
Chapter 3
Neural Architecture Search

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter

Abstract Deep Learning has enabled remarkable progress over the last years on
a variety of tasks, such as image recognition, speech recognition, and machine
translation. One crucial aspect for this progress are novel neural architectures.
Currently employed architectures have mostly been developed manually by human
experts, which is a time-consuming and error-prone process. Because of this, there
is growing interest in automated neural architecture search methods. We provide an
overview of existing work in this field of research and categorize them according
to three dimensions: search space, search strategy, and performance estimation
strategy.

3.1 Introduction

The success of deep learning in perceptual tasks is largely due to its automation
of the feature engineering process: hierarchical feature extractors are learned in an
end-to-end fashion from data rather than manually designed. This success has been

The original version of this chapter was revised: Primary affiliation of the Author “Thomas Elsken”
has been updated now. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-05318-5_11

T. Elsken (�)
Bosch Center for Artificial Intelligence, Robert Bosch GmbH, Renningen, Baden-Württemberg,
Germany

Department of Computer Science, University of Freiburg, Freiburg, Baden-Württemberg,
Germany
e-mail: elsken@informatik.uni-freiburg.de; thomas.elsken@de.bosch.com

J. H. Metzen
Bosch Center for Artificial Intelligence, Robert Bosch GmbH, Renningen, Baden-Württemberg,
Germany

F. Hutter
Department of Computer Science, University of Freiburg, Freiburg, Germany

© The Author(s) 2019
F. Hutter et al. (eds.), Automated Machine Learning, The Springer Series
on Challenges in Machine Learning, https://doi.org/10.1007/978-3-030-05318-5_3

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05318-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-05318-5_11
mailto:elsken@informatik.uni-freiburg.de
mailto:thomas.elsken@de.bosch.com
https://doi.org/10.1007/978-3-030-05318-5_3


64 T. Elsken et al.

accompanied, however, by a rising demand for architecture engineering, where
increasingly more complex neural architectures are designed manually. Neural
Architecture Search (NAS), the process of automating architecture engineering,
is thus a logical next step in automating machine learning. NAS can be seen as
subfield of AutoML and has significant overlap with hyperparameter optimization
and meta-learning (which are described in Chaps. 1 and 2 of this book, respectively).
We categorize methods for NAS according to three dimensions: search space, search
strategy, and performance estimation strategy:

• Search Space. The search space defines which architectures can be represented
in principle. Incorporating prior knowledge about properties well-suited for a
task can reduce the size of the search space and simplify the search. However,
this also introduces a human bias, which may prevent finding novel architectural
building blocks that go beyond the current human knowledge.

Performance
Estimation
Strategy

Search Space

A Search Strategy

architecture
A ∈ A

performance
estimate of A

Fig. 3.1 Abstract illustration of Neural Architecture Search methods. A search strategy selects
an architecture A from a predefined search space A. The architecture is passed to a performance
estimation strategy, which returns the estimated performance of A to the search strategy

• Search Strategy. The search strategy details how to explore the search space.
It encompasses the classical exploration-exploitation trade-off since, on the one
hand, it is desirable to find well-performing architectures quickly, while on the
other hand, premature convergence to a region of suboptimal architectures should
be avoided.

• Performance Estimation Strategy. The objective of NAS is typically to find
architectures that achieve high predictive performance on unseen data. Per-
formance Estimation refers to the process of estimating this performance: the
simplest option is to perform a standard training and validation of the architecture
on data, but this is unfortunately computationally expensive and limits the
number of architectures that can be explored. Much recent research therefore
focuses on developing methods that reduce the cost of these performance
estimations.

We refer to Fig. 3.1 for an illustration. The chapter is also structured according
to these three dimensions: we start with discussing search spaces in Sect. 3.2, cover
search strategies in Sect. 3.3, and outline approaches to performance estimation in
Sect. 3.4. We conclude with an outlook on future directions in Sect. 3.5.

This chapter is based on a very recent survey article [23].



3 Neural Architecture Search 65

Fig. 3.2 An illustration of
different architecture spaces.
Each node in the graphs
corresponds to a layer in a
neural network, e.g., a
convolutional or pooling
layer. Different layer types
are visualized by different
colors. An edge from layer Li

to layer Lj denotes that Lj

receives the output of Li as
input. Left: an element of a
chain-structured space. Right:
an element of a more
complex search space with
additional layer types and
multiple branches and skip
connections

input

L0

L1

Ln

output

input

L0

L2

L4

L6

L8

L10

L1

L3

L7

L9

L5

output

Ln−1

3.2 Search Space

The search space defines which neural architectures a NAS approach might discover
in principle. We now discuss common search spaces from recent works.

