Skip to main content

Smart Materials, Magnetic Graphene Oxide-Based Nanocomposites for Sustainable Water Purification

  • Chapter
  • First Online:

Abstract

Magnetic separation, one of the potential methods for the purification of toxic pollutant contaminated water, has been found to be an alternative technique for the removal of water pollutants that effectively compares with the conventional methods of treatment. Among the synthetic magnetic adsorbents, magnetic graphene oxide based nanocomposites (MGOs) have been widely used in the removal of metal pollutants and dyes from aqueous solution, and are currently attracting much attention. This chapter reviews the status and approaches of the properties of graphene and magnetic graphene oxide nanocomposites, in view of their utilization for the adsorption removal of pollutants (heavy metals, radioactive elements, organic dyes, and other pollutants) for sustainable water purification. It also reviews the primary characterization instruments required for the evaluation of structural, chemical and physical functionalities of synthesized magnetic graphene oxide nanocomposites. It first discusses pollutants and their toxic effects, and the necessity of preparation of MGOs, and then discusses in brief MGOs preparation strategies, characterizations, and applications for sustainable water purification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alvand M, Shemirani F (2016) Fabrication of Fe3O4@graphene oxide core-shell nanospheres for ferrofluid-based dispersive solid phase extraction as exemplified for Cd(II) as a model analyte. Microchim Acta 183:1749–1757. https://doi.org/10.1007/s00604-016-1805-8

  2. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4:37–59. https://doi.org/10.1002/cben.201600010

  3. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569. https://doi.org/10.1038/nmat3064

    Article  CAS  Google Scholar 

  4. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  5. Berger C et al (2004) Ultrathin epitaxial graphite:  2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108:19912–19916. https://doi.org/10.1021/jp040650f

  6. Bhunia P, Kim G, Baik C, Lee H (2012) A strategically designed porous iron–iron oxide matrix on graphene for heavy metal adsorption. Chem Commun 48:9888

    Google Scholar 

  7. Bolotin KI et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355. https://doi.org/10.1016/j.ssc.2008.02.024

    Article  CAS  Google Scholar 

  8. Chandra V, Park J, Chun Y, Lee JW, Hwang I-C, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986. https://doi.org/10.1021/nn1008897

    Article  CAS  Google Scholar 

  9. Chen X, Zhou S, Zhang L, You T, Xu F (2016) Adsorption of heavy metals by graphene oxide/cellulose hydrogel prepared from NaOH/urea aqueous solution. Mater 9:582

    Article  Google Scholar 

  10. Cheng Z, Liao J, He B, Zhang F, Zhang F, Huang X, Zhou L (2015) One-step fabrication of graphene oxide enhanced magnetic composite gel for highly efficient dye adsorption and catalysis. ACS Sustain Chem Eng 3:1677–1685

    Article  CAS  Google Scholar 

  11. Chung C, Kim Y-K, Shin D, Ryoo S-R, Hong BH, Min D-H (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46:2211–2224

    Article  CAS  Google Scholar 

  12. Dasari BL, Nouri JM, Brabazon D, Naher S (2017) Graphene and derivatives—synthesis techniques, properties and their energy applications. Energy 140:766–778. https://doi.org/10.1016/j.energy.2017.08.048

  13. Deng J-H, Zhang X-R, Zeng G-M, Gong J-L, Niu Q-Y, Liang J (2013) Simultaneous removal of Cd (II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem Eng J 226:189–200

    Google Scholar 

  14. Deng J-H, Zhang X-R, Zeng G-M, Gong J-L, Niu Q-Y, Liang J (2013) Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem Eng J 226:189–200

    Google Scholar 

  15. Duru I, Ege D, Kamali AR (2016) Graphene oxides for removal of heavy and precious metals from wastewater. J Mater Sci 51:6097–6116

    Article  CAS  Google Scholar 

  16. Fan Z, Wang K, Wei T, Yan J, Song L, Shao B (2010) An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48:1686–1689

    Article  CAS  Google Scholar 

  17. Gollavelli G, Chang C-C, Ling Y-C (2013) Facile synthesis of smart magnetic graphene for safe drinking water: heavy metal removal and disinfection control. ACS Sustain Chem Eng 1:462–472

