Skip to main content

SAR Observations of Offshore Windfarm Wakes

  • Living reference work entry
  • First Online:
Handbook of Wind Energy Aerodynamics

Abstract

Satellite synthetic aperture radar (SAR) is the only operational instrument providing information on near-surface ocean wind fields with coverage of up to several hundred kilometres and spatial resolutions below 100 m. SAR is independent of daylight and cloud conditions and therefore an interesting information source for the analysis of wakes behind offshore windfarms. In this chapter, an overview is given on the research that was done on this subject so far. In a first step, the basic measurement principle of SAR is explained, and typical imaging configurations and operation modes are presented. A summary is given of important past, present and future satellite SAR missions launched by various nations and organisations. In this context, the growing amount of data, which are available for analysis, and the existing efforts to ensure a continuity of SAR data acquisitions are pointed out. Both potentials and limitations of the system are discussed with a focus on offshore windfarm-related issues. Of particular importance is the fact that the basic quantity measured by SAR is the sea surface roughness. It is clear that the relationship between the roughness and wind speeds at higher levels is not straightforward, in particular in complex environments like the surroundings of offshore wind farms, and this will be discussed in some detail. Other complications can be caused by image features, which are actually related to oceanic processes like ocean current divergence. Finally, a basic limitation of SAR wind measurements is the fact that information about wind direction can only be obtained in a very indirect way and even that is not guaranteed. In practice, many users of SAR data therefore use additional data from numerical models or in situ stations. Approaches to estimate the wake length from SAR data are presented, and some derived results concerning the relationship between wake length and atmospheric stability are discussed. The discussion also includes some image features, which appear counterintuitive at first sight, like an apparent increase of surface roughness within about 10 km downstream offshore windparks observed on some SAR scenes. Additional applications of SAR data in the context of offshore windfarming, like the assessment of wind energy potential on larger spatial scales, are briefly addressed as well.

As one major conclusion drawn in this chapter, it is strongly recommended to use SAR data in combination with other sources of information, like in situ data or numerical model simulations. Different options and challenges associated with data merging of this kind are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alpers W, Hennings I (1984) A theory of the imaging mechanism of underwater bottom topography. J Geophys Res 89:1029–10546

    Article  Google Scholar 

  • Christiansen MB, Hasager CB (2005) Wake effects of large offshore wind farms identified from satellite SAR. Remote Sens Environ 98(2):251–268

    Article  Google Scholar 

  • Christiansen MB, Hasager CB (2006) Using airborne and satellite SAR for wake mapping offshore. Wind Energy 9:437–455

    Article  Google Scholar 

  • Djath B, Schulz-Stellenfleth J (2019) Wind speed deficits downstream offshore wind parks – A new automised estimation technique based on satellite synthetic aperture radar data. Meteorol Z 28(6):499–515

    Article  Google Scholar 

  • Djath B, Schulz-Stellenfleth J, Canadilla B (2018) Impact of atmospheric stability on X-band and C-band Synth etic Aperture Radar imagery of offshore windpark wakes. J Sustain Renew Energy 10(4)

    Google Scholar 

  • Durden S, Vesecky J (1985) A physical radar cross-section model for a wind-driven sea with swell. IEEE J Ocean Eng 10(4):445–451

    Article  Google Scholar 

  • Emeis S (2010) A simple analytical wind park model considering atmospheric stability. Wind Energy 13(5):459–469

    Article  Google Scholar 

  • Fois F (2015) Enhanced ocean scatterometry

    Google Scholar 

  • es Frandsen ST, Chacón L, Crespo A, Enevoldsen P, Gómez-Elvira R, Hernuandez J, Hojstrup J, Manuel F, Thomsen K (1996) Measurements on and modelling of offshore wind farms. (903)

    Google Scholar 

  • Frandsen S, Barthelmie R, Pryor S, Rathmann O, Larsen S, Højstrup J, Thøgersen M (2006) Analytical modelling of wind speed deficit in large offshore wind farms. Wind energy 9(1–2):39–53

    Article  Google Scholar 

  • Gade M, Alpers W, Huähnerfuss H, Heinrich a nd Masuko, Kobayashi T (1998) Imaging of biogenic and anthropogenic ocean surface films by th e multi-frequency/multipolarization SIR-C/X-SAR. J Geophys Res Oceans 103(C9):18851–18866

    Google Scholar 

  • Hasager CB, Nielsen M, Astrup P, Barthelmie R, Dellwik E, Jensen NO, Jørgensen BH, Pryor SC, Rathmann O, Furevik BR (2005) Offshore wind resource estimation from satellite SAR wind field maps. Wind Energy 8(4):403–419

    Article  Google Scholar 

  • Hasager CB, Badger M, Pefia A, Larsen XG, Bingol F (2011) SAR-based wind resource statistics in the Baltic Sea. Remote Sens 3(1):117–144

    Article  Google Scholar 

  • Hasager CB,, Vincent P, Badger J, Badger M, Bella AD, Pefia A, Husson R, Volker PJH (2015) Using satellite SAR to characterize the wind flow around offshore wind farms. Energies 8(6):5413–5439

    Article  Google Scholar 

  • Hersbach H, Stoffelen A, De Haan S (2007) An improved C-band scatterometer ocean geophysical model function: CMOD5. J Geophys Res Oceans 112(C3)

    Google Scholar 

  • Kerbaol V (1997) Analyse spectrale et statistique vent-vagues des images radar à ouverture synthetique – Application aux donnees des satellites ERS-1/2

    Google Scholar 

  • de Kloe J, Stoffelen A, Verhoef A (2017) Improved use of scatterometer measurements by using stress-equivalent reference winds. IEEE J Sel Top Appl Earth Observ Remote Sens 10(5):2340–2347