A relatively simple search space is the space of chain-structured neural networks,
as illustrated in Fig. 3.2 (left). A chain-structured neural network architecture A
can be written as a sequence of n layers, where the i’th layer Li receives its
input from layer i − 1 and its output serves as the input for layer i + 1, i.e.,
A = Ln ◦ . . . L1 ◦ L0. The search space is then parametrized by: (i) the (maximum)
number of layers n (possibly unbounded); (ii) the type of operation every layer can
execute, e.g., pooling, convolution, or more advanced layer types like depthwise
separable convolutions [13] or dilated convolutions [68]; and (iii) hyperparameters
associated with the operation, e.g., number of filters, kernel size and strides for
a convolutional layer [4, 10, 59], or simply number of units for fully-connected
networks [41]. Note that the parameters from (iii) are conditioned on (ii), hence the
parametrization of the search space is not fixed-length but rather a conditional space.

Recent work on NAS [9, 11, 21, 22, 49, 75] incorporate modern design elements
known from hand-crafted architectures such as skip connections, which allow to
build complex, multi-branch networks, as illustrated in Fig. 3.2 (right). In this case
the input of layer i can be formally described as a function gi(L

out
i−1, . . . , L

out
0 )

combining previous layer outputs. Employing such a function results in significantly
more degrees of freedom. Special cases of these multi-branch architectures are (i)
the chain-structured networks (by setting gi(L

out
i−1, . . . , L

out
0 ) = Lout

i−1), (ii) Residual
Networks [28], where previous layer outputs are summed (gi(L

out
i−1, . . . , L

out
0 ) =

Lout
i−1 + Lout

j , j < i) and (iii) DenseNets [29], where previous layer outputs are
concatenated (gi(L

out
i−1, . . . , L

out
0 ) = concat (Lout

i−1, . . . , L
out
0 )).



66 T. Elsken et al.

input

input

output

output

input

output

Fig. 3.3 Illustration of the cell search space. Left: Two different cells, e.g., a normal cell (top) and
a reduction cell (bottom) [75]. Right: an architecture built by stacking the cells sequentially. Note
that cells can also be combined in a more complex manner, such as in multi-branch spaces, by
simply replacing layers with cells

Motivated by hand-crafted architectures consisting of repeated motifs [28, 29,
62], Zoph et al. [75] and Zhong et al. [71] propose to search for such motifs, dubbed
cells or blocks, respectively, rather than for whole architectures. Zoph et al. [75]
optimize two different kind of cells: a normal cell that preservers the dimensionality
of the input and a reduction cell which reduces the spatial dimension. The final
architecture is then built by stacking these cells in a predefined manner, as illustrated
in Fig. 3.3. This search space has two major advantages compared to the ones
discussed above:

1. The size of the search space is drastically reduced since cells can be comparably
small. For example, Zoph et al. [75] estimate a seven-times speed-up compared
to their previous work [74] while achieving better performance.

2. Cells can more easily be transferred to other datasets by adapting the number of
cells used within a model. Indeed, Zoph et al. [75] transfer cells optimized on
CIFAR-10 to ImageNet and achieve state-of-the-art performance.

Consequently, this cell-based search space was also successfully employed by
many later works [11, 22, 37, 39, 46, 49, 72]. However, a new design-choice arises



3 Neural Architecture Search 67

when using a cell-based search space, namely how to choose the meta-architecture:
how many cells shall be used and how should they be connected to build the
actual model? For example, Zoph et al. [75] build a sequential model from cells,
in which each cell receives the outputs of the two preceding cells as input, while
Cai et al. [11] employ the high-level structure of well-known manually designed
architectures, such as DenseNet [29], and use their cells within these models. In
principle, cells can be combined arbitrarily, e.g., within the multi-branch space
described above by simply replacing layers with cells. Ideally, the meta-architecture
should be optimized automatically as part of NAS; otherwise one easily ends up
doing meta-architecture engineering and the search for the cell becomes overly
simple if most of the complexity is already accounted for by the meta-architecture.

One step in the direction of optimizing meta-architectures is the hierarchical
search space introduced by Liu et al. [38], which consists of several levels of motifs.
The first level consists of the set of primitive operations, the second level of different
motifs that connect primitive operations via a direct acyclic graphs, the third level
of motifs that encode how to connect second-level motifs, and so on. The cell-based
search space can be seen as a special case of this hierarchical search space where
the number of levels is three, the second level motifs corresponds to the cells, and
the third level is the hard-coded meta-architecture.

The choice of the search space largely determines the difficulty of the optimiza-
tion problem: even for the case of the search space based on a single cell with
fixed meta-architecture, the optimization problem remains (i) non-continuous and
(ii) relatively high-dimensional (since more complex models tend to perform better,
resulting in more design choices). We note that the architectures in many search
spaces can be written as fixed-length vectors; e.g., the search space for each of the
two cells by Zoph et al. [75] can be written as a 40-dimensional search space with
categorical dimensions, each of which chooses between a small number of different
building blocks and inputs. Similarly, unbounded search spaces can be constrained
to have a maximal depth, giving rise to fixed-size search spaces with (potentially
many) conditional dimensions.

In the next section, we discuss Search Strategies that are well-suited for these
kinds of search spaces.