    Article  CAS  Google Scholar 

  18. Gomez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single graphene sheets. Nano Lett 8:2045–2049. https://doi.org/10.1021/nl801384y

  19. Hashim N et al (2016) A brief review on recent graphene oxide-based material nanocomposites: synthesis and applications. J Mater Environ Sci 7:3225–3243

    CAS  Google Scholar 

  20. Hu X-J et al (2013) Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Sep Purif Technol 108:189–195

    Google Scholar 

  21. Hur J, Shin J, Yoo J, Seo YS (2015) Competitive adsorption of metals onto magnetic graphene oxide: comparison with other carbonaceous adsorbents. The Sci World J 2015:1–11. https://doi.org/10.1155/2015/836287

  22. Abbas A, Al-Amer AM, Laoui T, Al-Marri MJ, Nasser MS, Khraisheh M, Atieh MA (2016) Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol 157:141–161

    Google Scholar 

  23. Ionita M, Vlăsceanu GM, Watzlawek AA, Voicu SI, Burns JS, Iovu H (2017) Graphene and functionalized graphene: extraordinary prospects for nanobiocomposite materials. Compos B Eng 121:34–57

    Google Scholar 

  24. Jiang J-W, Lan J, Wang J-S, Li B (2010) Isotopic effects on the thermal conductivity of graphene nanoribbons: localization mechanism. J Appl Phys 107:054314. https://doi.org/10.1063/1.3329541

    Article  CAS  Google Scholar 

  25. Karri RR, Sahu JN (2018) Modeling and optimization by particle swarm embedded neural network for adsorption of zinc (II) by palm kernel shell based activated carbon from aqueous environment. J Environ Manage 206:178–191

    Article  CAS  Google Scholar 

  26. Karri RR, Jayakumar N, Sahu J (2017) Modelling of fluidised-bed reactor by differential evolution optimization for phenol removal using coconut shells based activated carbon. J Mol Liq 231:249–262

    Google Scholar 

  27. Karri RR, Sahu JN, Jayakumar NS (2017) Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon: error analysis of linear and non-linear methods. J Taiwan Inst Chem Eng 80:472–487

    Article  CAS  Google Scholar 

  28. Khurana I, Shaw AK, Bharti, Khurana JM, Rai PK (2018) Batch and dynamic adsorption of Eriochrome Black T from water on magnetic graphene oxide: experimental and theoretical studies. J Environ Chem Eng 6:468–477

    Google Scholar 

  29. Kou L, Tang C, Guo W, Chen C (2011) Tunable magnetism in strained graphene with topological line defect. ACS Nano 5:1012–1017. https://doi.org/10.1021/nn1024175

    Article  CAS  Google Scholar 

  30. Krane N (2011) Selected topics in physics: physics of nanoscale carbon. Freie Universität, Berlin

    Google Scholar 

  31. Lee C, Wei X, Li Q, Carpick R, Kysar Jeffrey W, Hone J (2009) Elastic and frictional properties of graphene. Physica Status Solidi (b) 246:2562–2567. https://doi.org/10.1002/pssb.200982329

    Article  CAS  Google Scholar 

  32. Lee Y-C, Yang J-W (2012) Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. J Ind Eng Chem 18:1178–1185

    Google Scholar 

  33. Li J, Guo S, Zhai Y, Wang E (2009) Nafion–graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochem Commun 11:1085–1088

    Google Scholar 

  34. Lim JY, Mubarak NM, Abdullah EC, Nizamuddin S, Khalid M, Inamuddin (2018) Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals—a review. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2018.05.028

  35. Lingamdinne L, Kim I-S, Ha J-H, Chang Y-Y, Koduru J, Yang J-K (2017) Enhanced adsorption removal of Pb(II) and Cr(III) by using nickel ferrite-reduced graphene oxide nanocomposite. Metals 7:225  

    Google Scholar 

  36. Lingamdinne LP, Choi Y-L, Kim I-S, Yang J-K, Koduru JR, Chang Y-Y (2017) Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. J Hazard Mater 326:145–156

