0.21

based SVM classifier. The works in [26] obtained the semantic Fisher vector (FV)
using standard Gaussian mixture encoding for CNN-based feature. Further lin-
ear kernel based SVM classifier is build using semantic FV for classification of
scene images. The works in [11] uses the generative model based approach to
build a dictionary on top of CNN activation maps. A FV representation for dif-
ferent spatial region of activation map is then obtained from the dictionary. A
power and l2 normalization is applied on the combined FV from different spatial
region. A linear kernel based SVM classifier is then used for scene classification.
The works in [42] combine the features from fc7 layer of AlexNet (Alex-fc7)
and their complementary features named discriminative and shareable feature
learning (DSFL). DSFL learns discriminative and shareable filters with a target
dataset. The final image representation is used with the linear kernel based SVM
classifier for the scene classification task.

In contrast to all the above briefly explained approaches, our proposed app-
roach es use the image of arbitrary size and gives the deep activation map of
varying size without any loss of information. The deep spatial pyramid match
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kernel can handle the varying size set of deep activation maps and incorpo-
rates the local spatial information at the time of computing level wise matching
score. Specifically, our proposed approach is very simple and discriminative in
nature which outperforms the other CNN-based approaches without combining
any complementary features as in [42]. Our first proposed approach, based on
SPP-feature with neural network (NN) also shows good quality results (second
to only our proposed DSPMK method), as this approach consider original size
images for fine-tuning the network. Our second proposed framework, bring out
that for scene recognition, good performance is accomplishable by using last
conv layer features with DSPMK-based-SVM. Proposed framework is free of
fully connected layer, believe on the actual size image, memory efficient, simple
and take very less computing time in compare to state-of-the-art techniques.

4.3 Experiment Studies for Fine-Grained Bird Species Classification

The experiments for fine-grained bird species classification cover three main
aspects of our approach. First, we compute varying size deep activation map by
passing images in its original size without any prior loss of information. Second,
we use DSPMK to compute matching score between them. Third, we fine-tune
the VGG-19 architecture [30] by adding SPP-layer to it. We fine-tune the net-
work for CUB-200-2011 dataset [35] and compute variable size deep activation
map features and SPP-features for further experiments. We show our proposed
approach is generic and along with scene image classification it works well for
fine-grained bird species classification.

Table 4, shows the results of fine-grained bird species classification with dif-
ferent methods. We have shown the results for testing with bounding box (Bbox)
and without bounding box. The bounding box annotation essentially helps us
to crop only the prominent bird region of interest (RoI) while discarding the
background. Such regions may also be obtained by detection algorithm. The
case without Bbox corresponds to complete actual image. Firstly, we passes the
image in fixed size i.e, “224 × 224” for both the cases to the CNN architecture
and computed fixed length fc7 and pool5 features. We use linear kernel based
SVM to compute the classification score. Secondly, we pass the image in its
original size without resizing it to“224 × 224” and computed varying size deep
activation maps. In this context, we perform experiments using DSPMK-based
SVM with different pooling technique for computing the classification score.
Next, we fine-tune the VGG-19 architecture by adding SPP-layer between last
convolutional layer and first fully-connected layer. We consider the fine-tuned
network for further experiments in two ways. In the first approach, we compute
the varying size set of deep activation map and use DSPMK-based SVM for
computation of classification score. In the second approach, we compute SPP-
features from fine-tuned network and train neural network based classifier. In
this context, we uses two hidden layer with 2096 neurons in each. We empirically
chosen learning rate as 0.001 and dropout as 0.5.

We observe in Table 4 that, if the images are not resized and no Bbox
RoI detection is available, original images can be used instead with proposed
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Table 4. Comparison of classification accuracy (CA) (in %) for the SVM-based clas-
sifier using linear kernel and DSPMK, fine-tuned VGG19 with SPP-layer based neural
network on CUB-200-2011 dataset. Proposed approach uses base features extracted
from VGG19 [30]. Here NN indicate neural network.