3.3 Search Strategy

Many different search strategies can be used to explore the space of neural archi-
tectures, including random search, Bayesian optimization, evolutionary methods,
reinforcement learning (RL), and gradient-based methods. Historically, evolution-
ary algorithms were already used by many researchers to evolve neural architectures
(and often also their weights) decades ago [see, e.g., 2, 25, 55, 56]. Yao [67] provides
a literature review of work earlier than 2000.

Bayesian optimization celebrated several early successes in NAS since 2013,
leading to state-of-the-art vision architectures [7], state-of-the-art performance for
CIFAR-10 without data augmentation [19], and the first automatically-tuned neural



68 T. Elsken et al.

networks to win competition datasets against human experts [41]. NAS became
a mainstream research topic in the machine learning community after Zoph and
Le [74] obtained competitive performance on the CIFAR-10 and Penn Treebank
benchmarks with a search strategy based on reinforcement learning. While Zoph
and Le [74] use vast computational resources to achieve this result (800 GPUs
for three to four weeks), after their work, a wide variety of methods have been
published in quick succession to reduce the computational costs and achieve further
improvements in performance.

To frame NAS as a reinforcement learning (RL) problem [4, 71, 74, 75], the
generation of a neural architecture can be considered to be the agent’s action,
with the action space identical to the search space. The agent’s reward is based
on an estimate of the performance of the trained architecture on unseen data (see
Sect. 3.4). Different RL approaches differ in how they represent the agent’s policy
and how they optimize it: Zoph and Le [74] use a recurrent neural network (RNN)
policy to sequentially sample a string that in turn encodes the neural architecture.
They initially trained this network with the REINFORCE policy gradient algorithm,
but in follow-up work use Proximal Policy Optimization (PPO) instead [75]. Baker
et al. [4] use Q-learning to train a policy which sequentially chooses a layer’s type
and corresponding hyperparameters. An alternative view of these approaches is
as sequential decision processes in which the policy samples actions to generate
the architecture sequentially, the environment’s “state” contains a summary of the
actions sampled so far, and the (undiscounted) reward is obtained only after the
final action. However, since no interaction with an environment occurs during this
sequential process (no external state is observed, and there are no intermediate
rewards), we find it more intuitive to interpret the architecture sampling process
as the sequential generation of a single action; this simplifies the RL problem to a
stateless multi-armed bandit problem.

A related approach was proposed by Cai et al. [10], who frame NAS as a
sequential decision process: in their approach the state is the current (partially
trained) architecture, the reward is an estimate of the architecture’s performance, and
the action corresponds to an application of function-preserving mutations, dubbed
network morphisms [12, 63], see also Sect. 3.4, followed by a phase of training the
network. In order to deal with variable-length network architectures, they use a bi-
directional LSTM to encode architectures into a fixed-length representation. Based
on this encoded representation, actor networks decide on the sampled action. The
combination of these two components constitute the policy, which is trained end-
to-end with the REINFORCE policy gradient algorithm. We note that this approach
will not visit the same state (architecture) twice so that strong generalization over
the architecture space is required from the policy.

An alternative to using RL are neuro-evolutionary approaches that use evolu-
tionary algorithms for optimizing the neural architecture. The first such approach
for designing neural networks we are aware of dates back almost three decades:
Miller et al. [44] use genetic algorithms to propose architectures and use back-
propagation to optimize their weights. Many neuro-evolutionary approaches since
then [2, 55, 56] use genetic algorithms to optimize both the neural architecture



3 Neural Architecture Search 69

and its weights; however, when scaling to contemporary neural architectures with
millions of weights for supervised learning tasks, SGD-based weight optimization
methods currently outperform evolutionary ones.1 More recent neuro-evolutionary
approaches [22, 38, 43, 49, 50, 59, 66] therefore again use gradient-based methods
for optimizing weights and solely use evolutionary algorithms for optimizing the
neural architecture itself. Evolutionary algorithms evolve a population of models,
i.e., a set of (possibly trained) networks; in every evolution step, at least one model
from the population is sampled and serves as a parent to generate offsprings by
applying mutations to it. In the context of NAS, mutations are local operations,
such as adding or removing a layer, altering the hyperparameters of a layer, adding
skip connections, as well as altering training hyperparameters. After training the
offsprings, their fitness (e.g., performance on a validation set) is evaluated and they
are added to the population.

Neuro-evolutionary methods differ in how they sample parents, update popula-
tions, and generate offsprings. For example, Real et al. [50], Real et al. [49], and Liu
et al. [38] use tournament selection [27] to sample parents, whereas Elsken et al.
[22] sample parents from a multi-objective Pareto front using an inverse density.
Real et al. [50] remove the worst individual from a population, while Real et al. [49]
found it beneficial to remove the oldest individual (which decreases greediness),
and Liu et al. [38] do not remove individuals at all. To generate offspring, most
approaches initialize child networks randomly, while Elsken et al. [22] employ
Lamarckian inheritance, i.e, knowledge (in the form of learned weights) is passed
on from a parent network to its children by using network morphisms. Real et al.
[50] also let an offspring inherit all parameters of its parent that are not affected
by the applied mutation; while this inheritance is not strictly function-preserving it
might also speed up learning compared to a random initialization. Moreover, they
also allow mutating the learning rate which can be seen as a way for optimizing the
learning rate schedule during NAS.