    Article  CAS  Google Scholar 

  37. Lingamdinne LP, Koduru JR, Chang Y-Y, Karri RR (2018) Process optimization and adsorption modeling of Pb(II) on nickel ferrite-reduced graphene oxide nano-composite. J Mol Liq 250:202–211

    Google Scholar 

  38. Lingamdinne LP, Choi Y-L, Kim I-S, Chang Y-Y, Koduru JR, Yang J-K (2016) Porous graphene oxide based inverse spinel nickel ferrite nanocomposites for the enhanced adsorption removal of arsenic. RSC Adv 6(77):73776–73789

    Article  CAS  Google Scholar 

  39. Lingamdinne LP, Koduru JR, Choi Y-L, Chang Y-Y, Yang J-K (2016) Studies on removal of Pb(II) and Cr(III) using graphene oxide based inverse spinel nickel ferrite nano-composite as sorbent. Hydrometallurgy 165:64–72  

    Google Scholar 

  40. Lingamdinne LP, Koduru JR, Roh H, Choi Y-L, Chang Y-Y, Yang J-K (2016) Adsorption removal of Co(II) from waste-water using graphene oxide. Hydrometallurgy 165:90–96

    Google Scholar 

  41. Lingamdinne LP, Roh H, Choi Y-L, Koduru JR, Yang J-K, Chang Y-Y (2015) Influencing factors on sorption of TNT and RDX using rice husk biochar. J Ind Eng Chem 32:178–186

    Article  CAS  Google Scholar 

  42. Liu J, Zhang H-B, Liu Y, Wang Q, Liu Z, Mai Y-W, Yu Z-Z (2017) Magnetic, electrically conductive and lightweight graphene/iron pentacarbonyl porous films enhanced with chitosan for highly efficient broadband electromagnetic interference shielding. Compos Sci Technol 151:71–78. https://doi.org/10.1016/j.compscitech.2017.08.005

  43. Liu M, Chen C, Hu J, Wu X, Wang X (2011) Synthesis of magnetite/graphene oxide composite and application for cobalt(ii) removal. J Phys Chem C 115:25234–25240

    Google Scholar 

  44. Liu M, Wen T, Wu X, Chen C, Hu J, Li J, Wang X (2013) Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(vi) removal. Dalton Trans 42:14710

    Google Scholar 

  45. Liu P, Yao Z, Zhou J (2015) Preparation of reduced graphene oxide/NiO·4ZnO·4CoO·2Fe2O4 nanocomposites and their excellent microwave absorption properties. Ceram Int 41:13409–13416

    Google Scholar 

  46. Liu, ZJ, Yang, JW, Li, CZ, Li, JX, Jiang, YJ, Dong, YH, Li, YY (2014) Adsorption of Co (II), Ni (II), Pb (II) and U (VI) from aqueous solutions using polyaniline/graphene oxide composites. Korean Chem Eng Res 52(6):781–788. https://doi.org/10.9713/kcer.2014.52.6.781

  47. Maaz K, Karim S, Mumtaz A, Hasanain SK, Liu J, Duan JL (2009) Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. J Magn Magn Mater 321:1838–1842

    Article  CAS  Google Scholar 

  48. Mesbah M, Shahsavari S, Soroush E, Rahaei N, Rezakazemi M (2018) Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning. J CO2 Utilization 25:99–107. https://doi.org/10.1016/j.jcou.2018.03.004

  49. Mokhtari P, Ghaedi M, Dashtian K, Rahimi M, Purkait M (2016) Removal of methyl orange by copper sulfide nanoparticles loaded activated carbon: kinetic and isotherm investigation. J Mol Liq 219:299–305

    Article  CAS  Google Scholar 

  50. Muzyka R, Kwoka M, Smędowski Ł, Díez N, Gryglewicz G (2017) Oxidation of graphite by different modified Hummers methods. New Carbon Mater 32:15–20. https://doi.org/10.1016/S1872-5805%5b17%5d60102-1

    Article  Google Scholar 

  51. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  52. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451