Method Testing with Bbox Testing without Bbox

VGG19-fc7+ linear
kernel based SVM

79.02 72.94

VGG19-Pool5+ linear
kernel based SVM

78.30 69.84

SVM using DSPMK
with sum-pooling

82.07 74.36

SVM using DSPMK
with max-pooling

82.12 80.81

VGG19 + fine-tuning
with SPP + fc7

78.41 76.63

VGG19 + fine-tuning
with SPP + SVM
using DSPMK with
sum-pooling

79.11 78.16

VGG19 + fine-tuning
with SPP + SVM
using DSPMK with
max-pooling

80.01 78.89

VGG19 + SPP-feature
+ NN based classifier

81.24 81.03

DSPMK-based SVM approach. In this context, one can notice that classifica-
tion accuracy will be marginally affected. This is natural as the case with Bbox
focuses only on the bird RoI. However, this difference is relatively small for most
of variants of the proposed methods using DSPMK and SPP. This indicates that
for bird images of the size and scale as in the CUB dataset, the proposed meth-
ods are largely invariant to ROI selection, and thus can obviate an ROI detection
step. When images are used without bounding box annotation, we observe that
there is huge i.e, (approx 10%) improvement in performance from linear kernel
based SVM with VGG-19 pool5 features to DSPMK-based SVM with varying
size activation maps features from last conv layer. We believe that, our proposed
approach compute the matching score between two images more efficiently with
consideration of spatial information.

In Table 5, we compare the classification results of proposed approaches with
state-of-the-art results. The deformable part descriptor (DPD) in [44], is based
on the supervised version of deformable part models (DPD) [10] for training,
which then allows for pose normalization by comparing corresponding parts.
The work in [1], learns a linear classifier for each pair of parts and classes.
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Table 5. Comparison of classification accuracy (CA) (in %) on CUB-200-2011 dataset
between different state-of-the-art method with that of the proposed approaches. Some
of the state-of-the-art approaches uses part annotations during training and testing.
The proposed approaches do not use any part information. (DPD: Deformable part
descriptors; POOFs: Part-based One-vs-One Features; NN: Neural Network)

Method Accuracy Remark

DPD [44] 50.98 Uses parts info

POOFs [1] 56.78 Uses parts and Bbox info

Part transfer [14] 57.84 Uses parts and Bbox info

DeCAF6 [9] 58.75 Uses Bbox info

DPD + DeCAF6 [9] 64.96 Uses parts and Bbox info

Pose Normalized
CNN [2]

75.70 Uses parts info

Parts-RCNN-FT [43] 76.37 Uses parts info

VGG19 +
fine-tuning with
SPP + fc7 (Ours)

78.41 Uses Bbox info

VGG19 +
fine-tuning with
SPP + DSPMK
(Ours)

79.11 Uses Bbox info

VGG19 +
SPP-feature + NN
based classifier
(Ours)

81.24 Uses Bbox info

DSPMK-based
SVM with
max-pooling (Ours)

82.12 Uses Bbox info

The decision values from many of such classifiers are used as feature representa-
tion. This approach also require ground-truth part annotations at training and
also at test time. The work in, [14], is based on nonparametric part detection.
Here, the basic idea is to use nearest neighbor matching to obtain similar training
example from human-annotated part positions. The work in [9] is based on fea-
ture extraction from part regions detected using a DPM, which have sufficient
depictive power and generalization ability to perform desired task. The work
in [2] uses deep CNNs for extracting the features from image patches that are
located and normalized by the pose. The work in [43], generate object propos-
als using Selective Search [33] and uses the part locations to calculate localized
features from R-CNNs.

From Table 5, we also infer that our approaches for bird species classification
does not require part annotation, and yet improves over very complex state-
of-the-art approaches that use part based annotation at the time of training
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and testing. In contrast, our approaches are generic and easy to adapt to other
datasets as we only require a pre-trained CNN architecture. For fine-tuning the
CNN architecture with SPP-layer, we perform experiments without bounding
box as well as with bounding box. It is observed that proposed framework per-
form much improved without any extra annotations.

5 Conclusion

In this work, we propose deep spatial pyramid match kernel (DSPMK) for
improving the base features from last conv CNN’s layer. DSPMK-based SVM
can classify different size images which are represented as the varying size set
of deep activation maps. Further, we propose to add spatial pyramid pooling
layer in CNN architecture so that, we can fine-tune the pre-trained CNNs for
other datasets containing varying size images. Our model has a dynamic ker-
nel which calculates the layer-wise intermediate matching score and strengthens
the matching procedure of conv layer features. The training of DSPMK-based
SVM classifier take very less time in compare to training of GMM in [11]. In our
research, we have considered the last convolutional layer features rather than
fc layer features as fc layer limits these features to the fixed size and requires
much larger computation time as it contains approximately 90% of the aggregate
parameters of CNN. Thus, conv layer features are effectively considered in han-
dling large varying size images in scene image classification datasets like, SUN-
397 and MIT-67, as well as for size variations in the fine-grained classification
with the CUB dataset. Almost all approaches in fine-grained classification are
specialized, but we show that our approach is generic and works well for both the
diverse datasets. In terms of performance, our proposed approach accomplishes
state-of-the-art results for standard scene classification and bird species classifi-
cation dataset. In future, for capturing differences of the activations caused by
the varying size of concepts in an image, multi-scale deep spatial pyramid match
kernel can be investigated.
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20. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a
compact image representation. In: 2010 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3304–3311. IEEE (2010)