Real et al. [49] conduct a case study comparing RL, evolution, and random search
(RS), concluding that RL and evolution perform equally well in terms of final test
accuracy, with evolution having better anytime performance and finding smaller
models. Both approaches consistently perform better than RS in their experiments,
but with a rather small margin: RS achieved test errors of approximately 4% on
CIFAR-10, while RL and evolution reached approximately 3.5% (after “model
augmentation” where depth and number of filters was increased; the difference on
the actual, non-augmented search space was approx. 2%). The difference was even
smaller for Liu et al. [38], who reported a test error of 3.9% on CIFAR-10 and a top-
1 validation error of 21.0% on ImageNet for RS, compared to 3.75% and 20.3% for
their evolution-based method, respectively.

1Some recent work shows that evolving even millions of weights is competitive to gradient-
based optimization when only high-variance estimates of the gradient are available, e.g., for
reinforcement learning tasks [15, 51, 57]. Nonetheless, for supervised learning tasks gradient-based
optimization is by far the most common approach.



70 T. Elsken et al.

Bayesian Optimization (BO, see, e.g., [53]) is one of the most popular methods
for hyperparameter optimization (see also Chap. 1 of this book), but it has not
been applied to NAS by many groups since typical BO toolboxes are based
on Gaussian processes and focus on low-dimensional continuous optimization
problems. Swersky et al. [60] and Kandasamy et al. [31] derive kernel functions
for architecture search spaces in order to use classic GP-based BO methods, but
so far without achieving new state-of-the-art performance. In contrast, several
works use tree-based models (in particular, treed Parzen estimators [8], or random
forests [30]) to effectively search very high-dimensional conditional spaces and
achieve state-of-the-art performance on a wide range of problems, optimizing both
neural architectures and their hyperparameters jointly [7, 19, 41, 69]. While a full
comparison is lacking, there is preliminary evidence that these approaches can also
outperform evolutionary algorithms [33].

Architectural search spaces have also been explored in a hierarchical manner,
e.g., in combination with evolution [38] or by sequential model-based optimization
[37]. Negrinho and Gordon [45] and Wistuba [65] exploit the tree-structure of
their search space and use Monte Carlo Tree Search. Elsken et al. [21] propose
a simple yet well performing hill climbing algorithm that discovers high-quality
architectures by greedily moving in the direction of better performing architectures
without requiring more sophisticated exploration mechanisms.

In contrast to the gradient-free optimization methods above, Liu et al. [39]
propose a continuous relaxation of the search space to enable gradient-based
optimization: instead of fixing a single operation oi (e.g., convolution or pooling)
to be executed at a specific layer, the authors compute a convex combination from
a set of operations {o1, . . . , om}. More specifically, given a layer input x, the
layer output y is computed as y = ∑m

i=1 λioi(x), λi ≥ 0,
∑m

i=1 λi = 1, where
the convex coefficients λi effectively parameterize the network architecture. Liu
et al. [39] then optimize both the network weights and the network architecture by
alternating gradient descent steps on training data for weights and on validation
data for architectural parameters such as λ. Eventually, a discrete architecture is
obtained by choosing the operation i with i = arg maxi λi for every layer. Shin
et al. [54] and Ahmed and Torresani [1] also employ gradient-based optimization of
neural architectures, however they only consider optimizing layer hyperparameters
or connectivity patterns, respectively.

3.4 Performance Estimation Strategy

The search strategies discussed in Sect. 3.3 aim at finding a neural architecture A
that maximizes some performance measure, such as accuracy on unseen data. To
guide their search process, these strategies need to estimate the performance of a
given architecture A they consider. The simplest way of doing this is to train A on
training data and evaluate its performance on validation data. However, training each
architecture to be evaluated from scratch frequently yields computational demands
in the order of thousands of GPU days for NAS [49, 50, 74, 75].



3 Neural Architecture Search 71

To reduce this computational burden, performance can be estimated based on
lower fidelities of the actual performance after full training (also denoted as proxy
metrics). Such lower fidelities include shorter training times [69, 75], training on
a subset of the data [34], on lower-resolution images [14], or with less filters per
layer [49, 75]. While these low-fidelity approximations reduce the computational
cost, they also introduce bias in the estimate as performance will typically be
underestimated. This may not be problematic as long as the search strategy only
relies on ranking different architectures and the relative ranking remains stable.
However, recent results indicate that this relative ranking can change dramatically
when the difference between the cheap approximations and the “full” evaluation is
too big [69], arguing for a gradual increase in fidelities [24, 35].