    Article  CAS  Google Scholar 

  53. Nupearachchi CN, Mahatantila K, Vithanage M (2017) Application of graphene for decontamination of water implications for sorptive removal. Groundwater Sustain Dev 5:206–215. https://doi.org/10.1016/j.gsd.2017.06.006

    Article  Google Scholar 

  54. Oraby EA, Eksteen JJ (2015) The leaching of gold, silver and their alloys in alkaline glycine–peroxide solutions and their adsorption on carbon. Hydrometallurgy 152:199–203

    Google Scholar 

  55. Peng Y, Ji J, Chen D (2015) Ultrasound assisted synthesis of ZnO/reduced graphene oxide composites with enhanced photocatalytic activity and anti-photocorrosion. Appl Surf Sci 356:762–768

    Article  CAS  Google Scholar 

  56. Pettes MT, Jo I, Yao Z, Shi L (2011) Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene. Nano Lett 11:1195–1200. https://doi.org/10.1021/nl104156y

    Article  CAS  Google Scholar 

  57. Phiri J, Gane P, Maloney TC (2017) General overview of graphene: production, properties and application in polymer composites. Mater Sci Eng B 215:9–28. https://doi.org/10.1016/j.mseb.2016.10.004

  58. Ramesha G, Kumara AV, Muralidhara H, Sampath S (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361:270–277

    Article  CAS  Google Scholar 

  59. Razavi SMR, Rezakazemi M, Albadarin AB, Shirazian S (2016) Simulation of CO2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors. Chem Eng Process Process Intensification 108:27–34. https://doi.org/10.1016/j.cep.2016.07.001

  60. Reddy DHK, Lee S-M (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Coll Interface Sci 201–202:68–93

    Article  Google Scholar 

  61. Rezakazemi M, Dashti A, Riasat Harami H, Hajilari N, Inamuddin (2018) Fouling-resistant membranes for water reuse. Environ Chem Lett 1–49. https://doi.org/10.1007/s10311-018-0717-8

  62. Rezakazemi M, Ghafarinazari A, Shirazian S, Khoshsima A (2013) Numerical modeling and optimization of wastewater treatment using porous polymeric membranes. Polym Eng Sci 53:1272–1278. https://doi.org/10.1002/pen.23375

    Article  CAS  Google Scholar 

  63. Rezakazemi M, Khajeh A, Mesbah M (2018) Membrane filtration of wastewater from gas and oil production. Environ Chem Lett 16:367–388. https://doi.org/10.1007/s10311-017-0693-4

    Article  CAS  Google Scholar 

  64. Rezakazemi M, Shirazian S, Ashrafizadeh SN (2012) Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor. Desalination 285:383–392. https://doi.org/10.1016/j.desal.2011.10.030

    Article  CAS  Google Scholar 

  65. Rezakazemi M, Zhang Z (2018) 2.29 Desulfurization materials A2. In: Ibrahim D (ed) Comprehensive energy systems. Elsevier, Oxford, pp 944–979. https://doi.org/10.1016/B978-0-12-809597-3.00263-7

  66. Sanes J, Avilés M-D, Saurín N, Espinosa T, Carrión F-J, Bermúdez M-D (2017) Synergy between graphene and ionic liquid lubricant additives. Tribol Int 116:371–382. https://doi.org/10.1016/j.triboint.2017.07.030

    Article  CAS  Google Scholar 

  67. Sarı A, Tuzen M, Soylak M (2007) Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay. J Hazard Mater 144:41–46

    Google Scholar 

  68. Sarkar SK, Raul KK, Pradhan SS, Basu S, Nayak A (2014) Magnetic properties of graphite oxide and reduced graphene oxide. Physica E 64:78–82. https://doi.org/10.1016/j.physe.2014.07.014

    Article  CAS  Google Scholar 

  69. Saurín N, Sanes J, Bermúdez M-D (2016) New graphene/ionic liquid nanolubricants. Mater Today Proc 3:S227–S232. https://doi.org/10.1016/j.matpr.2016.02.038