21. Juneja, M., Vedaldi, A., Jawahar, C., Zisserman, A.: Blocks that shout: distinctive
parts for scene classification. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 923–930 (2013)

22. Kang, K., Wang, X.: Fully convolutional neural networks for crowd segmentation.
arXiv preprint arXiv:1411.4464 (2014)

https://doi.org/10.1007/978-3-319-10584-0_26
https://doi.org/10.1007/978-3-319-46681-1_39
http://arxiv.org/abs/1411.4464


DSPMK 63

23. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

24. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid
matching for recognizing natural scene categories. In: 2006 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 2169–2178 (2006)

25. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91–110 (2004)

26. Mandar, D., Chen, S., Gao, D., Rasiwasia, N., Nuno, V.: Scene classification with
semantic fisher vectors. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2974–2983 (2015)

27. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number
of classes. In: Sixth Indian Conference on Computer Vision, Graphics & Image
Processing, ICVGIP 2008, pp. 722–729. IEEE (2008)

28. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation
of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

29. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2009, pp. 413–420. IEEE (2009)

30. Simon, M., Rodner, E.: Neural activation constellations: Unsupervised part model
discovery with convolutional networks. In: International Conference on Computer
Vision (ICCV) (2015)

31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

32. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

33. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search
for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

34. Vogel, J., Schiele, B.: Natural scene retrieval based on a semantic modeling step. In:
Enser, P., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M.
(eds.) CIVR 2004. LNCS, vol. 3115, pp. 207–215. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27814-6 27

35. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd
birds-200-2011 dataset (2011)

36. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear
coding for image classification. In: 2010 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3360–3367 (2010)

37. Wang, Z., Feng, J., Yan, S., Xi, H.: Linear distance coding for image classification.
IEEE Trans. Image Process. 22(2), 537–548 (2013)

38. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-
scale scene recognition from abbey to zoo. In: 2010 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3485–3492. IEEE (2010)

39. Xiao, T., Xu, Y., Yang, K., Zhang, J., Peng, Y., Zhang, Z.: The application of
two-level attention models in deep convolutional neural network for fine-grained
image classification. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 842–850. IEEE (2015)

40. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using
sparse coding for image classification. In: 2009 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1794–1801 (2009)

41. Yoo, D., Park, S., Lee, J.Y., Kweon, I.S.: Fisher kernel for deep neural activations.
arXiv preprint arXiv:1412.1628 (2014)

http://arxiv.org/abs/1409.1556
https://doi.org/10.1007/978-3-540-27814-6_27
http://arxiv.org/abs/1412.1628


64 S. Gupta et al.

42. Yoo, D., Park, S., Lee, J.Y., So Kweon, I.: Multi-scale pyramid pooling for deep
convolutional representation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 71–80 (2015)

43. Zhang, N., Donahue, J., Girshick, R., Darrell, T.: Part-based R-CNNs for fine-
grained category detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8689, pp. 834–849. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10590-1 54

44. Zhang, N., Farrell, R., Iandola, F., Darrell, T.: Deformable part descriptors for fine-
grained recognition and attribute prediction. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 729–736 (2013)

45. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million
image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40,
1452–1464 (2017)

46. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features
for scene recognition using places database. In: Advances in Neural Information
Processing Systems, pp. 487–495 (2014)

https://doi.org/10.1007/978-3-319-10590-1_54
https://doi.org/10.1007/978-3-319-10590-1_54

	CNN-Based Deep Spatial Pyramid Match Kernel for Classification of Varying Size Images
	1 Introduction
	2 Literature Review
	3 Approaches for Handling Variable Size Images for Classification
	3.1 CNN Architecture with Spatial Pyramid Pooling (SPP) Layer
	3.2 Deep Spatial Pyramid Match Kernel

	4 Experimental Studies
	4.1 Datasets
	4.2 Experiment Studies for Scene Image Classification Task
	4.3 Experiment Studies for Fine-Grained Bird Species Classification

	5 Conclusion
	References