Another possible way of estimating an architecture’s performance builds upon
learning curve extrapolation [5, 19, 32, 48, 61]. Domhan et al. [19] propose to
extrapolate initial learning curves and terminate those predicted to perform poorly to
speed up the architecture search process. Baker et al. [5], Klein et al. [32], Rawal and
Miikkulainen [48], Swersky et al. [61] also consider architectural hyperparameters
for predicting which partial learning curves are most promising. Training a surrogate
model for predicting the performance of novel architectures is also proposed
by Liu et al. [37], who do not employ learning curve extrapolation but support
predicting performance based on architectural/cell properties and extrapolate to
architectures/cells with larger size than seen during training. The main challenge
for predicting the performances of neural architectures is that, in order to speed up
the search process, good predictions in a relatively large search space need to be
made based on relatively few evaluations.

Another approach to speed up performance estimation is to initialize the weights
of novel architectures based on weights of other architectures that have been
trained before. One way of achieving this, dubbed network morphisms [64], allows
modifying an architecture while leaving the function represented by the network
unchanged [10, 11, 21, 22]. This allows increasing capacity of networks successively
and retaining high performance without requiring training from scratch. Continuing
training for a few epochs can also make use of the additional capacity introduced by
network morphisms. An advantage of these approaches is that they allow search
spaces without an inherent upper bound on the architecture’s size [21]; on the
other hand, strict network morphisms can only make architectures larger and may
thus lead to overly complex architectures. This can be attenuated by employing
approximate network morphisms that allow shrinking architectures [22].

One-Shot Architecture Search is another promising approach for speeding up
performance estimation, which treats all architectures as different subgraphs of
a supergraph (the one-shot model) and shares weights between architectures that
have edges of this supergraph in common [6, 9, 39, 46, 52]. Only the weights of a
single one-shot model need to be trained (in one of various ways), and architectures
(which are just subgraphs of the one-shot model) can then be evaluated without
any separate training by inheriting trained weights from the one-shot model. This
greatly speeds up performance estimation of architectures, since no training is
required (only evaluating performance on validation data). This approach typically



72 T. Elsken et al.

incurs a large bias as it underestimates the actual performance of architectures
severely; nevertheless, it allows ranking architectures reliably, since the estimated
performance correlates strongly with the actual performance [6]. Different one-shot
NAS methods differ in how the one-shot model is trained: ENAS [46] learns an RNN
controller that samples architectures from the search space and trains the one-shot
model based on approximate gradients obtained through REINFORCE. DARTS
[39] optimizes all weights of the one-shot model jointly with a continuous relaxation
of the search space obtained by placing a mixture of candidate operations on each
edge of the one-shot model. Bender et al. [6] only train the one-shot model once
and show that this is sufficient when deactivating parts of this model stochastically
during training using path dropout. While ENAS and DARTS optimize a distribution
over architectures during training, the approach of Bender et al. [6] can be seen
as using a fixed distribution. The high performance obtainable by the approach
of Bender et al. [6] indicates that the combination of weight sharing and a fixed
(carefully chosen) distribution might (perhaps surprisingly) be the only required
ingredients for one-shot NAS. Related to these approaches is meta-learning of
hypernetworks that generate weights for novel architectures and thus requires
only training the hypernetwork but not the architectures themselves [9]. The main
difference here is that weights are not strictly shared but generated by the shared
hypernetwork (conditional on the sampled architecture).

A general limitation of one-shot NAS is that the supergraph defined a-priori
restricts the search space to its subgraphs. Moreover, approaches which require
that the entire supergraph resides in GPU memory during architecture search will
be restricted to relatively small supergraphs and search spaces accordingly and are
thus typically used in combination with cell-based search spaces. While approaches
based on weight-sharing have substantially reduced the computational resources
required for NAS (from thousands to a few GPU days), it is currently not well
understood which biases they introduce into the search if the sampling distribution
of architectures is optimized along with the one-shot model. For instance, an initial
bias in exploring certain parts of the search space more than others might lead to the
weights of the one-shot model being better adapted for these architectures, which
in turn would reinforce the bias of the search to these parts of the search space.
This might result in premature convergence of NAS and might be one advantage
of a fixed sampling distribution as used by Bender et al. [6]. In general, a more
systematic analysis of biases introduced by different performance estimators would
be a desirable direction for future work.

3.5 Future Directions

In this section, we discuss several current and future directions for research on NAS.
Most existing work has focused on NAS for image classification. On the one hand,
this provides a challenging benchmark since a lot of manual engineering has been
devoted to finding architectures that perform well in this domain and are not easily
outperformed by NAS. On the other hand, it is relatively easy to define a well-suited
search space by utilizing knowledge from manual engineering. This in turn makes



3 Neural Architecture Search 73

it unlikely that NAS will find architectures that substantially outperform existing
ones considerably since the found architectures cannot differ fundamentally. We
thus consider it important to go beyond image classification problems by applying
NAS to less explored domains. Notable first steps in this direction are applying
NAS to language modeling [74], music modeling [48], image restoration [58]
and network compression [3]; applications to reinforcement learning, generative
adversarial networks, semantic segmentation, or sensor fusion could be further
promising future directions.

An alternative direction is developing NAS methods for multi-task problems
[36, 42] and for multi-objective problems [20, 22, 73], in which measures of
resource efficiency are used as objectives along with the predictive performance
on unseen data. Likewise, it would be interesting to extend RL/bandit approaches,
such as those discussed in Sect. 3.3, to learn policies that are conditioned on a state
that encodes task properties/resource requirements (i.e., turning the setting into a
contextual bandit). A similar direction was followed by Ramachandran and Le [47]
in extending one-shot NAS to generate different architectures depending on the task
or instance on-the-fly. Moreover, applying NAS to searching for architectures that
are more robust to adversarial examples [17] is an intriguing recent direction.

Related to this is research on defining more general and flexible search spaces.
For instance, while the cell-based search space provides high transferability between
different image classification tasks, it is largely based on human experience on
image classification and does not generalize easily to other domains where the hard-
coded hierarchical structure (repeating the same cells several times in a chain-like
structure) does not apply (e.g., semantic segmentation or object detection). A search
space which allows representing and identifying more general hierarchical structure
would thus make NAS more broadly applicable, see Liu et al. [38] for first work
in this direction. Moreover, common search spaces are also based on predefined
building blocks, such as different kinds of convolutions and pooling, but do not
allow identifying novel building blocks on this level; going beyond this limitation
might substantially increase the power of NAS.

The comparison of different methods for NAS is complicated by the fact that
measurements of an architecture’s performance depend on many factors other than
the architecture itself. While most authors report results on the CIFAR-10 dataset,
experiments often differ with regard to search space, computational budget, data
augmentation, training procedures, regularization, and other factors. For example,
for CIFAR-10, performance substantially improves when using a cosine annealing
learning rate schedule [40], data augmentation by CutOut [18], by MixUp [70] or
by a combination of factors [16], and regularization by Shake-Shake regularization
[26] or scheduled drop-path [75]. It is therefore conceivable that improvements in
these ingredients have a larger impact on reported performance numbers than the
better architectures found by NAS. We thus consider the definition of common
benchmarks to be crucial for a fair comparison of different NAS methods. A
first step in this direction is the definition of a benchmark for joint architecture
and hyperparameter search for a fully connected neural network with two hidden
layers [33]. In this benchmark, nine discrete hyperparameters need to be optimized



74 T. Elsken et al.

that control both architecture and optimization/regularization. All 62.208 possible
hyperparameter combinations have been pre-evaluated such that different methods
can be compared with low computational resources. However, the search space is
still very simple compared to the spaces employed by most NAS methods. It would
also be interesting to evaluate NAS methods not in isolation but as part of a full
open-source AutoML system, where also hyperparameters [41, 50, 69], and data
augmentation pipeline [16] are optimized along with NAS.

While NAS has achieved impressive performance, so far it provides little insights
into why specific architectures work well and how similar the architectures derived
in independent runs would be. Identifying common motifs, providing an understand-
ing why those motifs are important for high performance, and investigating if these
motifs generalize over different problems would be desirable.

Acknowledgements We would like to thank Esteban Real, Arber Zela, Gabriel Bender, Kenneth
Stanley and Thomas Pfeil for feedback on earlier versions of this survey. This work has partly
been supported by the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme under grant no. 716721.

Bibliography

1. Ahmed, K., Torresani, L.: Maskconnect: Connectivity learning by gradient descent. In:
European Conference on Computer Vision (ECCV) (2018)

2. Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that constructs
recurrent neural networks. IEEE transactions on neural networks 5 1, 54–65 (1994)

3. Ashok, A., Rhinehart, N., Beainy, F., Kitani, K.M.: N2n learning: Network to network
compression via policy gradient reinforcement learning. In: International Conference on
Learning Representations (2018)

4. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using
reinforcement learning. In: International Conference on Learning Representations (2017a)

5. Baker, B., Gupta, O., Raskar, R., Naik, N.: Accelerating Neural Architecture Search using
Performance Prediction. In: NIPS Workshop on Meta-Learning (2017b)

6. Bender, G., Kindermans, P.J., Zoph, B., Vasudevan, V., Le, Q.: Understanding and simplifying
one-shot architecture search. In: International Conference on Machine Learning (2018)

7. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In: ICML (2013)

8. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimiza-
tion. In: Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F., Weinberger, K.Q. (eds.)
Advances in Neural Information Processing Systems 24. pp. 2546–2554 (2011)

9. Brock, A., Lim, T., Ritchie, J.M., Weston, N.: SMASH: one-shot model architecture search
through hypernetworks. In: NIPS Workshop on Meta-Learning (2017)

10. Cai, H., Chen, T., Zhang, W., Yu, Y., Wang, J.: Efficient architecture search by network
transformation. In: Association for the Advancement of Artificial Intelligence (2018a)

11. Cai, H., Yang, J., Zhang, W., Han, S., Yu, Y.: Path-Level Network Transformation for Efficient
Architecture Search. In: International Conference on Machine Learning (Jun 2018b)

12. Chen, T., Goodfellow, I.J., Shlens, J.: Net2net: Accelerating learning via knowledge transfer.
In: International Conference on Learning Representations (2016)

13. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. arXiv:1610.02357
(2016)

14. Chrabaszcz, P., Loshchilov, I., Hutter, F.: A downsampled variant of imagenet as an alternative
to the CIFAR datasets. CoRR abs/1707.08819 (2017)



3 Neural Architecture Search 75

15. Chrabaszcz, P., Loshchilov, I., Hutter, F.: Back to basics: Benchmarking canonical evolution
strategies for playing atari. In: Proceedings of the Twenty-Seventh International Joint Confer-
ence on Artificial Intelligence, IJCAI-18. pp. 1419–1426. International Joint Conferences on
Artificial Intelligence Organization (Jul 2018)

16. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: Learning Augmen-
tation Policies from Data. In: arXiv:1805.09501 (May 2018)

17. Cubuk, E.D., Zoph, B., Schoenholz, S.S., Le, Q.V.: Intriguing Properties of Adversarial
Examples. In: arXiv:1711.02846 (Nov 2017)

18. Devries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with
cutout. arXiv preprint abs/1708.04552 (2017)

19. Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hyperparameter optimiza-
tion of deep neural networks by extrapolation of learning curves. In: Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI) (2015)

20. Dong, J.D., Cheng, A.C., Juan, D.C., Wei, W., Sun, M.: Dpp-net: Device-aware progressive
search for pareto-optimal neural architectures. In: European Conference on Computer Vision
(2018)

21. Elsken, T., Metzen, J.H., Hutter, F.: Simple And Efficient Architecture Search for Convolu-
tional Neural Networks. In: NIPS Workshop on Meta-Learning (2017)

22. Elsken, T., Metzen, J.H., Hutter, F.: Efficient Multi-objective Neural Architecture Search via
Lamarckian Evolution. In: International Conference on Learning Representations (2019)

23. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: A survey. arXiv:1808.05377
(2018)

24. Falkner, S., Klein, A., Hutter, F.: BOHB: Robust and efficient hyperparameter optimization
at scale. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference
on Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 1436–1445.
PMLR, Stockholmsmässan, Stockholm Sweden (10–15 Jul 2018)

25. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evolu-
tionary Intelligence 1(1), 47–62 (2008)

26. Gastaldi, X.: Shake-shake regularization. In: International Conference on Learning Represen-
tations Workshop (2017)

27. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic
algorithms. In: Foundations of Genetic Algorithms. pp. 69–93. Morgan Kaufmann (1991)

28. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In:
Conference on Computer Vision and Pattern Recognition (2016)

29. Huang, G., Liu, Z., Weinberger, K.Q.: Densely Connected Convolutional Networks. In:
Conference on Computer Vision and Pattern Recognition (2017)

30. Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimization for general
algorithm configuration. In: LION. pp. 507–523 (2011)

31. Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., Xing, E.: Neural Architecture
Search with Bayesian Optimisation and Optimal Transport. arXiv:1802.07191 (Feb 2018)

32. Klein, A., Falkner, S., Springenberg, J.T., Hutter, F.: Learning curve prediction with Bayesian
neural networks. In: International Conference on Learning Representations (2017a)

33. Klein, A., Christiansen, E., Murphy, K., Hutter, F.: Towards reproducible neural architecture
and hyperparameter search. In: ICML 2018 Workshop on Reproducibility in ML (RML 2018)
(2018)

34. Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast Bayesian Optimization of
Machine Learning Hyperparameters on Large Datasets. In: Singh, A., Zhu, J. (eds.)
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics.
Proceedings of Machine Learning Research, vol. 54, pp. 528–536. PMLR, Fort Lauderdale,
FL, USA (20–22 Apr 2017b)

35. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: bandit-based
configuration evaluation for hyperparameter optimization. In: International Conference on
Learning Representations (2017)

36. Liang, J., Meyerson, E., Miikkulainen, R.: Evolutionary Architecture Search For Deep
Multitask Networks. In: arXiv:1803.03745 (Mar 2018)



76 T. Elsken et al.

37. Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.J., Fei-Fei, L., Yuille, A., Huang, J.,
Murphy, K.: Progressive Neural Architecture Search. In: European Conference on Computer
Vision (2018a)

38. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical Rep-
resentations for Efficient Architecture Search. In: International Conference on Learning
Representations (2018b)

39. Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search. In: International
Conference on Learning Representations (2019)

40. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts. In: International
Conference on Learning Representations (2017)

41. Mendoza, H., Klein, A., Feurer, M., Springenberg, J., Hutter, F.: Towards Automatically-Tuned
Neural Networks. In: International Conference on Machine Learning, AutoML Workshop (Jun
2016)

42. Meyerson, E., Miikkulainen, R.: Pseudo-task Augmentation: From Deep Multitask Learning
to Intratask Sharing and Back. In: arXiv:1803.03745 (Mar 2018)

43. Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B.,
Shahrzad, H., Navruzyan, A., Duffy, N., Hodjat, B.: Evolving Deep Neural Networks. In:
arXiv:1703.00548 (Mar 2017)

44. Miller, G., Todd, P., Hedge, S.: Designing neural networks using genetic algorithms. In: 3rd
International Conference on Genetic Algorithms (ICGA’89) (1989)

45. Negrinho, R., Gordon, G.: DeepArchitect: Automatically Designing and Training Deep
Architectures. arXiv:1704.08792 (2017)

46. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via
parameter sharing. In: International Conference on Machine Learning (2018)

47. Ramachandran, P., Le, Q.V.: Dynamic Network Architectures. In: AutoML 2018 (ICML
workshop) (2018)

48. Rawal, A., Miikkulainen, R.: From Nodes to Networks: Evolving Recurrent Neural Networks.
In: arXiv:1803.04439 (Mar 2018)

49. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Aging Evolution for Image Classifier Architecture
Search. In: AAAI Conference on Artificial Intelligence (2019)

50. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Le, Q.V., Kurakin, A.: Large-scale
evolution of image classifiers. International Conference on Machine Learning (2017)

51. Salimans, T., Ho, J., Chen, X., Sutskever, I.: Evolution strategies as a scalable alternative to
reinforcement learning. arXiv preprint (2017)

52. Saxena, S., Verbeek, J.: Convolutional neural fabrics. In: Lee, D.D., Sugiyama, M., Luxburg,
U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29,
pp. 4053–4061. Curran Associates, Inc. (2016)

53. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the
loop: A review of bayesian optimization. Proceedings of the IEEE 104(1), 148–175 (Jan 2016)

54. Shin, R., Packer, C., Song, D.: Differentiable neural network architecture search. In:
International Conference on Learning Representations Workshop (2018)

55. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-
scale neural networks. Artif. Life 15(2), 185–212 (Apr 2009), URL https://doi.org/10.1162/
artl.2009.15.2.15202

56. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies.
Evolutionary Computation 10, 99–127 (2002)

57. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep neuroevolution:
Genetic algorithms are a competitive alternative for training deep neural networks for
reinforcement learning. arXiv preprint (2017)

58. Suganuma, M., Ozay, M., Okatani, T.: Exploiting the potential of standard convolutional
autoencoders for image restoration by evolutionary search. In: Dy, J., Krause, A. (eds.)
Proceedings of the 35th International Conference on Machine Learning. Proceedings of
Machine Learning Research, vol. 80, pp. 4771–4780. PMLR, Stockholmsmässan, Stockholm
Sweden (10–15 Jul 2018)

https://doi.org/10.1162/artl.2009.15.2.15202
https://doi.org/10.1162/artl.2009.15.2.15202


3 Neural Architecture Search 77

59. Suganuma, M., Shirakawa, S., Nagao, T.: A genetic programming approach to designing
convolutional neural network architectures. In: Genetic and Evolutionary Computation
Conference (2017)

60. Swersky, K., Duvenaud, D., Snoek, J., Hutter, F., Osborne, M.: Raiders of the lost architecture:
Kernels for bayesian optimization in conditional parameter spaces. In: NIPS Workshop on
Bayesian Optimization in Theory and Practice (2013)

61. Swersky, K., Snoek, J., Adams, R.P.: Freeze-thaw bayesian optimization (2014)
62. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the Inception Archi-

tecture for Computer Vision. In: Conference on Computer Vision and Pattern Recognition
(2016)

63. Wei, T., Wang, C., Chen, C.W.: Modularized morphing of neural networks. arXiv:1701.03281
(2017)

64. Wei, T., Wang, C., Rui, Y., Chen, C.W.: Network morphism. In: International Conference on
Machine Learning (2016)

65. Wistuba, M.: Finding Competitive Network Architectures Within a Day Using UCT. In:
arXiv:1712.07420 (Dec 2017)

66. Xie, L., Yuille, A.: Genetic CNN. In: International Conference on Computer Vision (2017)
67. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447 (Sept

1999)
68. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions (2016)
69. Zela, A., Klein, A., Falkner, S., Hutter, F.: Towards automated deep learning: Efficient joint

neural architecture and hyperparameter search. In: ICML 2018 Workshop on AutoML
(AutoML 2018) (2018)

70. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimiza-
tion. arXiv preprint abs/1710.09412 (2017)

71. Zhong, Z., Yan, J., Wu, W., Shao, J., Liu, C.L.: Practical block-wise neural network architecture
generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 2423–2432 (2018a)

72. Zhong, Z., Yang, Z., Deng, B., Yan, J., Wu, W., Shao, J., Liu, C.L.: Blockqnn: Efficient block-
wise neural network architecture generation. arXiv preprint (2018b)

73. Zhou, Y., Ebrahimi, S., Arik, S., Yu, H., Liu, H., Diamos, G.: Resource-efficient neural
architect. In: arXiv:1806.07912 (2018)

74. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: International
Conference on Learning Representations (2017)

75. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable
image recognition. In: Conference on Computer Vision and Pattern Recognition (2018)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	3 Neural Architecture Search
	3.1 Introduction
	3.2 Search Space
	3.3 Search Strategy
	3.4 Performance Estimation Strategy
	3.5 Future Directions
	Bibliography