    Article  Google Scholar 

  70. Senthilkumar B, Kalai Selvan R, Vinothbabu P, Perelshtein I, Gedanken A (2011) Structural, magnetic, electrical and electrochemical properties of NiFe2O4 synthesized by the molten salt technique. Mater Chem Phys 130:285–292

    Google Scholar 

  71. Seol JH et al (2010) Two-dimensional phonon transport in supported graphene. Science 328:213

    Article  CAS  Google Scholar 

  72. Sepioni M et al (2010) Limits on intrinsic magnetism in graphene. Phys Rev Lett 105:207205

    Article  CAS  Google Scholar 

  73. Sharma R, Baik JH, Perera CJ, Strano MS (2010) Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett 10:398–405. https://doi.org/10.1021/nl902741x

    Article  CAS  Google Scholar 

  74. She X, Zhang X, Liu J, Li L, Yu X, Huang Z, Shang S (2015) Microwave-assisted synthesis of Mn3O4 nanoparticles@reduced graphene oxide nanocomposites for high performance supercapacitors. Mater Res Bull 70:945–950

    Google Scholar 

  75. Shirazian S, Rezakazemi M, Marjani A, Moradi S (2012) Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors. Desalination 286:290–295. https://doi.org/10.1016/j.desal.2011.11.039

    Article  CAS  Google Scholar 

  76. Sitko R et al (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 42:5682–5689. https://doi.org/10.1039/C3DT33097D

    Article  CAS  Google Scholar 

  77. Sreeprasad TS, Maliyekkal SM, Lisha KP, Pradeep T (2011) Reduced graphene oxide–metal/metal oxide composites: facile synthesis and application in water purification. J Hazard Mater 186:921–931

    Google Scholar 

  78. Stankovich S et al (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  79. Sun H, Cao L, Lu L (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4:550–562

    Article  CAS  Google Scholar 

  80. Sun L, Wang G, Hao R, Han D, Cao S (2015) Solvothermal fabrication and enhanced visible light photocatalytic activity of Cu2O-reduced graphene oxide composite microspheres for photodegradation of Rhodamine B. Appl Surf Sci 358:91–99

    Google Scholar 

  81. Sur UK (2012) Graphene: a rising star on the horizon of materials science. Int J Electrochem 2012: Article ID 237689, 12 pages. http://dx.doi.org/10.1155/2012/237689

  82. Szabo T, Nánai L, Nesztor D, Barna B, Malina O, Tombácz E (2018) A simple and scalable method for the preparation of magnetite/graphene oxide nanocomposites under mild conditions. Adv Mater Sci Eng 2018:1–11

    Google Scholar 

  83. Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–31

    Google Scholar 

  84. Tsoukleri G et al (2009) Subjecting a graphene monolayer to tension and compression. Small 5:2397–2402. https://doi.org/10.1002/smll.200900802

    Article  CAS  Google Scholar 

  85. Ugeda MM, Brihuega I, Guinea F, Gómez-Rodríguez JM (2010) Missing atom as a source of carbon magnetism. Phys Rev Lett 104:096804

    Article  CAS  Google Scholar 

  86. Urbas K, Aleksandrzak M, Jedrzejczak M, Jedrzejczak M, Rakoczy R, Chen X, Mijowska E (2014) Chemical and magnetic functionalization of graphene oxide as a route to enhance its biocompatibility. Nanoscale Res Lett 9:656

    Article  Google Scholar 

  87. Vozmediano MAH, López-Sancho MP, Stauber T, Guinea F (2005) Local defects and ferromagnetism in graphene layers. Phys Rev B 72:155121

    Article  Google Scholar 

  88. Wang H et al (2012) Fe nanoparticle-functionalized multi-walled carbon nanotubes: one-pot synthesis and their applications in magnetic removal of heavy metal ions. J Mater Chem 22:9230

    Google Scholar 

  89. Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J, Chen Y (2009) Room-temperature ferromagnetism of graphene. Nano Lett 9:220–224. https://doi.org/10.1021/nl802810g

    Article  CAS  Google Scholar 

  90. Wang Y, Liang S, Chen B, Guo F, Yu S, Tang Y (2013) Synergistic removal of Pb (II), Cd (II) and humic acid by Fe3O4@ mesoporous silica-graphene oxide composites. PLoS One 8:e65634

    Google Scholar 

  91. Xie L et al (2011) Room temperature ferromagnetism in partially hydrogenated epitaxial graphene. Appl Phys Lett 98:193113. https://doi.org/10.1063/1.3589970

    Article  CAS  Google Scholar 

  92. Yang S-T et al (2010) Folding/aggregation of graphene oxide and its application in Cu2+ removal. J Colloid Interface Sci 351:122–127. https://doi.org/10.1016/j.jcis.2010.07.042

  93. Yang Y, Asiri AM, Tang Z, Du D, Lin Y (2013) Graphene based materials for biomedical applications. Mater Today 16:365–373. https://doi.org/10.1016/j.mattod.2013.09.004

    Article  CAS  Google Scholar 

  94. Yazyev OV (2008) Magnetism in disordered graphene and irradiated graphite. Phys Rev Lett 101:037203

    Article  Google Scholar 

  95. Yazyev OV, Helm L (2007) Defect-induced magnetism in graphene. Phys Rev B 75:125408

    Article  Google Scholar 

  96. Yu S, Wang X, Tan X, Wang X (2015) Sorption of radionuclides from aqueous systems onto graphene oxide-based materials: a review. Inorg Chem Front 2:593–612

    Article  CAS  Google Scholar 

  97. Zhang C, Shao Y, Zhu L, Wang J, Wang J, Guo Y (2017) Acute toxicity, biochemical toxicity and genotoxicity caused by 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium tetrafluoroborate in zebrafish (Danio rerio) livers. Environ Toxicol Pharmacol 51:131–137

    Google Scholar 

  98. Zhang K, Dwivedi V, Chi C, Wu J (2010) Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J Hazard Mater 182:162–168

    Article  CAS  Google Scholar 

  99. Zhang P, Ma L, Fan F, Zeng Z, Peng C, Loya PE, Liu Z, Gong Y, Zhang J, Zhang X Ajayan PM (2014) Fracture toughness of graphene. Nat Commun 5:3782

    Google Scholar 

  100. Zhang W, Shi X, Zhang Y, Gu W, Li B, Xian Y (2013) Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions. J Mater Chem A 1:1745–1753

    Article  CAS  Google Scholar 

  101. Zhang Y-Y, Pei Q-X, Cheng Y, Zhang Y-W, Zhang X (2017) Thermal conductivity of penta-graphene: the role of chemical functionalization. Comput Mater Sci 137:195–200. https://doi.org/10.1016/j.commatsci.2017.05.042

    Article  CAS  Google Scholar 

  102. Zhang Y, Small JP, Pontius WV, Kim P (2005) Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl Phys Lett 86:073104. https://doi.org/10.1063/1.1862334

    Article  CAS  Google Scholar 

  103. Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462

    Article  CAS  Google Scholar 

  104. Zhu J, He J, Du X, Lu R, Huang L, Ge X (2011) A facile and flexible process of β-cyclodextrin grafted on Fe3O4 magnetic nanoparticles and host–guest inclusion studies. Appl Surf Sci 257:9056–9062

    Google Scholar 

  105. Zhu J et al (2012) Magnetic graphene nanoplatelet composites toward arsenic removal. ECS J Solid State Sci Technol 1:M1–M5

    Article  CAS  Google Scholar 

  106. Zhu Y, Murali S, Cai W, Li X, Suk Ji W, Potts Jeffrey R, Ruoff Rodney S (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924. https://doi.org/10.1002/adma.201001068

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT & Future Planning (MSIP) (2017R1C1B5016656) of the Korea Government, Seoul, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Rao Karri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koduru, J.R., Karri, R.R., Mubarak, N.M. (2019). Smart Materials, Magnetic Graphene Oxide-Based Nanocomposites for Sustainable Water Purification. In: Inamuddin, Thomas, S., Kumar Mishra, R., Asiri, A. (eds) Sustainable Polymer Composites and Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-05399-4_26

Download citation

Publish with us

Policies and ethics