
Chapter 2
Meta-Learning

Joaquin Vanschoren

Abstract Meta-learning, or learning to learn, is the science of systematically
observing how different machine learning approaches perform on a wide range of
learning tasks, and then learning from this experience, or meta-data, to learn new
tasks much faster than otherwise possible. Not only does this dramatically speed up
and improve the design of machine learning pipelines or neural architectures, it also
allows us to replace hand-engineered algorithms with novel approaches learned in
a data-driven way. In this chapter, we provide an overview of the state of the art in
this fascinating and continuously evolving field.

2.1 Introduction

When we learn new skills, we rarely – if ever – start from scratch. We start from
skills learned earlier in related tasks, reuse approaches that worked well before,
and focus on what is likely worth trying based on experience [82]. With every skill
learned, learning new skills becomes easier, requiring fewer examples and less trial-
and-error. In short, we learn how to learn across tasks. Likewise, when building
machine learning models for a specific task, we often build on experience with
related tasks, or use our (often implicit) understanding of the behavior of machine
learning techniques to help make the right choices.

The challenge in meta-learning is to learn from prior experience in a systematic,
data-driven way. First, we need to collect meta-data that describe prior learning
tasks and previously learned models. They comprise the exact algorithm con-
figurations used to train the models, including hyperparameter settings, pipeline
compositions and/or network architectures, the resulting model evaluations, such
as accuracy and training time, the learned model parameters, such as the trained
weights of a neural net, as well as measurable properties of the task itself, also
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known as meta-features. Second, we need to learn from this prior meta-data,
to extract and transfer knowledge that guides the search for optimal models for
new tasks. This chapter presents a concise overview of different meta-learning
approaches to do this effectively.

The term meta-learning covers any type of learning based on prior experience
with other tasks. The more similar those previous tasks are, the more types of
meta-data we can leverage, and defining task similarity will be a key overarching
challenge. Perhaps needless to say, there is no free lunch [57, 188]. When a new
task represents completely unrelated phenomena, or random noise, leveraging prior
experience will not be effective. Luckily, in real-world tasks, there are plenty of
opportunities to learn from prior experience.

In the remainder of this chapter, we categorize meta-learning techniques based
on the type of meta-data they leverage, from the most general to the most task-
specific. First, in Sect. 2.2, we discuss how to learn purely from model evaluations.
These techniques can be used to recommend generally useful configurations and
configuration search spaces, as well as transfer knowledge from empirically similar
tasks. In Sect. 2.3, we discuss how we can characterize tasks to more explicitly
express task similarity and build meta-models that learn the relationships between
data characteristics and learning performance. Finally, Sect. 2.4 covers how we can
transfer trained model parameters between tasks that are inherently similar, e.g.
sharing the same input features, which enables transfer learning [111] and few-shot
learning [126] among others.

Note that while multi-task learning [25] (learning multiple related tasks simulta-
neously) and ensemble learning [35] (building multiple models on the same task),
can often be meaningfully combined with meta-learning systems, they do not in
themselves involve learning from prior experience on other tasks.

This chapter is based on a very recent survey article [176].

2.2 Learning from Model Evaluations

Consider that we have access to prior tasks tj ∈ T , the set of all known tasks, as
well as a set of learning algorithms, fully defined by their configurations θi ∈ �;
here � represents a discrete, continuous, or mixed configuration space which can
cover hyperparameter settings, pipeline components and/or network architecture
components. P is the set of all prior scalar evaluations Pi,j = P(θi, tj ) of
configuration θi on task tj , according to a predefined evaluation measure, e.g.
accuracy, and model evaluation technique, e.g. cross-validation. Pnew is the set
of known evaluations Pi,new on a new task tnew. We now want to train a meta-
learner L that predicts recommended configurations �∗

new for a new task tnew. The
meta-learner is trained on meta-data P ∪ Pnew. P is usually gathered beforehand,
or extracted from meta-data repositories [174, 177]. Pnew is learned by the meta-
learning technique itself in an iterative fashion, sometimes warm-started with an
initial P

′
new generated by another method.
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2.2.1 Task-Independent Recommendations

First, imagine not having access to any evaluations on tnew, hence Pnew = ∅. We
can then still learn a function f : � × T → {θ∗

k }, k = 1..K , yielding a set of
recommended configurations independent of tnew. These θ∗

k can then be evaluated
on tnew to select the best one, or to warm-start further optimization approaches, such
as those discussed in Sect. 2.2.3.

Such approaches often produce a ranking, i.e. an ordered set θ∗
k . This is typically

done by discretizing � into a set of candidate configurations θi , also called a
portfolio, evaluated on a large number of tasks tj . We can then build a ranking
per task, for instance using success rates, AUC, or significant wins [21, 34, 85].
However, it is often desirable that equally good but faster algorithms are ranked
higher, and multiple methods have been proposed to trade off accuracy and training
time [21, 134]. Next, we can aggregate these single-task rankings into a global
ranking, for instance by computing the average rank [1, 91] across all tasks. When
there is insufficient data to build a global ranking, one can recommend subsets of
configurations based on the best known configurations for each prior task [70, 173],
or return quasi-linear rankings [30].

To find the best θ∗ for a task tnew, never before seen, a simple anytime method
is to select the top-K configurations [21], going down the list and evaluating each
configuration on tnew in turn. This evaluation can be halted after a predefined value
for K , a time budget, or when a sufficiently accurate model is found. In time-
constrained settings, it has been shown that multi-objective rankings (including
training time) converge to near-optimal models much faster [1, 134], and provide
a strong baseline for algorithm comparisons [1, 85].

A very different approach to the one above is to first fit a differentiable function
fj (θi) = Pi,j on all prior evaluations of a specific task tj , and then use gradient
descent to find an optimized configuration θ∗

j per prior task [186]. Assuming that
some of the tasks tj will be similar to tnew, those θ∗

j will be useful for warm-starting
Bayesian optimization approaches.

2.2.2 Configuration Space Design

Prior evaluations can also be used to learn a better configuration space �∗. While
again independent from tnew, this can radically speed up the search for optimal
models, since only the more relevant regions of the configuration space are explored.
This is critical when computational resources are limited, and has proven to be an
important factor in practical comparisons of AutoML systems [33].

First, in the functional ANOVA [67] approach, hyperparameters are deemed
important if they explain most of the variance in algorithm performance on a
given task. In [136], this was explored using 250,000 OpenML experiments with
3 algorithms across 100 datasets.
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An alternative approach is to first learn an optimal hyperparameter default
setting, and then define hyperparameter importance as the performance gain that
can be achieved by tuning the hyperparameter instead of leaving it at that default
value. Indeed, even though a hyperparameter may cause a lot of variance, it may
also have one specific setting that always results in good performance. In [120],
this was done using about 500,000 OpenML experiments on 6 algorithms and 38
datasets. Default values are learned jointly for all hyperparameters of an algorithm
by first training surrogate models for that algorithm for a large number of tasks.
Next, many configurations are sampled, and the configuration that minimizes the
average risk across all tasks is the recommended default configuration. Finally, the
importance (or tunability) of each hyperparameter is estimated by observing how
much improvement can still be gained by tuning it.

In [183], defaults are learned independently from other hyperparameters, and
defined as the configurations that occur most frequently in the top-K configurations
for every task. In the case that the optimal default value depends on meta-features
(e.g. the number of training instances or features), simple functions are learned that
include these meta-features. Next, a statistical test defines whether a hyperparameter
can be safely left at this default, based on the performance loss observed when not
tuning a hyperparameter (or a set of hyperparameters), while all other parameters are
tuned. This was evaluated using 118,000 OpenML experiments with 2 algorithms
(SVMs and Random Forests) across 59 datasets.

2.2.3 Configuration Transfer

If we want to provide recommendations for a specific task tnew, we need additional
information on how similar tnew is to prior tasks tj . One way to do this is to evaluate
a number of recommended (or potentially random) configurations on tnew, yielding
new evidence Pnew. If we then observe that the evaluations Pi,new are similar to Pi,j ,
then tj and tnew can be considered intrinsically similar, based on empirical evidence.
We can include this knowledge to train a meta-learner that predicts a recommended
set of configurations �∗

new for tnew. Moreover, every selected θ∗
new can be evaluated

and included in Pnew, repeating the cycle and collecting more empirical evidence to
learn which tasks are similar to each other.

2.2.3.1 Relative Landmarks

A first measure for task similarity considers the relative (pairwise) performance
differences, also called relative landmarks, RLa,b,j = Pa,j − Pb,j between two
configurations θa and θb on a particular task tj [53]. Active testing [85] leverages
these as follows: it warm-starts with the globally best configuration (see Sect. 2.2.1),
calls it θbest , and proceeds in a tournament-style fashion. In each round, it selects
the ‘competitor’ θc that most convincingly outperforms θbest on similar tasks. It
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deems tasks to be similar if the relative landmarks of all evaluated configurations
are similar, i.e., if the configurations perform similarly on both tj and tnew then
the tasks are deemed similar. Next, it evaluates the competitor θc, yielding Pc,new,
updates the task similarities, and repeats. A limitation of this method is that it can
only consider configurations θi that were evaluated on many prior tasks.

2.2.3.2 Surrogate Models

A more flexible way to transfer information is to build surrogate models sj (θi) =
Pi,j for all prior tasks tj , trained using all available P. One can then define task
similarity in terms of the error between sj (θi) and Pi,new: if the surrogate model
for tj can generate accurate predictions for tnew, then those tasks are intrinsically
similar. This is usually done in combination with Bayesian optimization (see
Chap. 1) to determine the next θi .

Wistuba et al. [187] train surrogate models based on Gaussian Processes (GPs)
for every prior task, plus one for tnew, and combine them into a weighted,
normalized sum, with the (new) predicted mean μ defined as the weighted sum
of the individual μj ’s (obtained from prior tasks tj ). The weights of the μj ’s are
computed using the Nadaraya-Watson kernel-weighted average, where each task
is represented as a vector of relative landmarks, and the Epanechnikov quadratic
kernel [104] is used to measure the similarity between the relative landmark vectors
of tj and tnew. The more similar tj is to tnew, the larger the weight sj , increasing the
influence of the surrogate model for tj .

Feurer et al. [45] propose to combine the predictive distributions of the individual
Gaussian processes, which makes the combined model a Gaussian process again.
The weights are computed following the agnostic Bayesian ensemble of Lacoste et
al. [81], which weights predictors according to an estimate of their generalization
performance.

Meta-data can also be transferred in the acquisition function rather than the
surrogate model [187]. The surrogate model is only trained on Pi,new, but the next
θi to evaluate is provided by an acquisition function which is the weighted average
of the expected improvement [69] on Pi,new and the predicted improvements on all
prior Pi,j . The weights of the prior tasks can again be defined via the accuracy of the
surrogate model or via relative landmarks. The weight of the expected improvement
component is gradually increased with every iteration as more evidence Pi,new is
collected.

2.2.3.3 Warm-Started Multi-task Learning

Another approach to relate prior tasks tj is to learn a joint task representation using
P prior evaluations. In [114], task-specific Bayesian linear regression [20] surrogate
models sj (θ

z
i ) are trained in a novel configuration θz learned by a feedforward

Neural Network NN(θi) which learns a suitable basis expansion θz of the original
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configuration θ in which linear surrogate models can accurately predict Pi,new. The
surrogate models are pre-trained on OpenML meta-data to provide a warm-start
for optimizing NN(θi) in a multi-task learning setting. Earlier work on multi-task
learning [166] assumed that we already have a set of ‘similar’ source tasks tj .
It transfers information between these tj and tnew by building a joint GP model
for Bayesian optimization that learns and exploits the exact relationship between
the tasks. Learning a joint GP tends to be less scalable than building one GP per
task, though. Springenberg et al. [161] also assumes that the tasks are related and
similar, but learns the relationship between tasks during the optimization process
using Bayesian Neural Networks. As such, their method is somewhat of a hybrid
of the previous two approaches. Golovin et al. [58] assume a sequence order (e.g.,
time) across tasks. It builds a stack of GP regressors, one per task, training each GP
on the residuals relative to the regressor below it. Hence, each task uses the tasks
before it to define its priors.

2.2.3.4 Other Techniques

Multi-armed bandits [139] provide yet another approach to find the source tasks tj
most related to tnew [125]. In this analogy, each tj is one arm, and the (stochastic)
reward for selecting (pulling) a particular prior task (arm) is defined in terms of
the error in the predictions of a GP-based Bayesian optimizer that models the
prior evaluations of tj as noisy measurements and combines them with the existing
evaluations on tnew. The cubic scaling of the GP makes this approach less scalable,
though.

Another way to define task similarity is to take the existing evaluations Pi,j , use

Thompson Sampling [167] to obtain the optima distribution ρ
j
max , and then measure

the KL-divergence [80] between ρ
j
max and ρnew

max [124]. These distributions are then
merged into a mixture distribution based on the similarities and used to build an
acquisition function that predicts the next most promising configuration to evaluate.
It is so far only evaluated to tune 2 SVM hyperparameters using 5 tasks.

Finally, a complementary way to leverage P is to recommend which configu-
rations should not be used. After training surrogate models per task, we can look
up which tj are most similar to tnew, and then use sj (θi) to discover regions of �

where performance is predicted to be poor. Excluding these regions can speed up the
search for better-performing ones. Wistuba et al. [185], do this using a task similarity
measure based on the Kendall tau rank correlation coefficient [73] between the ranks
obtained by ranking configurations θi using Pi,j and Pi,new, respectively.
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2.2.4 Learning Curves

We can also extract meta-data about the training process itself, such as how fast
model performance improves as more training data is added. If we divide the
training in steps st , usually adding a fixed number of training examples every step,
we can measure the performance P(θi, tj , st ) = Pi,j,t of configuration θi on task
tj after step st , yielding a learning curve across the time steps st . As discussed in
Chap. 1, learning curves are also used to speed up hyperparameter optimization on a
given task. In meta-learning, learning curve information is transferred across tasks.

While evaluating a configuration on new task tnew, we can halt the training after
a certain number of iterations r < t , and use the partially observed learning curve
to predict how well the configuration will perform on the full dataset based on prior
experience with other tasks, and decide whether to continue the training or not. This
can significantly speed up the search for good configurations.

One approach is to assume that similar tasks yield similar learning curves. First,
define a distance between tasks based on how similar the partial learning curves are:
dist (ta, tb) = f (Pi,a,t , Pi,b,t ) with t = 1, . . . , r . Next, find the k most similar tasks
t1...k and use their complete learning curves to predict how well the configuration
will perform on the new complete dataset. Task similarity can be measured by
comparing the shapes of the partial curves across all configurations tried, and the
prediction is made by adapting the ‘nearest’ complete curve(s) to the new partial
curve [83, 84]. This approach was also successful in combination with active testing
[86], and can be sped up further by using multi-objective evaluation measures that
include training time [134].

Interestingly, while several methods aim to predict learning curves during neural
architecture search (see Chap. 3), as of yet none of this work leverages learning
curves previously observed on other tasks.

2.3 Learning from Task Properties

Another rich source of meta-data are characterizations (meta-features) of the task
at hand. Each task tj ∈ T is described with a vector m(tj ) = (mj,1, . . . , mj,K) of
K meta-features mj,k ∈ M , the set of all known meta-features. This can be used
to define a task similarity measure based on, for instance, the Euclidean distance
between m(ti) and m(tj ), so that we can transfer information from the most similar
tasks to the new task tnew. Moreover, together with prior evaluations P, we can train
a meta-learner L to predict the performance Pi,new of configurations θi on a new
task tnew.
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2.3.1 Meta-Features

Table 2.1 provides a concise overview of the most commonly used meta-features,
together with a short rationale for why they are indicative of model performance.
Where possible, we also show the formulas to compute them. More complete
surveys can be found in the literature [26, 98, 130, 138, 175].

To build a meta-feature vector m(tj ), one needs to select and further process
these meta-features. Studies on OpenML meta-data have shown that the optimal set
of meta-features depends on the application [17]. Many meta-features are computed
on single features, or combinations of features, and need to be aggregated by
summary statistics (min,max,μ,σ ,quartiles,q1... 4) or histograms [72]. One needs to
systematically extract and aggregate them [117]. When computing task similarity,
it is also important to normalize all meta-features [9], perform feature selection
[172], or employ dimensionality reduction techniques (e.g. PCA) [17]. When
learning meta-models, one can also use relational meta-learners [173] or case-based
reasoning methods [63, 71, 92].

Beyond these general-purpose meta-features, many more specific ones were
formulated. For streaming data one can use streaming landmarks [135, 137],
for time series data one can compute autocorrelation coefficients or the slope
of regression models [7, 121, 147], and for unsupervised problems one can
cluster the data in different ways and extract properties of these clusters [159].
In many applications, domain-specific information can be leveraged as well
[109, 156].

2.3.2 Learning Meta-Features

Instead of manually defining meta-features, we can also learn a joint represen-
tation for groups of tasks. One approach is to build meta-models that generate
a landmark-like meta-feature representation M ′ given other task meta-features
M and trained on performance meta-data P, or f : M �→ M ′. Sun and
Pfahringer [165] do this by evaluating a predefined set of configurations θi

on all prior tasks tj , and generating a binary metafeature mj,a,b ∈ M ′ for
every pairwise combination of configurations θa and θb, indicating whether θa

outperformed θb or not, thus m′(tj ) = (mj,a,b,mj,a,c,mj,b,c, . . .). To compute
mnew,a,b, meta-rules are learned for every pairwise combination (a,b), each pre-
dicting whether θa will outperform θb on task tj , given its other meta-features
m(tj ).

We can also learn a joint representation based entirely on the available P meta-
data, i.e. f : P × � �→ M ′. We previously discussed how to do this with feed-
forward neural nets [114] in Sect. 2.2.3. If the tasks share the same input space,
e.g., they are images of the same resolution, one can also use deep metric learning
to learn a meta-feature representation, for instance, using Siamese networks [75].
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Table 2.1 Overview of commonly used meta-features. Groups from top to bottom: simple,
statistical, information-theoretic, complexity, model-based, and landmarkers. Continuous features
X and target Y have mean μX , stdev σX , variance σ 2

X . Categorical features X and class C have
categorical values πi , conditional probabilities πi|j , joint probabilities πi,j , marginal probabilities
πi+ = ∑

j πij , entropy H(X) = − ∑
i πi+log2(πi+)

Name Formula Rationale Variants

Nr instances n Speed, Scalability [99] p/n, log(n), log(n/p)

Nr features p Curse of dimensionality [99] log(p), % categorical

Nr classes c Complexity, imbalance [99] ratio min/maj class

Nr missing values m Imputation effects [70] % missing

Nr outliers o Data noisiness [141] o/n

Skewness E(X−μX)3

σ 3
X

Feature normality [99] min,max,μ,σ ,q1, q3

Kurtosis E(X−μX)4

σ 4
X

Feature normality [99] min,max,μ,σ ,q1, q3

Correlation ρX1X2 Feature interdependence [99] min,max,μ,σ ,ρXY [158]

Covariance covX1X2 Feature interdependence [99] min,max,μ,σ ,covXY

Concentration τX1X2 Feature interdependence [72] min,max,μ,σ ,τXY

Sparsity sparsity(X) Degree of discreteness [143] min,max,μ,σ

Gravity gravity(X) Inter-class dispersion [5]

ANOVA p-value pvalX1X2
Feature redundancy [70] pvalXY

[158]

Coeff. of variation σY

μY
Variation in target [158]

PCA ρλ1

√
λ1

1+λ1
Variance in first PC [99] λ1∑

i λi
[99]

PCA skewness Skewness of first PC [48] PCA kurtosis [48]

PCA 95% dim95%var

p
Intrinsic dimensionality [9]

Class probability P(C) Class distribution [99] min,max,μ,σ

Class entropy H(C) Class imbalance [99]

Norm. entropy H(X)
log2n

Feature informativeness [26] min,max,μ,σ

Mutual inform. MI(C,X) Feature importance [99] min,max,μ,σ

Uncertainty coeff. MI(C,X)
H(C)

Feature importance [3] min,max,μ,σ

Equiv. nr. feats H(C)

MI (C,X)
Intrinsic dimensionality [99]

Noise-signal ratio H(X)−MI(C,X)

MI (C,X)
Noisiness of data [99]

Fisher’s discrimin. (μc1−μc2)2

σ 2
c1−σ 2

c2

Separability classes c1, c2 [64] See [64]

Volume of overlap Class distribution overlap [64] See [64]

Concept variation Task complexity [180] See [179, 180]

Data consistency Data quality [76] See [76]

Nr nodes, leaves |η|, |ψ | Concept complexity [113] Tree depth

Branch length Concept complexity [113] min,max,μ,σ

Nodes per feature |ηX| Feature importance [113] min,max,μ,σ

Leaves per class |ψc |
|ψ | Class complexity [49] min,max,μ,σ

Leaves agreement nψi

n
Class separability [16] min,max,μ,σ

Information gain Feature importance [16] min,max,μ,σ , gini

(continued)
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Table 2.1 (continued)

Name Formula Rationale Variants

Landmarker(1NN) P(θ1NN, tj ) Data sparsity [115] Elite 1NN [115]

Landmarker(Tree) P(θT ree, tj ) Data separability [115] Stump,RandomTree

Landmarker(Lin) P(θLin, tj ) Linear separability [115] Lin.Disciminant

Landmarker(NB) P(θNB, tj ) Feature independence [115] More models [14, 88]

Relative LM Pa,j − Pb,j Probing performance [53]

Subsample LM P(θi , tj , st ) Probing performance [160]

These are trained by feeding the data of two different tasks to two twin networks,
and using the differences between the predicted and observed performance Pi,new

as the error signal. Since the model parameters between both networks are tied in a
Siamese network, two very similar tasks are mapped to the same regions in the latent
meta-feature space. They can be used for warm starting Bayesian hyperparameter
optimization [75] and neural architecture search [2].

2.3.3 Warm-Starting Optimization from Similar Tasks

Meta-features are a very natural way to estimate task similarity and initialize
optimization procedures based on promising configurations on similar tasks. This is
akin to how human experts start a manual search for good models, given experience
on related tasks.

First, starting a genetic search algorithm in regions of the search space with
promising solutions can significantly speed up convergence to a good solution.
Gomes et al. [59] recommend initial configurations by finding the k most similar
prior tasks tj based on the L1 distance between vectors m(tj ) and m(tnew), where
each m(tj ) includes 17 simple and statistical meta-features. For each of the k most
similar tasks, the best configuration is evaluated on tnew, and used to initialize a
genetic search algorithm (Particle Swarm Optimization), as well as Tabu Search.
Reif et al. [129] follow a very similar approach, using 15 simple, statistical, and
landmarking meta-features. They use a forward selection technique to find the most
useful meta-features, and warm-start a standard genetic algorithm (GAlib) with a
modified Gaussian mutation operation. Variants of active testing (see Sect. 2.2.3)
that use meta-features were also tried [85, 100], but did not perform better than the
approaches based on relative landmarks.

Also model-based optimization approaches can benefit greatly from an initial
set of promising configurations. SCoT [9] trains a single surrogate ranking model
f : M × � → R, predicting the rank of θi on task tj . M contains 4 meta-features
(3 simple ones and one based on PCA). The surrogate model is trained on all the
rankings, including those on tnew. Ranking is used because the scale of evaluation
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values can differ greatly between tasks. A GP regression converts the ranks to
probabilities to do Bayesian optimization, and each new Pi,new is used to retrain
the surrogate model after every step.

Schilling et al. [148] use a modified multilayer perceptron as a surrogate model,
of the form sj (θi, m(tj ), b(tj )) = Pi,j where m(tj ) are the meta-features and b(tj )

is a vector of j binary indications which are 1 if the meta-instance is from tj
and 0 otherwise. The multi-layer perceptron uses a modified activation function
based on factorization machines [132] in the first layer, aimed at learning a latent
representation for each task to model task similarities. Since this model cannot
represent uncertainties, an ensemble of 100 multilayer perceptrons is trained to get
predictive means and simulate variances.

Training a single surrogate model on all prior meta-data is often less scalable.
Yogatama and Mann [190] also build a single Bayesian surrogate model, but only
include tasks similar to tnew, where task similarity is defined as the Euclidean
distance between meta-feature vectors consisting of 3 simple meta-features. The
Pi,j values are standardized to overcome the problem of different scales for each tj .
The surrogate model learns a Gaussian process with a specific kernel combination
on all instances.

Feurer et al. [48] offer a simpler, more scalable method that warm-starts
Bayesian optimization by sorting all prior tasks tj similar to [59], but including
46 simple, statistical, and landmarking meta-features, as well as H(C). The t best
configurations on the d most similar tasks are used to warm-start the surrogate
model. They search over many more hyperparameters than earlier work, including
preprocessing steps. This warm-starting approach was also used in later work [46],
which is discussed in detail in Chap. 6.

Finally, one can also use collaborative filtering to recommend promising con-
figurations [162]. By analogy, the tasks tj (users) provide ratings (Pi,j ) for the
configurations θi (items), and matrix factorization techniques are used to predict
unknown Pi,j values and recommend the best configurations for any task. An
important issue here is the cold start problem, since the matrix factorization requires
at least some evaluations on tnew. Yang et al. [189] use a D-optimal experiment
design to sample an initial set of evaluations Pi,new. They predict both the predictive
performance and runtime, to recommend a set of warm-start configurations that
are both accurate and fast. Misir and Sebag [102, 103] leverage meta-features to
solve the cold start problem. Fusi et al. [54] also use meta-features, following the
same procedure as [46], and use a probabilistic matrix factorization approach that
allows them to perform Bayesian optimization to further optimize their pipeline
configurations θi . This approach yields useful latent embeddings of both the tasks
and configurations, in which the bayesian optimization can be performed more
efficiently.
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2.3.4 Meta-Models

We can also learn the complex relationship between a task’s meta-features and the
utility of specific configurations by building a meta-model L that recommends the
most useful configurations �∗

new given the meta-features M of the new task tnew.
There exists a rich body of earlier work [22, 56, 87, 94] on building meta-models
for algorithm selection [15, 19, 70, 115] and hyperparameter recommendation [4,
79, 108, 158]. Experiments showed that boosted and bagged trees often yielded the
best predictions, although much depends on the exact meta-features used [72, 76].

2.3.4.1 Ranking

Meta-models can also generate a ranking of the top-K most promising configura-
tions. One approach is to build a k-nearest neighbor (kNN) meta-model to predict
which tasks are similar, and then rank the best configurations on these similar tasks
[23, 147]. This is similar to the work discussed in Sect. 2.3.3, but without ties to
a follow-up optimization approach. Meta-models specifically meant for ranking,
such as predictive clustering trees [171] and label ranking trees [29] were also
shown to work well. Approximate Ranking Tree Forests (ART Forests) [165],
ensembles of fast ranking trees, prove to be especially effective, since they have
‘built-in’ meta-feature selection, work well even if few prior tasks are available, and
the ensembling makes the method more robust. autoBagging [116] ranks Bagging
workflows including four different Bagging hyperparameters, using an XGBoost-
based ranker, trained on 140 OpenML datasets and 146 meta-features. Lorena et al.
[93] recommends SVM configurations for regression problems using a kNN meta-
model and a new set of meta-features based on data complexity.

2.3.4.2 Performance Prediction

Meta-models can also directly predict the performance, e.g. accuracy or training
time, of a configuration on a given task, given its meta-features. This allows us
to estimate whether a configuration will be interesting enough to evaluate in any
optimization procedure. Early work used linear regression or rule-base regressors
to predict the performance of a discrete set of configurations and then rank
them accordingly [14, 77]. Guerra et al. [61] train an SVM meta-regressor per
classification algorithm to predict its accuracy, under default settings, on a new
task tnew given its meta-features. Reif et al. [130] train a similar meta-regressor
on more meta-data to predict its optimized performance. Davis et al. [32] use a
MultiLayer Perceptron based meta-learner instead, predicting the performance of a
specific algorithm configuration.

Instead of predicting predictive performance, a meta-regressor can also be trained
to predict algorithm training/prediction time, for instance, using an SVM regressor
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trained on meta-features [128], itself tuned via genetic algorithms [119]. Yang et al.
[189] predict configuration runtime using polynomial regression, based only on the
number of instances and features. Hutter et al. [68] provide a general treatise on
predicting algorithm runtime in various domains.

Most of these meta-models generate promising configurations, but don’t actually
tune these configurations to tnew themselves. Instead, the predictions can be used
to warm-start or guide any other optimization technique, which allows for all kinds
of combinations of meta-models and optimization techniques. Indeed, some of the
work discussed in Sect. 2.3.3 can be seen as using a distance-based meta-model to
warm-start Bayesian optimization [48, 54] or evolutionary algorithms [59, 129]. In
principle, other meta-models could be used here as well.

Instead of learning the relationship between a task’s meta-features and configu-
ration performance, one can also build surrogate models predicting the performance
of configurations on specific tasks [40]. One can then learn how to combine these
per-task predictions to warm-start or guide optimization techniques on a new task
tnew [45, 114, 161, 187], as discussed in Sect. 2.2.3. While meta-features could also
be used to combine per-task predictions based on task similarity, it is ultimately
more effective to gather new observations Pi,new, since these allow us to refine the
task similarity estimates with every new observation [47, 85, 187].

2.3.5 Pipeline Synthesis

When creating entire machine learning pipelines [153], the number of configuration
options grows dramatically, making it even more important to leverage prior
experience. One can control the search space by imposing a fixed structure on the
pipeline, fully described by a set of hyperparameters. One can then use the most
promising pipelines on similar tasks to warm-start a Bayesian optimization [46, 54].

Other approaches give recommendations for certain pipeline steps [118, 163],
and can be leveraged in larger pipeline construction approaches, such as planning
[55, 74, 105, 184] or evolutionary techniques [110, 164]. Nguyen et al. [105] con-
struct new pipelines using a beam search focussed on components recommended by
a meta-learner, and is itself trained on examples of successful prior pipelines. Bilalli
et al. [18] predict which pre-processing techniques are recommended for a given
classification algorithm. They build a meta-model per target classification algorithm
that, given the tnew meta-features, predicts which preprocessing technique should
be included in the pipeline. Similarly, Schoenfeld et al. [152] build meta-models
predicting when a preprocessing algorithm will improve a particular classifier’s
accuracy or runtime.

AlphaD3M [38] uses a self-play reinforcement learning approach in which
the current state is represented by the current pipeline, and actions include the
addition, deletion, or replacement of pipeline components. A Monte Carlo Tree
Search (MCTS) generates pipelines, which are evaluated to train a recurrent neural
network (LSTM) that can predict pipeline performance, in turn producing the action
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probabilities for the MCTS in the next round. The state description also includes
meta-features of the current task, allowing the neural network to learn across tasks.
Mosaic [123] also generates pipelines using MCTS, but instead uses a bandits-based
approach to select promising pipelines.

2.3.6 To Tune or Not to Tune?

To reduce the number of configuration parameters to be optimized, and to save
valuable optimization time in time-constrained settings, meta-models have also been
proposed to predict whether or not it is worth tuning a given algorithm given the
meta-features of the task at hand [133] and how much improvement we can expect
from tuning a specific algorithm versus the additional time investment [144]. More
focused studies on specific learning algorithms yielded meta-models predicting
when it is necessary to tune SVMs [96], what are good default hyperparameters
for SVMs given the task (including interpretable meta-models) [97], and how to
tune decision trees [95].

2.4 Learning from Prior Models

The final type of meta-data we can learn from are prior machine learning models
themselves, i.e., their structure and learned model parameters. In short, we want to
train a meta-learner L that learns how to train a (base-) learner lnew for a new task
tnew, given similar tasks tj ∈ T and the corresponding optimized models lj ∈ L,
where L is the space of all possible models. The learner lj is typically defined by its
model parameters W = {wk}, k = 1 . . . K and/or its configuration θi ∈ �.

2.4.1 Transfer Learning

In transfer learning [170], we take models trained on one or more source tasks tj ,
and use them as starting points for creating a model on a similar target task tnew.
This can be done by forcing the target model to be structurally or otherwise similar
to the source model(s). This is a generally applicable idea, and transfer learning
approaches have been proposed for kernel methods [41, 42], parametric Bayesian
models [8, 122, 140], Bayesian networks [107], clustering [168] and reinforcement
learning [36, 62]. Neural networks, however, are exceptionally suitable for transfer
learning because both the structure and the model parameters of the source models
can be used as a good initialization for the target model, yielding a pre-trained
model which can then be further fine-tuned using the available training data on tnew

[11, 13, 24, 169]. In some cases, the source network may need to be modified before
transferring it [155]. We will focus on neural networks in the remainder of this
section.
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Especially large image datasets, such as ImageNet [78], have been shown to yield
pre-trained models that transfer exceptionally well to other tasks [37, 154]. However,
it has also been shown that this approach doesn’t work well when the target task
is not so similar [191]. Rather than hoping that a pre-trained model ‘accidentally’
transfers well to a new problem, we can purposefully imbue meta-learners with an
inductive bias (learned from many similar tasks) that allows them to learn new tasks
much faster, as we will discuss below.

2.4.2 Meta-Learning in Neural Networks

An early meta-learning approach is to create recurrent neural networks (RNNs) able
to modify their own weights [149, 150]. During training, they use their own weights
as additional input data and observe their own errors to learn how to modify these
weights in response to the new task at hand. The updating of the weights is defined
in a parametric form that is differentiable end-to-end and can jointly optimize both
the network and training algorithm using gradient descent, yet is also very difficult
to train. Later work used reinforcement learning across tasks to adapt the search
strategy [151] or the learning rate for gradient descent [31] to the task at hand.

Inspired by the feeling that backpropagation is an unlikely learning mechanism
for our own brains, Bengio et al. [12] replace backpropagation with simple
biologically-inspired parametric rules (or evolved rules [27]) to update the synaptic
weights. The parameters are optimized, e.g. using gradient descent or evolution,
across a set of input tasks. Runarsson and Jonsson [142] replaced these parametric
rules with a single layer neural network. Santoro et al. [146] instead use a memory-
augmented neural network to learn how to store and retrieve ‘memories’ of prior
classification tasks. Hochreiter et al. [65] use LSTMs [66] as a meta-learner to train
multi-layer perceptrons.

Andrychowicz et al. [6] also replace the optimizer, e.g. stochastic gradient
descent, with an LSTM trained on multiple prior tasks. The loss of the meta-learner
(optimizer) is defined as the sum of the losses of the base-learners (optimizees), and
optimized using gradient descent. At every step, the meta-learner chooses the weight
update estimated to reduce the optimizee’s loss the most, based on the learned model
weights {wk} of the previous step as well as the current performance gradient. Later
work generalizes this approach by training an optimizer on synthetic functions,
using gradient descent [28]. This allows meta-learners to optimize optimizees even
if these do not have access to gradients.

In parallel, Li and Malik [89] proposed a framework for learning optimization
algorithms from a reinforcement learning perspective. It represents any particular
optimization algorithm as a policy, and then learns this policy via guided policy
search. Follow-up work [90] shows how to leverage this approach to learn opti-
mization algorithms for (shallow) neural networks.

The field of neural architecture search includes many other methods that build a
model of neural network performance for a specific task, for instance using Bayesian
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optimization or reinforcement learning. See Chap. 3 for an in-depth discussion.
However, most of these methods do not (yet) generalize across tasks and are
therefore not discussed here.

2.4.3 Few-Shot Learning

A particularly challenging meta-learning problem is to train an accurate deep
learning model using only a few training examples, given prior experience with
very similar tasks for which we have large training sets available. This is called
few-shot learning. Humans have an innate ability to do this, and we wish to build
machine learning agents that can do the same [82]. A particular example of this is
‘K-shot N-way’ classification, in which we are given many examples (e.g., images)
of certain classes (e.g., objects), and want to learn a classifier lnew able to classify
N new classes using only K examples of each.

Using prior experience, we can, for instance, learn a common feature represen-
tation of all the tasks, start training lnew with a better model parameter initialization
Winit and acquire an inductive bias that helps guide the optimization of the model
parameters, so that lnew can be trained much faster than otherwise possible.

Earlier work on one-shot learning is largely based on hand-engineered features
[10, 43, 44, 50]. With meta-learning, however, we hope to learn a common feature
representation for all tasks in an end-to-end fashion.

Vinyals et al. [181] state that, to learn from very little data, one should look
to non-parameteric models (such as k-nearest neighbors), which use a memory
component rather than learning many model parameters. Their meta-learner is a
Matching Network that applies the idea of a memory component in a neural net. It
learns a common representation for the labelled examples, and matches each new
test instance to the memorized examples using cosine similarity. The network is
trained on minibatches with only a few examples of a specific task each.

Snell et al. [157] propose Prototypical Networks, which map examples to a p-
dimensional vector space such that examples of a given output class are close
together. It then calculates a prototype (mean vector) for every class. New test
instances are mapped to the same vector space and a distance metric is used to
create a softmax over all possible classes. Ren et al. [131] extend this approach to
semi-supervised learning.

Ravi and Larochelle [126] use an LSTM-based meta-learner to learn an update
rule for training a neural network learner. With every new example, the learner
returns the current gradient and loss to the LSTM meta-learner, which then updates
the model parameters {wk} of the learner. The meta-learner is trained across all prior
tasks.

Model-Agnostic Meta-Learning (MAML) [51], on the other hand, does not try
to learn an update rule, but instead learns a model parameter initialization Winit that
generalizes better to similar tasks. Starting from a random {wk}, it iteratively selects
a batch of prior tasks, and for each it trains the learner on K examples to compute the
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gradient and loss (on a test set). It then backpropagates the meta-gradient to update
the weights {wk} in the direction in which they would have been easier to update.
In other words, after each iteration, the weights {wk} become a better Winit to start
finetuning any of the tasks. Finn and Levine [52] also argue that MAML is able to
approximate any learning algorithm when using a sufficiently deep fully connected
ReLU network and certain losses. They also conclude that the MAML initializations
are more resilient to overfitting on small samples, and generalize more widely than
meta-learning approaches based on LSTMs.

REPTILE [106] is an approximation of MAML that executes stochastic gradient
descent for K iterations on a given task, and then gradually moves the initialization
weights in the direction of the weights obtained after the K iterations. The intuition
is that every task likely has more than one set of optimal weights {w∗

i }, and the goal
is to find a Winit that is close to at least one of those {w∗

i } for every task.
Finally, we can also derive a meta-learner from a black-box neural network.

Santoro et al. [145] propose Memory-Augmented Neural Networks (MANNs),
which train a Neural Turing Machine (NTM) [60], a neural network with augmented
memory capabilities, as a meta-learner. This meta-learner can then memorize
information about previous tasks and leverage that to learn a learner lnew. SNAIL
[101] is a generic meta-learner architecture consisting of interleaved temporal con-
volution and causal attention layers. The convolutional networks learn a common
feature vector for the training instances (images) to aggregate information from past
experiences. The causal attention layers learn which pieces of information to pick
out from the gathered experience to generalize to new tasks.

Overall, the intersection of deep learning and meta-learning proves to be
particular fertile ground for groundbreaking new ideas, and we expect this field to
become more important over time.

2.4.4 Beyond Supervised Learning

Meta-learning is certainly not limited to (semi-)supervised tasks, and has been
successfully applied to solve tasks as varied as reinforcement learning, active
learning, density estimation and item recommendation. The base-learner may be
unsupervised while the meta-learner is supervised, but other combinations are
certainly possible as well.

Duan et al. [39] propose an end-to-end reinforcement learning (RL) approach
consisting of a task-specific fast RL algorithm which is guided by a general-purpose
slow meta-RL algorithm. The tasks are interrelated Markov Decision Processes
(MDPs). The meta-RL algorithm is modeled as an RNN, which receives the
observations, actions, rewards and termination flags. The activations of the RNN
store the state of the fast RL learner, and the RNN’s weights are learned by observing
the performance of fast learners across tasks.

In parallel, Wang et al. [182] also proposed to use a deep RL algorithm to
train an RNN, receiving the actions and rewards of the previous interval in order
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to learn a base-level RL algorithm for specific tasks. Rather than using relatively
unstructured tasks such as random MDPs, they focus on structured task distributions
(e.g., dependent bandits) in which the meta-RL algorithm can exploit the inherent
task structure.

Pang et al. [112] offer a meta-learning approach to active learning (AL). The
base-learner can be any binary classifier, and the meta-learner is a deep RL
network consisting of a deep neural network that learns a representation of the
AL problem across tasks, and a policy network that learns the optimal policy,
parameterized as weights in the network. The meta-learner receives the current state
(the unlabeled point set and base classifier state) and reward (the performance of the
base classifier), and emits a query probability, i.e. which points in the unlabeled set
to query next.

Reed et al. [127] propose a few-shot approach for density estimation (DE). The
goal is to learn a probability distribution over a small number of images of a certain
concept (e.g., a handwritten letter) that can be used to generate images of that
concept, or compute the probability that an image shows that concept. The approach
uses autoregressive image models which factorize the joint distribution into per-
pixel factors. Usually these are conditioned on (many) examples of the target
concept. Instead, a MAML-based few-shot learner is used, trained on examples of
many other (similar) concepts.

Finally, Vartak et al. [178] address the cold-start problem in matrix factorization.
They propose a deep neural network architecture that learns a (base) neural network
whose biases are adjusted based on task information. While the structure and
weights of the neural net recommenders remain fixed, the meta-learner learns how
to adjust the biases based on each user’s item history.

All these recent new developments illustrate that it is often fruitful to look at
problems through a meta-learning lens and find new, data-driven approaches to
replace hand-engineered base-learners.

2.5 Conclusion

Meta-learning opportunities present themselves in many different ways, and can
be embraced using a wide spectrum of learning techniques. Every time we try
to learn a certain task, whether successful or not, we gain useful experience that
we can leverage to learn new tasks. We should never have to start entirely from
scratch. Instead, we should systematically collect our ‘learning experiences’ and
learn from them to build AutoML systems that continuously improve over time,
helping us tackle new learning problems ever more efficiently. The more new tasks
we encounter, and the more similar those new tasks are, the more we can tap into
prior experience, to the point that most of the required learning has already been
done beforehand. The ability of computer systems to store virtually infinite amounts
of prior learning experiences (in the form of meta-data) opens up a wide range
of opportunities to use that experience in completely new ways, and we are only



2 Meta-Learning 53

starting to learn how to learn from prior experience effectively. Yet, this is a worthy
goal: learning how to learn any task empowers us far beyond knowing how to learn
any specific task.
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