    Article  Google Scholar 

  • Koch W (2004) Directional analysis of SAR images aiming at wind direction. IEEE Trans Geosci Remote Sens 42:702–710

    Article  Google Scholar 

  • Koch W, Feser F (2006) Relationship between SAR-derived wind vectors and wind at 10-m height represented by a mesoscale model. Mon Weather Rev 134(5):1505–1517

    Article  Google Scholar 

  • Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM Dynamics and modelling of ocean waves. Cambridge University Press (1996)

    Google Scholar 

  • Lehner S, Horstmann J, Koch W, Rosenthal W (1998) Mesoscale wind measurements using recalibrated ERS SAR images. J Geophys Res Oceans (1978–2012) 103(C4):7847–7856

    Google Scholar 

  • Li X-M, Lehner S (2014) Algorithm for sea surface wind retrieval from TerraSAR-X and TanDEM-X data. IEEE Trans Geosci Remote Sens 52(5):2928–2939

    Article  Google Scholar 

  • Li X, Lehner S (2013) Observation of TerraSAR-X for studies on offshore wind turbine wake in near and far fields. IEEE J Sel Top Appl Earth Observ Remote Sens 6(3):1757–1768

    Article  Google Scholar 

  • Li X, Chi L, Chen X, Ren Y, Lehner S (2014) SAR observation and numerical modeling of tidal current wakes at the East China Sea offshore wind farm. J Geophys Res Oceans 119(8):4958–4971

    Article  Google Scholar 

  • Massel SR (2011) On the geometry of ocean surface waves. Oceanologia 53(2):521548

    Article  Google Scholar 

  • Penia A, Gryning S-E, Mann J, Hasager CB (2010) Length scales of the neutral wind profile over homogeneous terrain. J Appl Meteorol Climatol 49(4):792–806

    Article  Google Scholar 

  • Platis A, Siedersleben SK, Bange J, Lampert A, Bärfuss K, Hankers R, Canadillas B, Foreman R, Schulz-Stellenfleth J, Bughs in Djath, Neumann T, Emeis S (2018) First in situ evidence of wakes in the far field behind offshor e wind farms. Sci Rep 8(1):2163

    Google Scholar 

  • Portabella M, Stoffelen A (2008) On scatterometer ocean stress. J Atmos Ocean Technol 26:368–382

    Article  Google Scholar 

  • Portabella M, Stoffelen A, Johannessen JA (2002) Towards an optimal inversion method for SAR wind retrieval. J Geophys Res Oceans 107:1–13

    Article  Google Scholar 

  • Rivas MB, Stoffelen A, Verspeek J, Verhoef A, Neyt X, Anderson C (2017) Cone metrics: a new tool for the intercomparison of scatterometer records. IEEE J Sel Top Appl Earth Observ Remote Sens 10(5):2195–2204

    Article  Google Scholar 

  • Sandu I, Beljaars A, Bechtold P, Mauritsen T, Balsamo G (2013) Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J Adv Model Earth Syst 5(2):117133

    Article  Google Scholar 

  • Schmidt K, Ramon NT, Schwerdt M (2017) Radiometric accuracy and one-year-stability of Sentinel-1A determined using point targets. 1175–1178

    Google Scholar 

  • Schneiderhan T, Lehner S, Schulz-Stellenfleth J, Horstmann J (2005) Comparison of offshore wind park sites using SAR wind measurement techniques. Meteorol Appl 12(02):101–110

    Article  Google Scholar 

  • Schwerdt M, Schmidt K, Klenk P, Nuria To us Ramon, Rudolf D, Raab S, Klau s Weidenhaupt, Reimann J, Zink M (2018) Radiometric performance of the TerraSAR-X mission over more than ten years of operation. Remote Sens 10(5)

    Google Scholar 

  • Stoffelen A (1998) Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J Geophys Res Oceans 103(C4), 7755–7766

    Article  Google Scholar 

  • Stoffelen A (2017) The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE J Sel Top Appl Earth 10:2123–2134

    Article  Google Scholar 

  • Stoffelen A, Anderson D (1997) Scatterometer data interpretation: estimation and validation of the transfer function CMOD4. J Geophys Res Oceans (1978–2012) 102(C3):5767–5780

    Google Scholar 

  • Valenzuela GR (1968) Scattering of electromagnetic waves from a tilted slightly rough surface. Radio Sci 3(11):1057–1066

    Article  Google Scholar 

  • Verhoef A, Portabella M, Stoffelen A, Hersbach H (2008) CMOD5. n-the CMOD5 GMF for neutral winds, (SAF/OSI/CDOP/KNMI/TEC/TN/3, 165)

    Google Scholar 

  • Vogelzang J, Stoffelen A, Verhoef A, Figa-Saldafia J (2011) On the quality of high-resolution scatterometer winds. J Geophys Res Oceans 116(C10)

    Google Scholar 

  • Zhao Y, Xiao-Ming Li, Sha J (2016) Sea surface wind streaks in spaceborne synthetic aperture radar imagery. J Geophys Res Oceans 121(9):6731–6741

    Article  Google Scholar 

  • Zhou X, Zeng Q, Jiao J, Wang Q, Xiong S, Gao S (2013) Field calibration and validation of Radarsat-2, 4451–4454

    Google Scholar 

  • Zuhlke M, Fomferra N, Brockmann C, Peters M, Luis Veci, Malik J, Regner P (2015) SNAP (Sentinel Application Platform) and the ESA Sentinel 3 Toolbox 734:21

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Schulz-Stellenfleth .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schulz-Stellenfleth, J., Djath, B., Hereon (2021). SAR Observations of Offshore Windfarm Wakes. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Yuping, S. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-05455-7_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05455-7_56-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05455-7

  • Online ISBN: 978-3-030-05455-7

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics