
Chapter 10
Analysis of the AutoML Challenge Series
2015–2018

Isabelle Guyon, Lisheng Sun-Hosoya, Marc Boullé, Hugo Jair Escalante,
Sergio Escalera , Zhengying Liu, Damir Jajetic, Bisakha Ray,
Mehreen Saeed, Michèle Sebag, Alexander Statnikov, Wei-Wei Tu,
and Evelyne Viegas

Abstract The ChaLearn AutoML Challenge (The authors are in alphabetical order
of last name, except the first author who did most of the writing and the second
author who produced most of the numerical analyses and plots.) (NIPS 2015
– ICML 2016) consisted of six rounds of a machine learning competition of
progressive difficulty, subject to limited computational resources. It was followed by

I. Guyon (�)
University of Paris-Sud, Orsay, France

INRIA, University of Paris-Saclay, Paris, France

ChaLearn and ClopiNet, Berkeley, CA, USA
e-mail: guyon@chalearn.org

L. Sun-Hosoya · Z. Liu
Laboratoire de Recherche en Informatique, University of Paris-Sud, Orsay, France

University of Paris-Saclay, Paris, France

M. Boullé
Machine Learning Group, Orange Labs, Lannion, France

H. J. Escalante
Computational Sciences Department, INAOE and ChaLearn, Tonantzintla, Mexico

S. Escalera
Computer Vision Center, University of Barcelona, Barcelona, Spain

D. Jajetic
IN2, Zagreb, Croatia

B. Ray
Langone Medical Center, New York University, New York, NY, USA

M. Saeed
Department of Computer Science, National University of Computer and Emerging Sciences,
Islamabad, Pakistan

M. Sebag
Laboratoire de Recherche en Informatique, CNRS, Paris, France

University of Paris-Saclay, Paris, France

© The Author(s) 2019
F. Hutter et al. (eds.), Automated Machine Learning, The Springer Series
on Challenges in Machine Learning, https://doi.org/10.1007/978-3-030-05318-5_10

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05318-5_10&domain=pdf
https://orcid.org/0000-0003-0617-8873
mailto:guyon@chalearn.org
https://doi.org/10.1007/978-3-030-05318-5_10

178 I. Guyon et al.

a one-round AutoML challenge (PAKDD 2018). The AutoML setting differs from
former model selection/hyper-parameter selection challenges, such as the one we
previously organized for NIPS 2006: the participants aim to develop fully automated
and computationally efficient systems, capable of being trained and tested without
human intervention, with code submission. This chapter analyzes the results of these
competitions and provides details about the datasets, which were not revealed to the
participants. The solutions of the winners are systematically benchmarked over all
datasets of all rounds and compared with canonical machine learning algorithms
available in scikit-learn. All materials discussed in this chapter (data and code) have
been made publicly available at http://automl.chalearn.org/.

10.1 Introduction

Until about 10 years ago, machine learning (ML) was a discipline little known
to the public. For ML scientists, it was a “seller’s market”: they were producing
hosts of algorithms in search for applications and were constantly looking for new
interesting datasets. Large internet corporations accumulating massive amounts of
data such as Google, Facebook, Microsoft and Amazon have popularized the use
of ML and data science competitions have engaged a new generation of young
scientists in this wake. Nowadays, government and corporations keep identifying
new applications of ML and with the increased availability of open data, we have
switched to a “buyer’s market”: everyone seems to be in need of a learning machine.
Unfortunately however, learning machines are not yet fully automatic: it is still
difficult to figure out which software applies to which problem, how to horseshoe-fit
data into a software and how to select (hyper-)parameters properly. The ambition
of the ChaLearn AutoML challenge series is to channel the energy of the ML
community to reduce step by step the need for human intervention in applying ML
to a wide variety of practical problems.

Full automation is an unbounded problem since there can always be novel
settings, which have never been encountered before. Our first challenges AutoML1
were limited to:

• Supervised learning problems (classification and regression).
• Feature vector representations.
• Homogeneous datasets (same distribution in the training, validation, and test

set).

A. Statnikov
SoFi San Francisc, California, USA

W.-W. Tu
4Paradigm, Beijing, Republic of China

E. Viegas
Microsoft Research, Redmond, WA, USA

http://automl.chalearn.org/

10 Analysis of the AutoML Challenge Series 2015–2018 179

• Medium size datasets of less than 200 MBytes.
• Limited computer resources with execution times of less than 20 min per

dataset on an 8 core x86_64 machine with 56 GB RAM.

We excluded unsupervised learning, active learning, transfer learning, and causal
discovery problems, which are all very dear to us and have been addressed in past
ChaLearn challenges [31], but which require each a different evaluation setting,
thus making result comparisons very difficult. We did not exclude the treatment of
video, images, text, and more generally time series and the selected datasets actually
contain several instances of such modalities. However, they were first preprocessed
in a feature representation, thus de-emphasizing feature learning. Still, learning from
data pre-processed in feature-based representations already covers a lot of grounds
and a fully automated method resolving this restricted problem would already be a
major advance in the field.

Within this constrained setting, we included a variety of difficulties:

• Different data distributions: the intrinsic/geometrical complexity of the dataset.
• Different tasks: regression, binary classification, multi-class classification,

multi-label classification.
• Different scoring metrics: AUC, BAC, MSE, F1, etc. (see Sect. 10.4.2).
• Class balance: Balanced or unbalanced class proportions.
• Sparsity: Full matrices or sparse matrices.
• Missing values: Presence or absence of missing values.
• Categorical variables: Presence or absence of categorical variables.
• Irrelevant variables: Presence or absence of additional irrelevant variables

(distractors).
• Number Ptr of training examples: Small or large number of training examples.
• Number N of variables/features: Small or large number of variables.
• Ratio Ptr/N of the training data matrix: Ptr � N,Ptr = N or Ptr � N .

In this setting, the participants had to face many modeling/hyper-parameter choices.
Some other, equally important, aspects of automating machine learning were not
addressed in this challenge and are left for future research. Those include data
“ingestion” and formatting, pre-processing and feature/representation learning,
detection and handling of skewed/biased data, inhomogeneous, drifting, multi-
modal, or multi-view data (hinging on transfer learning), matching algorithms to
problems (which may include supervised, unsupervised, or reinforcement learning,
or other settings), acquisition of new data (active learning, query learning, rein-
forcement learning, causal experimentation), management of large volumes of data
including the creation of appropriately-sized and stratified training, validation, and
test sets, selection of algorithms that satisfy arbitrary resource constraints at training
and run time, the ability to generate and reuse workflows, and generating meaningful
reports.

180 I. Guyon et al.

This challenge series started with the NIPS 2006 “model selection game”1 [37],
where the participants were provided with a machine learning toolbox based on
the Matlab toolkit CLOP [1] built on top of the “Spider” package [69]. The toolkit
provided a flexible way of building models by combining preprocessing, feature
selection, classification and post-processing modules, also enabling the building
of ensembles of classifiers. The goal of the game was to build the best hyper-
model: the focus was on model selection, not on the development of new algorithms.
All problems were feature-based binary classification problems. Five datasets were
provided. The participants had to submit the schema of their model. The model
selection game confirmed the effectiveness of cross-validation (the winner invented
a new variant called cross-indexing) and emphasized the need to focus more on
search effectiveness with the deployment of novel search techniques such as particle
swarm optimization.

New in the 2015/2016 AutoML challenge, we introduced the notion of “task”:
each dataset was supplied with a particular scoring metric to be optimized and a
time budget. We initially intended to vary widely the time budget from dataset to
dataset in an arbitrary way. We ended up fixing it to 20 min for practical reasons
(except for Round 0 where the time budget ranged from 100 to 300 s). However,
because the datasets varied in size, this put pressure on the participants to manage
their allotted time. Other elements of novelty included the freedom of submitting
any Linux executable. This was made possible by using automatic execution on the
open-source platform Codalab.2 To help the participants we provided a starting kit
in Python based on the scikit-learn library [55].3 This induced many of them to
write a wrapper around scikit-learn. This has been the strategy of the winning entry
“auto-sklearn” [25–28].4 Following the AutoML challenge, we organized a “beat
auto-sklearn” game on a single dataset (madeline), in which the participants could
provide hyper-parameters “by hand” to try to beat auto-sklearn. But nobody could
beat auto-sklearn! Not even their designers. The participants could submit a json file
which describes a sklearn model and hyper-parameter settings, via a GUI interface.
This interface allows researchers who want to compare their search methods with
auto-sklearn to use the exact same set of hyper-models.

A large number of satellite events including bootcamps, summer schools, and
workshops have been organized in 2015/2016 around the AutoML challenge.5 The
AutoML challenge was part of the official selection of the competition program of
IJCNN 2015 and 2016 and the results were discussed at the AutoML and CiML
workshops at ICML and NIPS in 2015 and 2016. Several publications accompanied
these events: in [33] we describe the details of the design of the AutoML challenge.6

1http://clopinet.com/isabelle/Projects/NIPS2006/
2http://competitions.codalab.org
3http://scikit-learn.org/
4https://automl.github.io/auto-sklearn/stable/
5See http://automl.chalearn.org
6http://codalab.org/AutoML

http://clopinet.com/isabelle/Projects/NIPS2006/
http://competitions.codalab.org
http://scikit-learn.org/
https://automl.github.io/auto-sklearn/stable/
http://automl.chalearn.org
http://codalab.org/AutoML

10 Analysis of the AutoML Challenge Series 2015–2018 181

In [32] and [34] we review milestone and final results presented at the ICML 2015
and 2016 AutoML workshops. The 2015/2016 AutoML challenge had 6 rounds
introducing 5 datasets each. We also organized a follow-up event for the PAKDD
conference 20187 in only 2 phases, with 5 datasets in the development phase and 5
datasets in the final “blind test” round.

Going beyond the former published analyses, this chapter presents systematic
studies of the winning solutions on all the datasets of the challenge and conducts
comparisons with commonly used learning machines implemented in scikit-learn.
It provides unpublished details about the datasets and reflective analyses.

This chapter is in part based on material that has appeared previously [32–34, 36].
This chapter is complemented by a 46-page online appendix that can be accessed
from the book’s webpage: http://automl.org/book.

10.2 Problem Formalization and Overview

10.2.1 Scope of the Problem

This challenge series focuses on supervised learning in ML and, in particular, solv-
ing classification and regression problems, without any further human intervention,
within given constraints. To this end, we released a large number of datasets pre-
formatted in given feature representations (i.e., each example consists of a fixed
number of numerical coefficients; more in Sect. 10.3).

The distinction between input and output variables is not always made in ML
applications. For instance, in recommender systems, the problem is often stated as
making predictions of missing values for every variable rather than predicting the
values of a particular variable [58]. In unsupervised learning [30], the purpose is
to explain data in a simple and compact way, eventually involving inferred latent
variables (e.g., class membership produced by a clustering algorithm).

We consider only the strict supervised learning setting where data present them-
selves as identically and independently distributed input-output pairs. The models
used are limited to fixed-length vectorial representations, excluding problems of
time series prediction. Text, speech, and video processing tasks included in the chal-
lenge have been preprocessed into suitable fixed-length vectorial representations.

The difficulty of the proposed tasks lies in the data complexity (class imbalance,
sparsity, missing values, categorical variables). The testbed is composed of data
from a wide variety of domains. Although there exist ML toolkits that can tackle
all of these problems, it still requires considerable human effort to find, for a
given dataset, task, evaluation metric, the methods and hyper-parameter settings
that maximize performance subject to a computational constraint. The participant
challenge is to create the perfect black box that removes human interaction,
alleviating the shortage of data scientists in the coming decade.

7https://www.4paradigm.com/competition/pakdd2018

http://automl.org/book
https://www.4paradigm.com/competition/pakdd2018

182 I. Guyon et al.

10.2.2 Full Model Selection

We refer to participant solutions as hyper-models to indicate that they are built
from simpler components. For instance, for classification problems, participants
might consider a hyper-model that combines several classification techniques such
as nearest neighbors, linear models, kernel methods, neural networks, and random
forests. More complex hyper-models may also include preprocessing, feature
construction, and feature selection modules.

Generally, a predictive model of the form y = f (x;α) has:

• a set of parameters α = [α0, α1, α2, . . . , αn];
• a learning algorithm (referred to as trainer), which serves to optimize the

parameters using training data;
• a trained model (referred to as predictor) of the form y = f (x) produced by the

trainer;
• a clear objective function J (f), which can be used to assess the model’s

performance on test data.

Consider now the model hypothesis space defined by a vector θ =
[θ1, θ2, . . . , θn] of hyper-parameters. The hyper-parameter vector may include
not only parameters corresponding to switching between alternative models, but
also modeling choices such as preprocessing parameters, type of kernel in a kernel
method, number of units and layers in a neural network, or training algorithm
regularization parameters [59]. Some authors refer to this problem as full model
selection [24, 62], others as the CASH problem (Combined Algorithm Selection
and Hyperparameter optimization) [65]. We will denote hyper-models as

y = f (x; θ) = f (x;α(θ), θ), (10.1)

where the model parameter vector α is an implicit function of the hyper-parameter
vector θ obtained by using a trainer for a fixed value of θ , and training data
composed of input-output pairs {xi , yi}. The participants have to devise algorithms
capable of training the hyper-parameters θ . This may require intelligent sampling
of the hyper-parameter space and splitting the available training data into subsets
for both training and evaluating the predictive power of solutions—one or multiple
times.

As an optimization problem, model selection is a bi-level optimization pro-
gram [7, 18, 19]; there is a lower objective J1 to train the parameters α of the
model, and an upper objective J2 to train the hyper-parameters θ , both optimized
simultaneously (see Fig. 10.1). As a statistics problem, model selection is a problem
of multiple testing in which error bars on performance prediction ε degrade with the
number of models/hyper-parameters tried or, more generally, the complexity of the
hyper-model C2(θ). A key aspect of AutoML is to avoid overfitting the upper-level
objective J2 by regularizing it, much in the same way as lower level objectives J1
are regularized.

10 Analysis of the AutoML Challenge Series 2015–2018 183

Input

Output

Hyperparameters

Parameters

(a)

Hyperparameters ()

Parameters ()

argmin Rcv[f(. ; ,)] argmin Rtr[f(. ; ,)]J2 J1

(b)

Fig. 10.1 Bi-level optimization. (a) Representation of a learning machine with parameters and
hyper-parameters to be adjusted. (b) De-coupling of parameter and hyper-parameter adjustment in
two levels. The upper level objective J2 optimizes the hyper-parameters θ ; the lower objective J1
optimizes the parameters α

The problem setting also lends itself to using ensemble methods, which let
several “simple” models vote to make the final decision [15, 16, 29]. In this case,
the parameters θ may be interpreted as voting weights. For simplicity we lump all
parameters in a single vector, but more elaborate structures, such as trees or graphs
can be used to define the hyper-parameter space [66].

10.2.3 Optimization of Hyper-parameters

Everyone who has worked with data has had to face some common modeling
choices: scaling, normalization, missing value imputation, variable coding (for
categorical variables), variable discretization, degree of nonlinearity and model
architecture, among others. ML has managed to reduce the number of hyper-
parameters and produce black-boxes to perform tasks such as classification and
regression [21, 40]. Still, any real-world problem requires at least some preparation
of the data before it can be fitted into an “automatic” method, hence requiring some
modeling choices. There has been much progress on end-to-end automated ML for
more complex tasks such as text, image, video, and speech processing with deep-
learning methods [6]. However, even these methods have many modeling choices
and hyper-parameters.

While producing models for a diverse range of applications has been a focus
of the ML community, little effort has been devoted to the optimization of hyper-
parameters. Common practices that include trial and error and grid search may lead
to overfitting models for small datasets or underfitting models for large datasets.
By overfitting we mean producing models that perform well on training data but
perform poorly on unseen data, i.e., models that do not generalize. By underfitting

184 I. Guyon et al.

we mean selecting too simple a model, which does not capture the complexity of
the data, and hence performs poorly both on training and test data. Despite well-
optimized off-the-shelf algorithms for optimizing parameters, end-users are still
responsible for organizing their numerical experiments to identify the best of a
number of models under consideration. Due to lack of time and resources, they
often perform model/hyper-parameter selection with ad hoc techniques. Ioannidis
and Langford [42, 47] examine fundamental, common mistakes such as poor con-
struction of training/test splits, inappropriate model complexity, hyper-parameter
selection using test sets, misuse of computational resources, and misleading test
metrics, which may invalidate an entire study. Participants must avoid these flaws
and devise systems that can be blind-tested.

An additional twist of our problem setting is that code is tested with limited
computational resources. That is, for each task an arbitrary limit on execution time
is fixed and a maximum amount of memory is provided. This places a constraint on
the participant to produce a solution in a given time, and hence to optimize the model
search from a computational point of view. In summary, participants have to jointly
address the problem of over-fitting/under-fitting and the problem of efficient search
for an optimal solution, as stated in [43]. In practice, the computational constraints
have turned out to be far more challenging to challenge participants than the problem
of overfitting. Thus the main contributions have been to devise novel efficient search
techniques with cutting-edge optimization methods.

10.2.4 Strategies of Model Search

Most practitioners use heuristics such as grid search or uniform sampling to sample
θ space, and use k-fold cross-validation as the upper-level objective J2 [20]. In

000

100 010 001

110 101 011

111

(a) Filter

100

000

010 001

110 101 011

111

(b) Wrapper

000

100 010 001

110 101 011

111

(c) Embedded

Fig. 10.2 Approaches to two-level inference. (a) Filter methods select the hyper-parameters
without adjusting the learner parameters. (No arrows indicates no parameter training.) (b)
Wrapper methods select the hyper-parameters using trained learners, treating them as black-
boxes. (c) Embedded methods use knowledge of the learner structure and/or parameters to guide
the hyper-parameter search

10 Analysis of the AutoML Challenge Series 2015–2018 185

this framework, the optimization of θ is not performed sequentially [8]. All the
parameters are sampled along a regular scheme, usually in linear or log scale. This
leads to a number of possibilities that exponentially increases with the dimension
of θ . k-fold cross-validation consists of splitting the dataset into k folds; (k − 1)

folds are used for training and the remaining fold is used for testing; eventually, the
average of the test scores obtained on the k folds is reported. Note that some ML
toolkits currently support cross-validation. There is a lack of principled guidelines
to determine the number of grid points and the value of k (with the exception of
[20]), and there is no guidance for regularizing J2, yet this simple method is a good
baseline approach.

Efforts have been made to optimize continuous hyper-parameters with bilevel
optimization methods, using either the k-fold cross-validation estimator [7, 50]
or the leave-one-out estimator as the upper-level objective J2. The leave-one-out
estimator may be efficiently computed, in closed form, as a by-product of training
only one predictor on all the training examples (e.g., virtual-leave-one-out [38]).
The method was improved by adding a regularization of J2 [17]. Gradient descent
has been used to accelerate the search, by making a local quadratic approximation
of J2 [44]. In some cases, the full J2(θ) can be computed from a few key examples
[39, 54]. Other approaches minimize an approximation or an upper bound of the
leave-one-out error, instead of its exact form [53, 68]. Nevertheless, these methods
are still limited to specific models and continuous hyper-parameters.

An early attempt at full model selection was the pattern search method that uses
k-fold cross-validation for J2. It explores the hyper-parameter space by steps of the
same magnitude, and when no change in any parameter further decreases J2, the
step size is halved and the process repeated until the steps are deemed sufficiently
small [49]. Escalante et al. [24] addressed the full model selection problem using
Particle Swarm Optimization, which optimizes a problem by having a population
of candidate solutions (particles), and moving these particles around the hyper-
parameter space using the particle’s position and velocity. k-fold cross-validation is
also used for J2. This approach retrieved the winning model in ∼76% of the cases.
Overfitting was controlled heuristically with early stopping and the proportion of
training and validation data was not optimized. Although progress has been made
in experimental design to reduce the risk of overfitting [42, 47], in particular by
splitting data in a principled way [61], to our knowledge, no one has addressed the
problem of optimally splitting data.

While regularizing the second level of inference is a recent addition to the
frequentist ML community, it has been an intrinsic part of Bayesian modeling
via the notion of hyper-prior. Some methods of multi-level optimization combine
importance sampling and Monte-Carlo Markov Chains [2]. The field of Bayesian
hyper-parameter optimization has rapidly developed and yielded promising results,
in particular by using Gaussian processes to model generalization performance [60,
63]. But Tree-structured Parzen Estimator (TPE) approaches modeling P(x|y) and
P(y) rather than modeling P(y|x) directly [9, 10] have been found to outperform
GP-based Bayesian optimization for structured optimization problems with many
hyperparameters including discrete ones [23]. The central idea of these methods is
to fit J2(θ) to a smooth function in an attempt to reduce variance and to estimate the

186 I. Guyon et al.

variance in regions of the hyper-parameter space that are under-sampled to guide
the search towards regions of high variance. These methods are inspirational and
some of the ideas can be adopted in the frequentist setting. For instance, the random-
forest-based SMAC algorithm [41], which has helped speed up both local search and
tree search algorithms by orders of magnitude on certain instance distributions, has
also been found to be very effective for the hyper-parameter optimization of machine
learning algorithms, scaling better to high dimensions and discrete input dimensions
than other algorithms [23]. We also notice that Bayesian optimization methods are
often combined with other techniques such as meta-learning and ensemble methods
[25] in order to gain advantage in some challenge settings with a time limit [32].
Some of these methods consider jointly the two-level optimization and take time
cost as a critical guidance for hyper-parameter search [45, 64].

Besides Bayesian optimization, several other families of approaches exist in the
literature and have gained much attention with the recent rise of deep learning.
Ideas borrowed from reinforcement learning have recently been used to construct
optimal neural network architectures [4, 70]. These approaches formulate the hyper-
parameter optimization problem in a reinforcement learning flavor, with for example
states being the actual hyper-parameter setting (e.g., network architecture), actions
being adding or deleting a module (e.g., a CNN layer or a pooling layer), and reward
being the validation accuracy. They can then apply off-the-shelf reinforcement
learning algorithms (e.g., RENFORCE, Q-learning, Monte-Carlo Tree Search) to
solve the problem. Other architecture search methods use evolutionary algorithms
[3, 57]. These approaches consider a set (population) of hyper-parameter settings
(individuals), modify (mutate and reproduce) and eliminate unpromising settings
according to their cross-validation score (fitness). After several generations, the
global quality of the population increases. One important common point of rein-
forcement learning and evolutionary algorithms is that they both deal with the
exploration-exploitation trade-off. Despite the impressive results, these approaches
require a huge amount of computational resources and some (especially evolution-
ary algorithms) are hard to scale. Pham et al. [56] recently proposed weight sharing
among child models to speed up the process considerably [70] while achieving
comparable results.

Note that splitting the problem of parameter fitting into two levels can be
extended to more levels, at the expense of extra complexity—i.e., need for a hier-
archy of data splits to perform multiple or nested cross-validation [22], insufficient
data to train and validate at the different levels, and increase of the computational
load.

Table 10.1 shows a typical example of multi-level parameter optimization in a
frequentist setting. We assume that we are using an ML toolbox with two learning
machines: Kridge (kernel ridge regression) and Neural (a neural network a.k.a.
“deep learning” model). At the top level we use a test procedure to assess the
performance of the final model (this is not an inference level). The top-level
inference algorithm Validation({GridCV(Kridge, MSE), GridCV(Neural, MSE)},
MSE) is decomposed into its elements recursively. Validation uses the data split
D = [DT r,DV a] to compare the learning machines Kridge and Neural (trained

10 Analysis of the AutoML Challenge Series 2015–2018 187

Table 10.1 Typical example of multi-level inference algorithm. The top-level algorithm Val-
idation({GridCV(Kridge, MSE), GridCV(Neural, MSE)}, MSE) is decomposed into its elements
recursively. Calling the method “train” on it using data DT rV a results in a function f , then tested
with test(f,MSE,DT e). The notation [.]CV indicates that results are averages over multiple data
splits (cross-validation). NA means “not applicable”. A model family F of parameters α and
hyper-parameters θ is represented as f(θ ,α). We derogate to the usual convention of putting
hyper-parameters last, the hyper-parameters are listed in decreasing order of inference level. F ,
thought of as a bottom level algorithm, does not perform any training: train(f(θ ,α)) just returns
the function f (x; θ ,α)

Parameters

Level Algorithm Fixed Varying Optimization performed Data split

NA f All All Performance assessment
(no inference)

DT e

4 Validation None All Final algorithm
selection using
validation data

D = [DT r ,DV a]

3 GridCV Model index i θ , γ,α 10-fold CV on regularly
sampled values of θ

DT r = [Dtr ,Dva]CV

2 Kridge(θ)

Neural(θ)

i, θ γ,α Virtual LOO CV to
select regularization
parameter γ

Dtr = [D\{d}
tr , d]CV

1 Kridge(θ , γ)

Neural(θ , γ)

i, θ , γ α Matrix inversion of
gradient descent to
compute α

Dtr

0 Kridge(θ , γ,α)

Neural(θ , γ,α)

All None NA NA

using DT r on the validation set DV a , using the mean-square error) (MSE) evaluation
function. The algorithm GridCV, a grid search with 10-fold cross-validation (CV)
MSE evaluation function, then optimizes the hyper-parameters θ . Internally, both
Kridge and Neural use virtual leave-one-out (LOO) cross-validation to adjust γ and
a classical L2 regularized risk functional to adjust α.

Borrowing from the conventional classification of feature selection methods
[11, 38, 46], model search strategies can be categorized into filters, wrappers,
and embedded methods (see Fig. 10.2). Filters are methods for narrowing down
the model space, without training the learner. Such methods include prepro-
cessing, feature construction, kernel design, architecture design, choice of prior
or regularizers, choice of noise model, and filter methods for feature selection.
Although some filters use training data, many incorporate human prior knowledge
of the task or knowledge compiled from previous tasks. Recently, [5] proposed to
apply collaborative filtering methods to model search. Wrapper methods consider
learners as a black-box capable of learning from examples and making predictions
once trained. They operate with a search algorithm in the hyper-parameter space
(grid search or stochastic search) and an evaluation function assessing the trained
learner’s performance (cross-validation error or Bayesian evidence). Embedded
methods are similar to wrappers, but they exploit the knowledge of the machine

188 I. Guyon et al.

learning algorithm to make the search more efficient. For instance, some embedded
methods compute the leave-one-out solution in a closed form, without leaving
anything out, i.e., by performing a single model training on all the training data (e.g.,
[38]). Other embedded methods jointly optimize parameters and hyper-parameters
[44, 50, 51].

In summary, many authors focus only on the efficiency of search, ignoring the
problem of overfitting the second level objective J2, which is often chosen to be
k-fold cross-validation with an arbitrary value for k. Bayesian methods introduce
techniques of overfitting avoidance via the notion of hyper-priors, but at the expense
of making assumptions on how the data were generated and without providing
guarantees of performance. In all the prior approaches to full model selection
we know of, there is no attempt to treat the problem as the optimization of a
regularized functional J2 with respect to both (1) modeling choices and (2) data
split. Much remains to be done to jointly address statistical and computational
issues. The AutoML challenge series offers benchmarks to compare and contrast
methods addressing these problems, free of the inventor/evaluator bias.

10.3 Data

We gathered a first pool of 70 datasets during the summer 2014 with the help
of numerous collaborators and ended up selecting 30 datasets for the 2015/2016
challenge (see Table 10.2 and the online appendix), chosen to illustrate a wide
variety of domains of applications: biology and medicine, ecology, energy and
sustainability management, image, text, audio, speech, video and other sensor data
processing, internet social media management and advertising, market analysis and
financial prediction. We preprocessed data to obtain feature representations (i.e.,
each example consists of a fixed number of numerical coefficients). Text, speech,
and video processing tasks were included in the challenge, but not in their native
variable-length representations.

For the 2018 challenge, three datasets from the first pool (but unused in the first
challenge) were selected and seven new datasets collected by the new organizers
and sponsors were added (see Table 10.3 and the online appendix).

Some datasets were obtained from public sources, but they were reformatted
into new representations to conceal their identity, except for the final round of the
2015/2016 challenge and the final phase of the 2018 challenge, which included
completely new data.

In the 2015/2016 challenge, data difficulty progressively increased from round
to round. Round 0 introduced five (public) datasets from previous challenges
illustrating the various difficulties encountered in subsequent rounds:

Novice Binary classification problems only. No missing data; no categorical
features; moderate number of features (<2,000); balanced classes. Challenge

10 Analysis of the AutoML Challenge Series 2015–2018 189

Ta
bl

e
10

.2
D

at
as

et
s

of
th

e
20

15
/2

01
6

A
ut

oM
L

ch
al

le
ng

e.
C

nu
m

be
ro

fc
la

ss
es

,C
ba

lc
la

ss
ba

la
nc

e,
Sp

ar
se

sp
ar

si
ty

,M
is

s
fr

ac
tio

n
of

m
is

si
ng

va
lu

es
,

C
at

ca
te

go
ri

ca
lv

ar
ia

bl
es

,I
rr

fr
ac

tio
n

of
ir

re
le

va
nt

va
ri

ab
le

s,
P

te
,P

va
,P

tr
nu

m
be

r
of

ex
am

pl
es

of
th

e
te

st
,v

al
id

at
io

n,
an

d
tr

ai
ni

ng
se

ts
,r

es
pe

ct
iv

el
y,

N
nu

m
be

r
of

fe
at

ur
es

,P
tr

/N
as

pe
ct

ra
tio

of
th

e
da

ta
se

t

R
nd

D
A
T
A
SE

T
T
as
k

M
et
ri
c

T
im

e
C

C
ba

l
Sp

ar
se

M
is
s

C
at

Ir
r

P
te

P
va

P
tr

N
P
tr
/N

0
1
A
D
U
LT

m
ul
ti
la
b
el

F
1

30
0

3
1

0.
16

0.
01

1
1

0.
5

97
68

48
84

34
,1
90

24
14

24
.5
8

0
2
C
A
D
A
T
A

re
gr
es
si
on

R
2

20
0

0
N
aN

0
0

0
0.
5

10
,6
40

50
00

50
00

16
31

2.
5

0
3
D
IG

IT
S

m
ul
ti
cl
as
s

B
A
C

30
0

10
1

0.
42

0
0

0.
5

35
,0
00

20
,0
00

15
,0
00

15
68

9.
57

0
4
D
O
R
O
T
H
E
A

bi
na

ry
A
U
C

10
0

2
0.
46

0.
99

0
0

0.
5

80
0

35
0

80
0

10
0,
00

0
0.
01

0
5
N
E
W

SG
R
O
U
P
S

m
ul
ti
cl
as
s

P
A
C

30
0

20
1

1
0

0
0

37
55

18
77

13
,1
42

61
,1
88

0.
21

1
1
C
H
R
IS
T
IN

E
bi
na

ry
B
A
C

12
00

2
1

0.
07

1
0

0
0.
5

20
84

83
4

54
18

16
36

3.
31

1
2
JA

SM
IN

E
bi
na

ry
B
A
C

12
00

2
1

0.
78

0
0

0.
5

17
56

52
6

29
84

14
4

20
.7
2

1
3
M
A
D
E
L
IN

E
bi
na

ry
B
A
C

12
00

2
1

1.
2e

-0
6

0
0

0.
92

32
40

10
80

31
40

25
9

12
.1
2

1
4
P
H
IL

IP
P
IN

E
bi
na

ry
B
A
C

12
00

2
1

0.
00

12
0

0
0.
5

46
64

11
66

58
32

30
8

18
.9
4

1
5
SY

LV
IN

E
bi
na

ry
B
A
C

12
00

2
1

0.
01

0
0

0.
5

10
,2
44

51
24

51
24

20
25

6.
2

2
1
A
L
B
E
R
T

bi
na

ry
F
1

12
00

2
1

0.
04

9
0.
14

1
0.
5

51
,0
48

25
,5
26

42
5,
24

0
78

54
51

.7
9

2
2
D
IL

B
E
R
T

m
ul
ti
cl
as
s

P
A
C

12
00

5
1

0
0

0
0.
16

97
20

48
60

10
,0
00

20
00

5
2

3
FA

B
E
R
T

m
ul
ti
cl
as
s

P
A
C

12
00

7
0.
96

0.
99

0
0

0.
5

23
54

11
77

82
37

80
0

10
.3

2
4
R
O
B
E
R
T

m
ul
ti
cl
as
s

B
A
C

12
00

10
1

0.
01

0
0

0
50

00
20

00
10

,0
00

72
00

1.
39

2
5
V
O
L
K
E
R
T

m
ul
ti
cl
as
s

P
A
C

12
00

10
0.
89

0.
34

0
0

0
70

00
35

00
58

,3
10

18
0

32
3.
94

3
1
A
L
E
X
IS

m
ul
ti
la
b
el

A
U
C

12
00

18
0.
92

0.
98

0
0

0
15

,5
69

77
84

54
,4
91

50
00

10
.9

3
2
D
IO

N
IS

m
ul
ti
cl
as
s

B
A
C

12
00

35
5

1
0.
11

0
0

0
12

,0
00

60
00

41
6,
18

8
60

69
36

.4
7

3
3
G
R
IG

O
R
IS

m
ul
ti
la
b
el

A
U
C

12
00

91
0.
87

1
0

0
0

99
20

64
86

45
,4
00

30
1,
56

1
0.
15

3
4
JA

N
N
IS

m
ul
ti
cl
as
s

B
A
C

12
00

4
0.
8

7.
3e

-0
5

0
0

0.
5

98
51

49
26

83
,7
33

54
15

50
.6
1

3
5
W
A
L
L
IS

m
ul
ti
cl
as
s

A
U
C

12
00

11
0.
91

1
0

0
0

81
96

40
98

10
,0
00

19
3,
73

1
0.
05

4
1
E
V
IT

A
bi
na

ry
A
U
C

12
00

2
0.
21

0.
91

0
0

0.
46

14
,0
00

80
00

20
,0
00

30
00

6.
67

4
2
F
L
O
R
A

re
gr
es
si
on

A
B
S

12
00

0
N
aN

0.
99

0
0

0.
25

20
00

20
00

15
,0
00

20
0,
00

0
0.
08

4
3
H
E
L
E
N
A

m
ul
ti
cl
as
s

B
A
C

12
00

10
0

0.
9

6e
-0
5

0
0

0
18

,6
28

93
14

65
,1
96

27
24

14
.6
7

4
4
T
A
N
IA

m
ul
ti
la
b
el

P
A
C

12
00

95
0.
79

1
0

0
0

44
,6
35

22
,5
14

15
7,
59

9
47

,2
36

3.
34

4
5
Y
O
L
A
N
D
A

re
gr
es
si
on

R
2

12
00

0
N
aN

1e
-0
7

0
0

0.
1

30
,0
00

30
,0
00

40
0,
00

0
10

0
40

00
5

1
A
R
T
U
R
O

m
ul
ti
cl
as
s

F
1

12
00

20
1

0.
82

0
0

0.
5

27
33

13
66

95
65

40
0

23
.9
1

5
2
C
A
R
L
O

bi
na

ry
P
A
C

12
00

2
0.
09

7
0.
00

27
0

0
0.
5

10
,0
00

10
,0
00

50
,0
00

10
70

46
.7
3

5
3
M
A
R
C
O

m
ul
ti
la
b
el

A
U
C

12
00

24
0.
76

0.
99

0
0

0
20

,4
82

20
,4
82

16
3,
86

0
15

,2
99

10
.7
1

5
4
P
A
B
L
O

re
gr
es
si
on

A
B
S

12
00

0
N
aN

0.
11

0
0

0.
5

23
,5
65

23
,5
65

18
8,
52

4
12

0
15

71
.0
3

5
5
W
A
L
D
O

m
ul
ti
cl
as
s

B
A
C

12
00

4
1

0.
02

9
0

1
0.
5

24
30

24
30

19
,4
39

27
0

72

190 I. Guyon et al.

Table 10.3 Datasets of the 2018 AutoML challenge. All tasks are binary classification problems.
The metric is the AUC for all tasks. The time budget is also the same for all datasets (1200 s). Phase
1 was the development phase and phase 2 the final “blind test” phase

Phase DATASET Cbal Sparse Miss Cat Irr Pte Pva Ptr N Ptr/N

1 1 ADA 1 0.67 0 0 0 41,471 415 4147 48 86.39
1 2 ARCENE 0.22 0.54 0 0 0 700 100 100 10,000 0.01
1 3 GINA 1 0.03 0.31 0 0 31,532 315 3153 970 3.25
1 4 GUILLERMO 0.33 0.53 0 0 0 5000 5000 20,000 4296 4.65
1 5 RL 0.10 0 0.11 1 0 24,803 0 31,406 22 1427.5
2 1 PM 0.01 0 0.11 1 0 20,000 0 29,964 89 224.71
2 2 RH 0.04 0.41 0 1 0 28,544 0 31,498 76 414.44
2 3 RI 0.02 0.09 0.26 1 0 26,744 0 30,562 113 270.46
2 4 RICCARDO 0.67 0.51 0 0 0 5000 5000 20,000 4296 4.65
2 5 RM 0.001 0 0.11 1 0 26,961 0 28,278 89 317.73

lies in dealing with sparse and full matrices, presence of irrelevant variables, and
various P tr/N .

Intermediate Binary and multi-class classification problems. Challenge lies in
dealing with unbalanced classes, number of classes, missing values, categorical
variables, and up to 7,000 features.

Advanced Binary, multi-class, and multi-label classification problems. Challenge
lies in dealing with up to 300,000 features.

Expert Classification and regression problems. Challenge lies in dealing with the
entire range of data complexity.

Master Classification and regression problems of all difficulties. Challenge lies
in learning from completely new datasets.

The datasets of the 2018 challenge were all binary classification problems.
Validation partitions were not used because of the design of this challenge, even
when they were available for some tasks. The three reused datasets had similar
difficulty as those of rounds 1 and 2 of the 2015/2016 challenge. However, the seven
new data sets introduced difficulties that were not present in the former challenge.
Most notably an extreme class imbalance, presence of categorical features and a
temporal dependency among instances that could be exploited by participants to
develop their methods.8 The datasets from both challenges are downloadable from
http://automl.chalearn.org/data.

10.4 Challenge Protocol

In this section, we describe design choices we made to ensure the thoroughness and
fairness of the evaluation. As previously indicated, we focus on supervised learning
tasks (classification and regression problems), without any human intervention,

8In RL, PM, RH, RI and RM datasets instances were chronologically sorted, this information was
made available to participants and could be used for developing their methods.

http://automl.chalearn.org/data

10 Analysis of the AutoML Challenge Series 2015–2018 191

within given time and computer resource constraints (Sect. 10.4.1), and given a
particular metric (Sect. 10.4.2), which varies from dataset to dataset. During the
challenges, the identity and description of the datasets is concealed (except in the
very first round or phase where sample data is distributed) to avoid the use of domain
knowledge and to push participants to design fully automated ML solutions. In the
2015/2016 AutoML challenge, the datasets were introduced in a series of rounds
(Sect. 10.4.3), alternating periods of code development (Tweakathon phases) and
blind tests of code without human intervention (AutoML phases). Either results or
code could be submitted during development phases, but code had to be submitted
to be part of the AutoML “blind test” ranking. In the 2018 edition of the AutoML
challenge, the protocol was simplified. We had only one round in two phases: a
development phase in which 5 datasets were released for practice purposes, and a
final “blind test” phase with 5 new datasets that were never used before.

10.4.1 Time Budget and Computational Resources

The Codalab platform provides computational resources shared by all participants.
We used up to 10 compute workers processing in parallel the queue of submissions
made by participants. Each compute worker was equipped with 8 cores x86_64.
Memory was increased from 24 to 56 GB after round 3 of the 2015/2016
AutoML challenge. For the 2018 AutoML challenge computing resources were
reduced, as we wanted to motivate the development of more efficient yet effective
AutoML solutions. We used 6 compute workers processing in parallel the queue of
submissions. Each compute worker was equipped with 2 cores x86_64 and 8 GB of
memory.

To ensure fairness, when a code submission was evaluated, a compute worker
was dedicated to processing that submission only, and its execution time was limited
to a given time budget (which may vary from dataset to dataset). The time budget
was provided to the participants with each dataset in its info file. It was generally set
to 1200 s (20 min) per dataset, for practical reasons, except in the first phase of the
first round. However, the participants did not know this ahead of time and therefore
their code had to be capable to manage a given time budget. The participants who
submitted results instead of code were not constrained by the time budget since
their code was run on their own platform. This was potentially advantageous for
entries counting towards the Final phases (immediately following a Tweakathon).
Participants wishing to also enter the AutoML (blind testing) phases, which required
submitting code, could submit both results and code (simultaneously). When results
were submitted, they were used as entries in the on-going phase. They did not need
to be produced by the submitted code; i.e., if a participant did not want to share
personal code, he/she could submit the sample code provided by the organizers
together with his/her results. The code was automatically forwarded to the AutoML
phases for “blind testing”. In AutoML phases, result submission was not possible.

192 I. Guyon et al.

The participants were encouraged to save and submit intermediate results so we
could draw learning curves. This was not exploited during the challenge. But we
study learning curves in this chapter to evaluate the capabilities of algorithms to
quickly attain good performances.

10.4.2 Scoring Metrics

The scores are computed by comparing submitted predictions to reference target
values. For each sample i, i = 1 : P (where P is the size of the validation set or
of the test set), the target value is a continuous numeric coefficient yi for regression
problems, a binary indicator in {0, 1} for two-class problems, or a vector of binary
indicators [yil] in {0, 1} for multi-class or multi-label classification problems (one
per class l). The participants had to submit prediction values matching as closely
as possible the target values, in the form of a continuous numeric coefficient qi for
regression problems and a vector of numeric coefficients [qil] in the range [0, 1] for
multi-class or multi-label classification problems (one per class l).

The provided starting kit contains an implementation in Python of all scoring
metrics used to evaluate the entries. Each dataset has its own scoring criterion
specified in its info file. All scores are normalized such that the expected value
of the score for a random prediction, based on class prior probabilities, is 0
and the optimal score is 1. Multi-label problems are treated as multiple binary
classification problems and are evaluated using the average of the scores of each
binary classification subproblem.

We first define the notation 〈·〉 for the average over all samples P indexed by i.
That is,

〈yi〉 = (1/P)

P∑

i=1

(yi). (10.2)

The score metrics are defined as follows:

R2 The coefficient of determination is used for regression problems only. The
metric is based on the mean squared error (MSE) and the variance (VAR), and
computed as

R2 = 1 − MSE/VAR, (10.3)

where MSE = 〈(yi − qi)
2〉 and VAR = 〈(yi − m)2〉, with m = 〈yi〉.

ABS This coefficient is similar to R2 but based on the mean absolute error (MAE)
and the mean absolute deviation (MAD), and computed as

ABS = 1 − MAE/MAD, (10.4)

10 Analysis of the AutoML Challenge Series 2015–2018 193

where MAE = 〈abs(yi − qi)〉 and MAD = 〈abs(yi − m)〉.
BAC Balanced accuracy is the average of class-wise accuracy for classification
problems—and the average of sensitivity (true positive rate) and specificity (true
negative rate) for binary classification:

BAC =

⎧
⎪⎨

⎪⎩

1
2 [TP

P + TN
N], for binary

1
C

C∑
i=1

TPi

Ni
, for multi-class

(10.5)

where P (N) is the number of positive (negative) examples, TP (TN) is the number
of well classified positive (negative) examples, C is the number of classes, TPi is
the number of well classified examples of class i and Ni the number of examples of
class i.

For binary classification problems, the class-wise accuracy is the fraction of
correct class predictions when qi is thresholded at 0.5, for each class. For multi-
label problems, the class-wise accuracy is averaged over all classes. For multi-class
problems, the predictions are binarized by selecting the class with maximum
prediction value arg maxl qil before computing the class-wise accuracy.

We normalize the metric as follows:

|BAC| = (BAC − R)/(1 − R), (10.6)

where R is the expected value of BAC for random predictions (i.e., R = 0.5 for
binary classification and R = (1/C) for C-class problems).

AUC The area under the ROC curve is used for ranking and binary classification
problems. The ROC curve is the curve of sensitivity vs. 1-specificity at various
prediction thresholds. The AUC and BAC values are the same for binary predictions.
The AUC is calculated for each class separately before averaging over all classes.
We normalize the metric as

|AUC| = 2AUC − 1. (10.7)

F1 score The harmonic mean of precision and recall is computed as

F1 = 2 ∗ (precision ∗ recall)/(precision + recall), (10.8)

precision = true positive/(true positive + false positive) (10.9)

recall = true positive/(true positive + false negative) (10.10)

Prediction thresholding and class averaging is handled similarly as in BAC. We
normalize the metric as follows:

194 I. Guyon et al.

|F1| = (F1 − R)/(1 − R), (10.11)

where R is the expected value of F1 for random predictions (see BAC).

PAC Probabilistic accuracy is based on the cross-entropy (or log loss) and com-
puted as

PAC = exp(−CE), (10.12)

CE =

⎧
⎪⎪⎨

⎪⎪⎩

average
∑

l log(qil), for multi-class

−〈yi log(qi),

+(1 − yi) log(1 − qi)〉, for binary and multi-label

(10.13)

Class averaging is performed after taking the exponential in the multi-label case.
We normalize the metric as follows:

|PAC| = (PAC − R)/(1 − R), (10.14)

where R is the score obtained using qi = 〈yi〉 or qil = 〈yil〉 (i.e., using as predictions
the fraction of positive class examples, as an estimate of the prior probability).

Note that the normalization of R2, ABS, and PAC uses the average target value
qi = 〈yi〉 or qil = 〈yil〉. In contrast, the normalization of BAC, AUC, and F1 uses a
random prediction of one of the classes with uniform probability.

Only R2 and ABS are meaningful for regression; we compute the other metrics
for completeness by replacing the target values with binary values after thresholding
them in the mid-range.

10.4.3 Rounds and Phases in the 2015/2016 Challenge

The 2015/2016 challenge was run in multiple phases grouped in six rounds. Round
0 (Preparation) was a practice round using publicly available datasets. It was
followed by five rounds of progressive difficulty (Novice, Intermediate, Advanced,
Expert, and Master). Except for rounds 0 and 5, all rounds included three phases
that alternated AutoML and Tweakathons contests. These phases are described in
Table 10.4.

Submissions were made in Tweakathon phases only. The results of the latest
submission were shown on the leaderboard and such submission automatically
migrated to the following phase. In this way, the code of participants who abandoned
before the end of the challenge had a chance to be tested in subsequent rounds and
phases. New participants could enter at any time. Prizes were awarded in phases
marked with a * during which there was no submission. To participate in phase
AutoML[n], code had to be submitted in Tweakathon[n-1].

10 Analysis of the AutoML Challenge Series 2015–2018 195

Table 10.4 Phases of round n in the 2015/2016 challenge. For each dataset, one labeled training
set is provided and two unlabeled sets (validation set and test set) are provided for testing

Phase in round
[n] Goal Duration Submissions Data

Leader-board
scores Prizes

* AutoML[n] Blind Short NONE New datasets, Test Yes
test (code not set
of code migrated) downloadable results

Tweakathon[n] Manual Months Code and/ Datasets Validation No
tweaking or results downloadable set results

* Final[n] Results of Short NONE NA Test Yes
Tweakathon (results set
revealed migrated) results

In order to encourage participants to try GPUs and deep learning, a GPU track
sponsored by NVIDIA was included in Round 4.

To participate in the Final[n], code or results had to be submitted in
Tweakathon[n]. If both code and (well-formatted) results were submitted, the
results were used for scoring rather than rerunning the code in Tweakathon[n]
and Final[n]. The code was executed when results were unavailable or not well
formatted. Thus, there was no disadvantage in submitting both results and code. If
a participant submitted both results and code, different methods could be used to
enter the Tweakathon/Final phases and the AutoML phases. Submissions were made
only during Tweakathons, with a maximum of five submissions per day. Immediate
feedback was provided on the leaderboard on validation data. The participants were
ranked on the basis of test performance during the Final and AutoML phases.

We provided baseline software using the ML library scikit-learn [55]. It uses
ensemble methods, which improve over time by adding more base learners. Other
than the number of base learners, the default hyper-parameter settings were used.
The participants were not obliged to use the Python language nor the main Python
script we gave as an example. However, most participants found it convenient to
use the main python script, which managed the sparse format, the any-time learning
settings and the scoring metrics. Many limited themselves to search for the best
model in the scikit-learn library. This shows the importance of providing a good
starting kit, but also the danger of biasing results towards particular solutions.

10.4.4 Phases in the 2018 Challenge

The 2015/2016 AutoML challenge was very long and few teams participated in
all rounds. Further, even though there was no obligation to participate in previous
rounds to enter new rounds, new potential participants felt they would be at a
disadvantage. Hence, we believe it is preferable to organize recurrent yearly events,
each with their own workshop and publication opportunity. This provides a good
balance between competition and collaboration.

196 I. Guyon et al.

In 2018, we organized a single round of AutoML competition in two phases. In
this simplified protocol, the participants could practice on five datasets during the
first (development) phase, by either submitting code or results. Their performances
were revealed immediately, as they became available, on the leaderboard.

The last submission of the development phase was automatically forwarded to
the second phase: the AutoML “blind test” phase. In this second phase, which was
the only one counting towards the prizes, the participants’ code was automatically
evaluated on five new datasets on the Codalab platform. The datasets were not
revealed to the participants. Hence, submissions that did not include code capable of
being trained and tested automatically were not ranked in the final phase and could
not compete towards the prizes.

We provided the same starting kit as in the AutoML 2015/2016 challenge, but
the participants also had access to the code of the winners of the previous challenge.

10.5 Results

This section provides a brief description of the results obtained during both
challenges, explains the methods used by the participants and their elements of
novelty, and provides the analysis of post-challenge experiments conducted to
answer specific questions on the effectiveness of model search techniques.

10.5.1 Scores Obtained in the 2015/2016 Challenge

The 2015/2016 challenge lasted 18 months (December 8, 2014 to May 1, 2016). By
the end of the challenge, practical solutions were obtained and open-sourced, such
as the solution of the winners [25].

Table 10.5 presents the results on the test set in the AutoML phases (blind testing)
and the Final phases (one time testing on the test set revealed at the end of the
Tweakathon phases). Ties were broken by giving preference to the participant who
submitted first. The table only reports the results of the top-ranking participants.
We also show in Fig. 10.3a comparison of the leaderboard performances of all
participants. We plot in Fig. 10.3a the Tweakathon performances on the final test
set vs. those on the validation set, which reveals no significant overfitting to the
validation set, except for a few outliers. In Fig. 10.3b we report the performance in
AutoML result (blind testing) vs. Tweakathon final test results (manual adjustments
possible). We see that many entries were made in phase 1 (binary classification) and
then participation declined as the tasks became harder. Some participants put a lot of
effort in Tweakathons and far exceeded their AutoML performances (e.g. Djajetic
and AAD Freiburg).

There is still room for improvement by manual tweaking and/or additional com-
putational resources, as revealed by the significant differences remaining between
Tweakathon and AutoML (blind testing) results (Table 10.5 and Fig. 10.3b). In

10 Analysis of the AutoML Challenge Series 2015–2018 197

Table 10.5 Results of the 2015/2016 challenge winners. < R > is the average rank over all five
data sets of the round and it was used to rank the participants. < S > is the average score over the
five data sets of the round. UP is the percent increase in performance between the average perfor-
mance of the winners in the AutoML phase and the Final phase of the same round. The GPU track
was run in round 4. Team names are abbreviated as follows: aad aad_freiburg, djaj djajetic, marc
marc.boulle, tadej tadejs, abhi abhishek4, ideal ideal.intel.analytics, mat matthias.vonrohr, lisheng
lise_sun, asml amsl.intel.com, jlr44 backstreet.bayes, post postech.mlg_exbrain, ref reference

AutoML Final
Rnd Ended Winners < R > < S > Ended Winners < R > < S > UP (%)

1. ideal 1.40 0.8159
0 NA NA NA NA 02/14/15 2. abhi 3.60 0.7764 NA

3. aad 4.00 0.7714
1. aad 2.80 0.6401 1. aad 2.20 0.7479

1 02/15/15 2. jrl44 3.80 0.6226 06/14/15 2. ideal 3.20 0.7324 15
3. tadej 4.20 0.6456 3. amsl 4.60 0.7158
1. jrl44 1.80 0.4320 1. ideal 2.00 0.5180

2 06/15/15 2. aad 3.40 0.3529 11/14/15 2. djaj 2.20 0.5142 35
3. mat 4.40 0.3449 3. aad 3.20 0.4977
1. djaj 2.40 0.0901 1. aad 1.80 0.8071

3 11/15/15 2. NA NA NA 02/19/16 2. djaj 2.00 0.7912 481
3. NA NA NA 3. ideal 3.80 0.7547
1. aad 2.20 0.3881 1. aad 1.60 0.5238

4 02/20/16 2. djaj 2.20 0.3841 05/1/16 2. ideal 3.60 0.4998 31
3. marc 2.60 0.3815 3. abhi 5.40 0.4911

G 1. abhi 5.60 0.4913
P NA NA NA NA 05/1/16 2. djaj 6.20 0.4900 NA
U 3. aad 6.20 0.4884

1. aad 1.60 0.5282
5 05/1/16 2. djaj 2.60 0.5379 NA NA NA NA NA

3. post 4.60 0.4150

Fig. 10.3 Performances of all participants in the 2015/2016 challenge. We show the last entry
of all participants in all phases of the 2015/2016 challenge on all datasets from the competition
leaderboards. The symbols are color coded by round, as in Table 10.5. (a) Overfitting in
Tweakathons? We plot the performance on the final test set vs. the performance on the validation
set. The validation performances were visible to the participants on the leaderboard while they
were tuning their models. The final test set performances were only revealed at the end of the
Tweakathon. Except for a few outliers, most participants did not overfit the leaderboard. (b)
Gap between AutoML and Tweakathons? We plot the Tweakathons vs. AutoML performance
to visualize improvements obtained by manual tweaking and additional computational resources
available in Tweakathons. Points above the diagonal indicate such improvements

198 I. Guyon et al.

Round 3, all but one participant failed to turn in working solutions during blind
testing, because of the introduction of sparse datasets. Fortunately, the participants
recovered, and, by the end of the challenge, several submissions were capable of
returning solutions on all the datasets of the challenge. But learning schemas can
still be optimized because, even discarding Round 3, there is a 15–35% performance
gap between AutoML phases (blind testing with computational constraints) and
Tweakathon phases (human intervention and additional compute power). The GPU
track offered (in round 4 only) a platform for trying Deep Learning methods.
This allowed the participants to demonstrate that, given additional compute power,
deep learning methods were competitive with the best solutions of the CPU track.
However, no Deep Learning method was competitive with the limited compute
power and time budget offered in the CPU track.

10.5.2 Scores Obtained in the 2018 Challenge

The 2018 challenge lasted 4 months (November 30, 2017 to March 31, 2018). As
in the previous challenge, top-ranked solutions were obtained and open sourced.
Table 10.6 shows the results of both phases of the 2018 challenge. As a reminder,
this challenge had a feedback phase and a blind test phase, the performances of the
winners in each phase are reported.

Performance in this challenge was slightly lower than that observed in the
previous edition. This was due to the difficulty of the tasks (see below) and the fact
that data sets in the feedback phase included three deceiving datasets (associated to
tasks from previous challenges, but not necessarily similar to the data sets used in
the blind test phase) out of five. We decided to proceed this way to emulate a realistic
AutoML setting. Although harder, several teams succeeded at returning submissions
performing better than chance.

The winner of the challenge was the same team that won the 2015/2016 AutoML
challenge: AAD Freiburg [28]. The 2018 challenge helped to incrementally improve
the solution devised by this team in the previous challenge. Interestingly, the second-
placed team in the challenge proposed a solution that is similar in spirit to that of
the winning team. For this challenge, there was a triple tie in the third place, prizes

Table 10.6 Results of the 2018 challenge winners. Each phase was run on five different datasets.
We show the winners of the AutoML (blind test) phase and for comparison their performances in
the Feedback phase. The full tables can be found at https://competitions.codalab.org/competitions/
17767

2. AutoML phase 1. Feedback phase
Ended Winners < R > < S > Ended Performance < R > < S >

1. aad freiburg 2.80 0.4341 aad freiburg 9.0 0.7422
2. narnars0 3.80 0.4180 narnars0 4.40 0.7324

03/31/18 3. wlWangl 5.40 0.3857 03/12/18 wlWangl 4.40 0.8029
3. thanhdng 5.40 0.3874 thanhdng 14.0 0.6845
3. Malik 5.40 0.3863 Malik 13.8 0.7116

https://competitions.codalab.org/competitions/17767
https://competitions.codalab.org/competitions/17767

10 Analysis of the AutoML Challenge Series 2015–2018 199

Fig. 10.4 Distribution of performance on the datasets of the 2015/2016 challenge (violin
plots). We show for each dataset the performances of participants at the end of AutoML and
Tweakathon phases, as revealed on the leaderboard. The median and quartiles are represented by
horizontal notches. The distribution profile (as fitted with a kernel method) and its mirror image
are represented vertically by the gray shaded area. We show in red the median performance over
all datasets and the corresponding quartiles. (a) AutoML (blind testing). The first 5 datasets were
provided for development purpose only and were not used for blind testing in an AutoML phase.
In round 3, the code of many participants failed because of computational limits. (b) Tweakathon
(manual tweaking). The last five datasets were only used for final blind testing and the data were
never revealed for a Tweakathon. Round 3 was not particularly difficult with additional compute
power and memory

were split among the tied teams. Among the winners, two teams used the starting
kit. Most of the other teams used either the starting kit or the solution open sourced
by the AAD Freiburg team in the 2015/2016 challenge.

10.5.3 Difficulty of Datasets/Tasks

In this section, we assess dataset difficulty, or rather task difficulty since the par-
ticipants had to solve prediction problems for given datasets, performance metrics,
and computational time constraints. The tasks of the challenge presented a variety
of difficulties, but those were not equally represented (Tables 10.2 and 10.3):

• Categorical variables and missing data. Few datasets had categorical variables
in the 2015/2016 challenge (ADULT, ALBERT, and WALDO), and not very
many variables were categorical in those datasets. Likewise, very few datasets
had missing values (ADULT and ALBERT) and those included only a few
missing values. So neither categorical variables nor missing data presented a
real difficulty in this challenge, though ALBERT turned out to be one of the
most difficult datasets because it was also one of the largest ones. This situation
changed drastically for the 2018 challenge where five out of the ten datasets
included categorical variables (RL, PM, RI, RH and RM) and missing values

200 I. Guyon et al.

Fig. 10.5 Difficulty of tasks in the 2015/2016 challenge. We consider two indicators of task
difficulty (dataset, metric, and time budget are factored into the task): intrinsic difficulty (estimated
by the performance of the winners) and modeling difficulty (difference between the performance
of the winner and a baseline method, here Selective Naive Bayes (SNB)). The best tasks should
have a relatively low intrinsic difficulty and a high modeling difficulty to separate participants well

(GINA, PM, RL, RI and RM). These were among the main aspects that caused
the low performance of most methods in the blind test phase.

• Large number of classes. Only one dataset had a large number of classes
(DIONIS with 355 classes). This dataset turned out to be difficult for participants,
particularly because it is also large and has unbalanced classes. However, datasets
with large number of classes are not well represented in this challenge. HELENA,
which has the second largest number of classes (100 classes), did not stand out
as a particularly difficult dataset. However, in general, multi-class problems were
found to be more difficult than binary classification problems.

• Regression. We had only four regression problems: CADATA, FLORA,
YOLANDA, PABLO.

• Sparse data. A significant number of datasets had sparse data (DOROTHEA,
FABERT, ALEXIS, WALLIS, GRIGORIS, EVITA, FLORA, TANIA, ARTURO,
MARCO). Several of them turned out to be difficult, particularly ALEXIS,
WALLIS, and GRIGORIS, which are large datasets in sparse format, which
cause memory problems when they were introduced in round 3 of the 2015/2016
challenge. We later increased the amount of memory on the servers and similar
datasets introduced in later phases caused less difficulty.

• Large datasets. We expected the ratio of the number N of features over the
number Ptr of training examples to be a particular difficulty (because of the risk

10 Analysis of the AutoML Challenge Series 2015–2018 201

Fig. 10.6 Modeling Difficulty vs. intrinsic difficulty. For the AutoML phases of the 2015/2016
challenge, we plot an indicator of modeling difficulty vs. and indicator of intrinsic difficulty
of datasets (leaderboard highest score). (a) Modeling difficulty is estimated by the score of the
best untuned model (over KNN, NaiveBayes, RandomForest and SGD (LINEAR)). (b) Modeling
difficulty is estimated by the score of the Selective Naive Bayes (SNB) model. In all cases,
higher scores are better and negative/NaN scores are replaced by zero. The horizontal and vertical
separation lines represent the medians. The lower right quadrant represents the datasets with low
intrinsic difficulty and high modeling difficulty: those are the best datasets for benchmarking
purposes

Fig. 10.7 Meta-features most predictive of dataset intrinsic difficulty (2015/2016 challenge
data). Meta-feature GINI importances are computed by a random forest regressor, trained to
predict the highest participant leaderboard score using meta-features of datasets. Description of
these meta-features can be found in Table 1 of the supplementary material of [25]. Blue and red
colors respectively correspond to positive and negative correlations (Pearson correlations between
meta features and score medians)

202 I. Guyon et al.

of overfitting), but modern machine learning algorithm are robust against over-
fitting. The main difficulty was rather the PRODUCT N ∗ Ptr . Most participants
attempted to load the entire dataset in memory and convert sparse matrices into
full matrices. This took very long and then caused loss in performances or pro-
gram failures. Large datasets with N ∗Ptr > 20.106 include ALBERT, ALEXIS,
DIONIS, GRIGORIS, WALLIS, EVITA, FLORA, TANIA, MARCO, GINA,
GUILLERMO, PM, RH, RI, RICCARDO, RM. Those overlap significantly with
the datasets with sparse data (in bold). For the 2018 challenge, all data sets in
the final phase exceeded this threshold, and this was the reason of why the code
from several teams failed to finish within the time budget. Only ALBERT and
DIONIS were “truly” large (few features, but over 400,000 training examples).

• Presence of probes: Some datasets had a certain proportion of distractor
features or irrelevant variables (probes). Those were obtained by randomly
permuting the values of real features. Two-third of the datasets contained
probes ADULT, CADATA, DIGITS, DOROTHEA, CHRISTINE, JASMINE,
MADELINE, PHILIPPINE, SYLVINE, ALBERT, DILBERT, FABERT, JAN-
NIS, EVITA, FLORA, YOLANDA, ARTURO, CARLO, PABLO, WALDO.
This allowed us in part to make datasets that were in the public domain less
recognizable.

• Type of metric: We used six metrics, as defined in Sect. 10.4.2. The distribution
of tasks in which they were used was not uniform: BAC (11), AUC (6), F1 (3),
and PAC (6) for classification, and R2 (2) and ABS (2) for regression. This is
because not all metrics lend themselves naturally to all types of applications.

• Time budget: Although in round 0 we experimented with giving different time
budgets for the various datasets, we ended up assigning 1200 s (20 min) to all
datasets in all other rounds. Because the datasets varied in size, this put more
constraints on large datasets.

• Class imbalance: This was not a difficulty found in the 2015/2016 datasets.
However, extreme class imbalance was the main difficulty for the 2018 edition.
Imbalance ratios lower or equal to 1–10 were present in RL, PM, RH, RI, and
RM datasets, in the latter data set class imbalance was as extreme as 1–1000.
This was the reason why the performance of teams was low.

Fig. 10.4 gives a first view of dataset/task difficulty for the 2015/2016 challenge.
It captures, in a schematic way, the distribution of the participants’ performance in
all rounds on test data, in both AutoML and Tweakathon phases. One can see that the
median performance over all datasets improves between AutoML and Tweakathon,
as can be expected. Correspondingly, the average spread in performance (quartile)
decreases. Let us take a closer look at the AutoML phases: The “accident” of
round 3 in which many methods failed in blind testing is visible (introduction of
sparse matrices and larger datasets).9 Round 2 (multi-class classification) appears to
have also introduced a significantly higher degree of difficulty than round 1 (binary

9Examples of sparse datasets were provided in round 0, but they were of smaller size.

10 Analysis of the AutoML Challenge Series 2015–2018 203

classification). In round 4, two regression problems were introduced (FLORA and
YOLANDA), but it does not seem that regression was found significantly harder
than multiclass classification. In round 5 no novelty was introduced. We can observe
that, after round 3, the dataset median scores are scattered around the overall
median. Looking at the corresponding scores in the Tweakathon phases, one can
remark that, once the participants recovered from their surprise, round 3 was not
particularly difficult for them. Rounds 2 and 4 were comparatively more difficult.

For the datasets used in the 2018 challenge, the tasks’ difficulty was clearly
associated with extreme class imbalance, inclusion of categorical variables and high
dimensionality in terms of N ×Ptr . However, for the 2015/2016 challenge data sets
we found that it was generally difficult to guess what makes a task easy or hard,
except for dataset size, which pushed participants to the frontier of the hardware
capabilities and forced them to improve the computational efficiency of their
methods. Binary classification problems (and multi-label problems) are intrinsically
“easier” than multiclass problems, for which “guessing” has a lower probability of
success. This partially explains the higher median performance in rounds 1 and 3,
which are dominated by binary and multi-label classification problems. There is not
a large enough number of datasets illustrating each type of other difficulties to draw
other conclusions.

We ventured however to try to find summary statistics capturing overall takes
difficulty. If one assumes that data are generated from an i.i.d.10 process of the type:

y = F(x, noise)

where y is the target value, x is the input feature vector, F is a function, and noise is
some random noise drawn from an unknown distribution, then the difficulty of the
learning problem can be separated in two aspects:

1. Intrinsic difficulty, linked to the amount of noise or the signal to noise ratio.
Given an infinite amount of data and an unbiased learning machine F̂ capable
of identifying F , the prediction performances cannot exceed a given maximum
value, corresponding to F̂ = F .

2. Modeling difficulty, linked to the bias and variance of estimators F̂ , in
connection with the limited amount of training data and limited computational
resources, and the possibly large number or parameters and hyper-parameters to
estimate.

Evaluating the intrinsic difficulty is impossible unless we know F . Our best
approximation of F is the winners’ solution. We use therefore the winners’
performance as an estimator of the best achievable performance. This estimator
may have both bias and variance: it is possibly biased because the winners may be
under-fitting training data; it may have variance because of the limited amount of

10Independently and Identically Distributed samples.

204 I. Guyon et al.

test data. Under-fitting is difficult to test. Its symptoms may be that the variance or
the entropy of the predictions is less than those of the target values.

Evaluating the modeling difficulty is also impossible unless we know F and
the model class. In the absence of knowledge on the model class, data scientists
often use generic predictive models, agnostic with respect to the data generating
process. Such models range from very basic models that are highly biased towards
“simplicity” and smoothness of predictions (e.g., regularized linear models) to
highly versatile unbiased models that can learn any function given enough data
(e.g., ensembles of decision trees). To indirectly assess modeling difficulty, we
resorted to use the difference in performance between the method of the challenge
winner and that of (a) the best of four “untuned” basic models (taken from classical
techniques provided in the scikit-learn library [55] with default hyper-parameters)
or (b) Selective Naive Bayes (SNB) [12, 13], a highly regularized model (biased
towards simplicity), providing a very robust and simple baseline.

Figs. 10.5 and 10.6 give representations of our estimates of intrinsic and
modeling difficulties for the 2015/2016 challenge datasets. It can be seen that
the datasets of round 0 were among the easiest (except perhaps NEWSGROUP).
Those were relatively small (and well-known) datasets. Surprisingly, the datasets
of round 3 were also rather easy, despite the fact that most participants failed on
them when they were introduced (largely because of memory limitations: scikit-
learn algorithms were not optimized for sparse datasets and it was not possible to fit
in memory the data matrix converted to a dense matrix). Two datasets have a small
intrinsic difficulty but a large modeling difficulty: MADELINE and DILBERT.
MADELINE is an artificial dataset that is very non-linear (clusters or 2 classes
positioned on the vertices of a hyper-cube in a 5 dimensional space) and therefore
very difficult for Naïve Bayes. DILBERT is an image recognition dataset with
images of objects rotated in all sorts of positions, also very difficult for Naïve Bayes.
The datasets of the last 2 phases seem to have a large intrinsic difficulty compared
to the modeling difficulty. But this can be deceiving because the datasets are new to
the machine learning community and the performances of the winners may still be
far from the best attainable performance.

We attempted to predict the intrinsic difficulty (as measured by the winners’
performance) from the set of meta features used by AAD Freiburg for meta-
learning [25], which are part of OpenML [67], using a Random Forest classifier
and ranked the meta features in order of importance (most selected by RF). The list
of meta features is provided in the online appendix. The three meta-features that
predict dataset difficulty best (Fig. 10.7) are:

• LandmarkDecisionTree: performance of a decision tree classifier.
• Landmark1NN: performance of a nearest neighbor classifier.
• SkewnessMin: min over skewness of all features. Skewness measures the

symmetry of a distribution. A positive skewness value means that there is more
weight in the left tail of the distribution.

10 Analysis of the AutoML Challenge Series 2015–2018 205

10.5.4 Hyper-parameter Optimization

Many participants used the scikit-learn (sklearn) package, including the winning
group AAD Freiburg, which produced the auto-sklearn software. We used the
auto-sklearn API to conduct post-challenge systematic studies of the effectiveness
of hyper-parameter optimization. We compared the performances obtained with
default hyper-parameter settings in scikit-learn and with hyper-parameters opti-
mized with auto-sklearn,11 both within the time budgets as imposed during the
challenge, for four “representative” basic methods: k-nearest neighbors (KNN),
naive Bayes (NB), Random Forest (RF), and a linear model trained with stochastic
gradient descent (SGD-linear12). The results are shown in Fig. 10.8. We see that
hyper-parameter optimization usually improves performance, but not always. The
advantage of hyper-parameter tuning comes mostly from its flexibility of switching
the optimization metric to the one imposed by the task and from finding hyper-
parameters that work well given the current dataset and metric. However, in some
cases it was not possible to perform hyper-parameter optimization within the time
budget due to the data set size (score ≤ 0). Thus, there remains future work on how

Fig. 10.8 Hyper-parameter tuning (2015/2016 challenge data). We compare the performances
obtained with default hyper-parameters and those with hyper-parameters optimized with auto-
sklearn, within the same time budgets as given during the challenge. The performances of
predictors which failed to return results in the allotted time are replaced by zero. Note that returning
a prediction of chance level also resulted in a score of zero

11We use sklearn 0.16.1 and auto-sklearn 0.4.0 to mimic the challenge environment.
12We set the loss of SGD to be ‘log’ in scikit-learn for these experiments.

206 I. Guyon et al.

to perform thorough hyper-parameter tuning given rigid time constraints and huge
datasets (Fig. 10.8).

We also compared the performances obtained with different scoring metrics
(Fig. 10.9). Basic methods do not give a choice of metrics to be optimized, but auto-
sklearn post-fitted the metrics of the challenge tasks. Consequently, when “common
metrics” (BAC and R2) are used, the method of the challenge winners, which is not
optimized for BAC/R2, does not usually outperform basic methods. Conversely,
when the metrics of the challenge are used, there is often a clear gap between the
basic methods and the winners, but not always (RF-auto usually shows a comparable
performance, sometimes even outperforms the winners).

10.5.5 Meta-learning

One question is whether meta-learning [14] is possible, that is learning to predict
whether a given classifier will perform well on future datasets (without actually
training it), based on its past performances on other datasets. We investigated
whether it is possible to predict which basic method will perform best based on the
meta-learning features of auto-sklearn (see the online appendix). We removed the
“Landmark” features from the set of meta features because those are performances
of basic predictors (albeit rather poor ones with many missing values), which would
lead to a form of “data leakage”.

We used four basic predictors:

Fig. 10.9 Comparison of metrics (2015/2016 challenge). (a) We used the metrics of the
challenge. (b) We used the normalized balanced accuracy for all classification problems and the R2

metric for regression problems. By comparing the two figures, we can see that the winner remains
top-ranking in most cases, regardless of the metric. There is no basic method that dominates all
others. Although RF-auto (Random Forest with optimized HP) is very strong, it is sometimes
outperformed by other methods. Plain linear model SGD-def sometimes wins when common
metrics are used, but the winners perform better with the metrics of the challenge. Overall, the
technique of the winners proved to be effective

10 Analysis of the AutoML Challenge Series 2015–2018 207

Fig. 10.10 Linear discriminant analysis. (a) Dataset scatter plot in principal axes. We have
trained a LDA using X = meta features, except landmarks; y = which model won of four basic
models (NB, SGD-linear, KNN, RF). The performance of the basic models is measured using
the common metrics. The models were trained with default hyper-parameters. In the space of
the two first LDA components, each point represents one dataset. The colors denote the winning
basic models. The opacity reflects the scores of the corresponding winning model (more opaque is
better). (b) Meta feature importances computed as scaling factors of each LDA component

208 I. Guyon et al.

• NB: Naive Bayes
• SGD-linear: Linear model (trained with stochastic gradient descent)
• KNN: K-nearest neighbors
• RF: Random Forest

We used the implementation of the scikit-learn library with default hyper-parameter
settings. In Fig. 10.10, we show the two first Linear Discriminant Analysis (LDA)
components, when training an LDA classifier on the meta-features to predict which
basic classifier will perform best. The methods separate into three distinct clusters,
one of them grouping the non-linear methods that are poorly separated (KNN and
RF) and the two others being NB and linear-SGD.

The features that are most predictive all have to do with “ClassProbability”
and “PercentageOfMissingValues”, indicating that the class imbalance and/or large
number of classes (in a multi-class problem) and the percentage of missing values
might be important, but there is a high chance of overfitting as indicated by an
unstable ranking of the best features under resampling of the training data.

10.5.6 Methods Used in the Challenges

A brief description of methods used in both challenges is provided in the online
appendix, together with the results of a survey on methods that we conducted after
the challenges. In light of the overview of Sect. 10.2 and the results presented in
the previous section, we may wonder whether a dominant methodology for solving
the AutoML problem has emerged and whether particular technical solutions were
widely adopted. In this section we call “model space” the set of all models under
consideration. We call “basic models” (also called elsewhere “simple models”,
“individual models”, “base learners”) the member of a library of models from which
our hyper-models of model ensembles are built.

Ensembling: dealing with over-fitting and any-time learning Ensembling is the
big AutoML challenge series winner since it is used by over 80% of the participants
and by all the top-ranking ones. While a few years ago the hottest issue in model
selection and hyper-parameter optimization was over-fitting, in present days the
problem seems to have been largely avoided by using ensembling techniques. In
the 2015/2016 challenge, we varied the ratio of number of training examples over
number of variables (P tr/N) by several orders of magnitude. Five datasets had
a ratio P tr/N lower than one (dorothea, newsgroup, grigoris, wallis, and flora),
which is a case lending itself particularly to over-fitting. Although P tr/N is the
most predictive variable of the median performance of the participants, there is no
indication that the datasets with P tr/N < 1 were particularly difficult for the partic-
ipants (Fig. 10.5). Ensembles of predictors have the additional benefit of addressing
in a simple way the “any-time learning” problem by growing progressively a bigger
ensemble of predictors, improving performance over time. All trained predictors are
usually incorporated in the ensemble. For instance, if cross-validation is used, the

10 Analysis of the AutoML Challenge Series 2015–2018 209

predictors of all folds are directly incorporated in the ensemble, which saves the
computational time of retraining a single model on the best HP selected and may
yield more robust solutions (though slightly more biased due to the smaller sample
size). The approaches differ in the way they weigh the contributions of the various
predictors. Some methods use the same weight for all predictors (this is the case
of bagging methods such as Random Forest and of Bayesian methods that sample
predictors according to their posterior probability in model space). Some methods
assess the weights of the predictors as part of learning (this is the case of boosting
methods, for instance). One simple and effective method to create ensembles of
heterogeneous models was proposed by [16]. It was used successfully in several
past challenges, e.g., [52] and is the method implemented by the aad_f reibug

team, one of the strongest participants in both challenges [25]. The method consists
in cycling several times over all trained model and incorporating in the ensemble
at each cycle the model which most improves the performance of the ensemble.
Models vote with weight 1, but they can be incorporated multiple times, which
de facto results in weighting them. This method permits to recompute very fast the
weights of the models if cross-validated predictions are saved. Moreover, the method
allows optimizing the ensemble for any metric by post-fitting the predictions of the
ensemble to the desired metric (an aspect which was important in this challenge).

Model evaluation: cross-validation or simple validation Evaluating the pre-
dictive accuracy of models is a critical and necessary building block of any
model selection of ensembling method. Model selection criteria computed from
the predictive accuracy of basic models evaluated from training data, by training
a single time on all the training data (possibly at the expense of minor additional
calculations), such as performance bounds, were not used at all, as was already the
case in previous challenges we organized [35]. Cross-validation was widely used,
particularly K-fold cross-validation. However, basic models were often “cheaply”
evaluated on just one fold to allow quickly discarding non-promising areas of model
space. This is a technique used more and more frequently to help speed up search.
Another speed-up strategy is to train on a subset of the training examples and
monitor the learning curve. The “freeze-thaw” strategy [64] halts training of models
that do not look promising on the basis of the learning curve, but may restart training
them at a later point. This was used, e.g., by [48] in the 2015/2016 challenge.

Model space: Homogeneous vs. heterogeneous An unsettled question is whether
one should search a large or small model space. The challenge did not allow us
to give a definite answer to this question. Most participants opted for searching a
relatively large model space, including a wide variety of models found in the scikit-
learn library. Yet, one of the strongest entrants (the Intel team) submitted results
simply obtained with a boosted decision tree (i.e., consisting of a homogeneous set
of weak learners/basic models). Clearly, it suffices to use just one machine learning
approach that is a universal approximator to be able to learn anything, given enough
training data. So why include several? It is a question of rate of convergence: how
fast we climb the learning curve. Including stronger basic models is one way to
climb the learning curve faster. Our post-challenge experiments (Fig. 10.9) reveal

210 I. Guyon et al.

that the scikit-learn version of Random Forest (an ensemble of homogeneous basic
models—decision trees) does not usually perform as well as the winners’ version,
hinting that there is a lot of know-how in the Intel solution, which is also based on
ensembles of decision tree, that is not captured by a basic ensemble of decision trees
such as RF. We hope that more principled research will be conducted on this topic
in the future.

Search strategies: Filter, wrapper, and embedded methods With the availability
of powerful machine learning toolkits like scikit-learn (on which the starting kit
was based), the temptation is great to implement all-wrapper methods to solve
the CASH (or “full model selection”) problem. Indeed, most participants went that
route. Although a number of ways of optimizing hyper-parameters with embedded
methods for several basic classifiers have been published [35], they each require
changing the implementation of the basic methods, which is time-consuming and
error-prone compared to using already debugged and well-optimized library version
of the methods. Hence practitioners are reluctant to invest development time in
the implementation of embedded methods. A notable exception is the software of
marc.boulle, which offers a self-contained hyper-parameter free solution based on
Naive Bayes, which includes re-coding of variables (grouping or discretization) and
variable selection. See the online appendix.

Multi-level optimization Another interesting issue is whether multiple levels of
hyper-parameters should be considered for reasons of computational effectiveness
or overfitting avoidance. In the Bayesian setting, for instance, it is quite feasible
to consider a hierarchy of parameters/hyper-parameters and several levels of
priors/hyper-priors. However, it seems that for practical computational reasons,
in the AutoML challenges, the participants use a shallow organization of hyper-
parameter space and avoid nested cross-validation loops.

Time management: Exploration vs. exploitation tradeoff With a tight time
budget, efficient search strategies must be put into place to monitor the explo-
ration/exploitation tradeoff. To compare strategies, we show in the online appendix
learning curves for two top ranking participants who adopted very different
methods: Abhishek and aad_freiburg. The former uses heuristic methods based on
prior human experience while the latter initializes search with models predicted
to be best suited by meta-learning, then performs Bayesian optimization of hyper-
parameters. Abhishek seems to often start with a better solution but explores less
effectively. In contrast, aad_freiburg starts lower but often ends up with a better
solution. Some elements of randomness in the search are useful to arrive at better
solutions.

Preprocessing and feature selection The datasets had intrinsic difficulties that
could be in part addressed by preprocessing or special modifications of algorithms:
sparsity, missing values, categorical variables, and irrelevant variables. Yet it
appears that among the top-ranking participants, preprocessing has not been a
focus of attention. They relied on the simple heuristics provided in the starting kit:
replacing missing values by the median and adding a missingness indicator variable,

10 Analysis of the AutoML Challenge Series 2015–2018 211

one-hot-encoding of categorical variables. Simple normalizations were used. The
irrelevant variables were ignored by 2/3 of the participants and no use of feature
selection was made by top-ranking participants. The methods used that involve
ensembling seem to be intrinsically robust against irrelevant variables. More details
from the fact sheets are found in the online appendix.

Unsupervised learning Despite the recent regain of interest in unsupervised
learning spurred by the Deep Learning community, in the AutoML challenge series,
unsupervised learning is not widely used, except for the use of classical space
dimensionality reduction techniques such as ICA and PCA. See the online appendix
for more details.

Transfer learning and meta learning To our knowledge, only aad_freiburg relied
on meta-learning to initialize their hyper-parameter search. To that end, they used
datasets of OpenML.13 The number of datasets released and the diversity of tasks
did not allow the participants to perform effective transfer learning or meta learning.

Deep learning The type of computations resources available in AutoML phases
ruled out the use of Deep Learning, except in the GPU track. However, even in
that track, the Deep Learning methods did not come out ahead. One exception is
aad_freiburg, who used Deep Learning in Tweakathon rounds three and four and
found it to be helpful for the datasets Alexis, Tania and Yolanda.

Task and metric optimization There were four types of tasks (regression, binary
classification, multi-class classification, and multi-label classification) and six
scoring metrics (R2, ABS, BAC, AUC, F1, and PAC). Moreover, class balance and
number of classes varied a lot for classification problems. Moderate effort has been
put into designing methods optimizing specific metrics. Rather, generic methods
were used and the outputs post-fitted to the target metrics by cross-validation or
through the ensembling method.

Engineering One of the big lessons of the AutoML challenge series is that most
methods fail to return results in all cases, not a “good” result, but “any” reasonable
result. Reasons for failure include “out of time” and “out of memory” or various
other failures (e.g., numerical instabilities). We are still very far from having “basic
models” that run on all datasets. One of the strengths of auto-sklearn is to ignore
those models that fail and generally find at least one that returns a result.

Parallelism The computers made available had several cores, so in principle, the
participants could make use of parallelism. One common strategy was just to
rely on numerical libraries that internally use such parallelism automatically. The
aad_freiburg team used the different cores to launch in parallel model search for
different datasets (since each round included five datasets). These different uses of
computational resources are visible in the learning curves (see the online appendix).

13https://www.openml.org/

https://www.openml.org/

212 I. Guyon et al.

10.6 Discussion

We briefly summarize the main questions we asked ourselves and the main
findings:

1. Was the provided time budget sufficient to complete the tasks of the
challenge? We drew learning curves as a function of time for the winning
solution of aad_f reiburg (auto-sklearn, see the online appendix). This revealed
that for most datasets, performances still improved well beyond the time limit
imposed by the organizers. Although for about half the datasets the improvement
is modest (no more that 20% of the score obtained at the end of the imposed
time limit), for some datasets the improvement was very large (more than 2× the
original score). The improvements are usually gradual, but sudden performance
improvements occur. For instance, for Wallis, the score doubled suddenly at 3×
the time limit imposed in the challenge. As also noted by the authors of the auto-
sklearn package [25], it has a slow start but in the long run gets performances
close to the best method.

2. Are there tasks that were significantly more difficult than others for the
participants? Yes, there was a very wide range of difficulties for the tasks
as revealed by the dispersion of the participants in terms of average (median)
and variability (third quartile) of their scores. Madeline, a synthetic dataset
featuring a very non-linear task, was very difficult for many participants. Other
difficulties that caused failures to return a solution included large memory
requirements (particularly for methods that attempted to convert sparse matrices
to full matrices), and short time budgets for datasets with large number of training
examples and/or features or with many classes or labels.

3. Are there meta-features of datasets and methods providing useful insight to
recommend certain methods for certain types of datasets? The aad_freiburg
team used a subset of 53 meta-features (a superset of the simple statistics
provided with the challenge datasets) to measure similarity between datasets.
This allowed them to conduct hyper-parameter search more effectively by
initializing the search with settings identical to those selected for similar datasets
previously processed (a form of meta-learning). Our own analysis revealed
that it is very difficult to predict the predictors’ performances from the meta-
features, but it is possible to predict relatively accurately which “basic method”
will perform best. With LDA, we could visualize how datasets recoup in two
dimensions and show a clean separation between datasets “preferring” Naive
Bayes, linear SGD, or KNN, or RF. This deserves further investigation.

4. Does hyper-parameter optimization really improve performance over using
default values? The comparison we conducted reveals that optimizing hyper-
parameters rather than choosing default values for a set of four basic predictive
models (K-nearest neighbors, Random Forests, linear SGD, and Naive Bayes) is
generally beneficial. In the majority of cases (but not always), hyper-parameter
optimization (hyper-opt) results in better performances than default values.

10 Analysis of the AutoML Challenge Series 2015–2018 213

Hyper-opt sometimes fails because of time or memory limitations, which gives
room for improvement.

5. How do winner’s solutions compare with basic scikit-learn models? They
compare favorably. For example, the results of basic models whose parameters
have been optimized do not yield generally as good results as running auto-
sklearn. However, a basic model with default HP sometimes outperforms this
same model tuned by auto-sklearn.

10.7 Conclusion

We have analyzed the results of several rounds of AutoML challenges.
Our design of the first AutoML challenge (2015/2016) was satisfactory in many

respects. In particular, we attracted a large number of participants (over 600),
attained results that are statistically significant, and advanced the state of the art
to automate machine learning. Publicly available libraries have emerged as a result
of this endeavor, including auto-sklearn.

In particular, we designed a benchmark with a large number of diverse datasets,
with large enough test sets to separate top-ranking participants. It is difficult
to anticipate the size of the test sets needed, because the error bars depend on
the performances attained by the participants, so we are pleased that we made
reasonable guesses. Our simple rule-of-thumb “N = 50/E” where N is the number of
test samples and E the error rate of the smallest class seems to be widely applicable.
We made sure that the datasets were neither too easy nor too hard. This is important
to be able to separate participants. To quantify this, we introduced the notion of
“intrinsic difficulty” and “modeling difficulty”. Intrinsic difficulty can be quantified
by the performance of the best method (as a surrogate for the best attainable
performance, i.e., the Bayes rate for classification problems). Modeling difficulty
can be quantified by the spread in performance between methods. Our best problems
have relatively low “intrinsic difficulty” and high “modeling difficulty”. However,
the diversity of the 30 datasets of our first 2015/2016 challenge is both a feature and
a curse: it allows us to test the robustness of software across a variety of situations,
but it makes meta-learning very difficult, if not impossible. Consequently, external
meta-learning data must be used if meta-learning is to be explored. This was the
strategy adopted by the AAD Freiburg team, which used the OpenML data for meta
training. Likewise, we attached different metrics to each dataset. This contributed
to making the tasks more realistic and more difficult, but also made meta-learning
harder. In the second 2018 challenge, we diminished the variety of datasets and used
a single metric.

With respect to task design, we learned that the devil is in the details. The
challenge participants solve exactly the task proposed to the point that their solution
may not be adaptable to seemingly similar scenarios. In the case of the AutoML
challenge, we pondered whether the metric of the challenge should be the area under
the learning curve or one point on the learning curve (the performance obtained after

214 I. Guyon et al.

a fixed maximum computational time elapsed). We ended up favoring the second
solution for practical reasons. Examining after the challenge the learning curves
of some participants, it is quite clear that the two problems are radically different,
particularly with respect to strategies mitigating “exploration” and “exploitation”.
This prompted us to think about the differences between “fixed time” learning (the
participants know in advance the time limit and are judged only on the solution
delivered at the end of that time) and “any time learning” (the participants can
be stopped at any time and asked to return a solution). Both scenarios are useful:
the first one is practical when models must be delivered continuously at a rapid
pace, e.g. for marketing applications; the second one is practical in environments
when computational resources are unreliable and interruption may be expected (e.g.
people working remotely via an unreliable connection). This will influence the
design of future challenges.

The two versions of AutoML challenge we have run differ in the difficulty of
transfer learning. In the 2015/2016 challenge, round 0 introduced a sample of all
types of data and difficulties (types of targets, sparse data or not, missing data or
not, categorical variables of not, more examples than features or not). Then each
round ramped up difficulty. The datasets of round 0 were relatively easy. Then at
each round, the code of the participants was blind-tested on data that were one
notch harder than in the previous round. Hence transfer was quite hard. In the 2018
challenge, we had 2 phases, each with 5 datasets of similar difficulty and the datasets
of the first phase were each matched with one corresponding dataset on a similar
task. As a result, transfer was made simpler.

Concerning the starting kit and baseline methods, we provided code that ended
up being the basis of the solution of the majority of participants (with notable
exceptions from industry such as Intel and Orange who used their own “in
house” packages). Thus, we can question whether the software provided biased the
approaches taken. Indeed, all participants used some form of ensemble learning,
similarly to the strategy used in the starting kit. However, it can be argued that this
is a “natural” strategy for this problem. But, in general, the question of providing
enough starting material to the participants without biasing the challenge in a
particular direction remains a delicate issue.

From the point of view of challenge protocol design, we learned that it is
difficult to keep teams focused for an extended period of time and go through
many challenge phases. We attained a large number of participants (over 600) over
the whole course of the AutoML challenge, which lasted over a year (2015/2016)
and was punctuated by several events (such as hackathons). However, it may be
preferable to organize yearly events punctuated by workshops. This is a natural way
of balancing competition and cooperation since workshops are a place of exchange.
Participants are naturally rewarded by the recognition they gain via the system of
scientific publications. As a confirmation of this conjecture, the second instance
of the AutoML challenge (2017/2018) lasting only 4 months attracted nearly 300
participants.

One important novelty of our challenge design was code submission. Having
the code of the participants executed on the same platform under rigorously similar
conditions is a great step towards fairness and reproducibility, as well as ensuring the

10 Analysis of the AutoML Challenge Series 2015–2018 215

viability of solution from the computational point of view. We required the winners
to release their code under an open source licence to win their prizes. This was
good enough an incentive to obtain several software publications as the “product”
of the challenges we organized. In our second challenge (AutoML 2018), we used
Docker. Distributing Docker images makes it possible for anyone downloading
the code of the participants to easily reproduce the results without stumbling over
installation problems due to inconsistencies in computer environments and libraries.
Still the hardware may be different and we find that, in post-challenge evaluations,
changing computers may yield significant differences in results. Hopefully, with the
proliferation of affordable cloud computing, this will become less of an issue.

The AutoML challenge series is only beginning. Several new avenues are under
study. For instance, we are preparing the NIPS 2018 Life Long Machine Learning
challenge in which participants will be exposed to data whose distribution slowly
drifts over time. We are also looking at a challenge of automated machine learning
where we will focus on transfer from similar domains.

Acknowledgements Microsoft supported the organization of this challenge and donated the
prizes and cloud computing time on Azure. This project received additional support from the
Laboratoire d’Informatique Fondamentale (LIF, UMR CNRS 7279) of the University of Aix
Marseille, France, via the LabeX Archimede program, the Laboratoire de Recheche en Informa-
tique of Paris Sud University, and INRIA-Saclay as part of the TIMCO project, as well as the
support from the Paris-Saclay Center for Data Science (CDS). Additional computer resources were
provided generously by J. Buhmann, ETH Zürich. This work has been partially supported by the
Spanish project TIN2016-74946-P (MINECO/FEDER, UE) and CERCA Programme/Generalitat
de Catalunya. The datasets released were selected among 72 datasets that were donated (or
formatted using data publicly available) by the co-authors and by: Y. Aphinyanaphongs, O.
Chapelle, Z. Iftikhar Malhi, V. Lemaire, C.-J. Lin, M. Madani, G. Stolovitzky, H.-J. Thiesen, and
I. Tsamardinos. Many people provided feedback to early designs of the protocol and/or tested
the challenge platform, including: K. Bennett, C. Capponi, G. Cawley, R. Caruana, G. Dror, T.
K. Ho, B. Kégl, H. Larochelle, V. Lemaire, C.-J. Lin, V. Ponce López, N. Macia, S. Mercer, F.
Popescu, D. Silver, S. Treguer, and I. Tsamardinos. The software developers who contributed to the
implementation of the Codalab platform and the sample code include E. Camichael, I. Chaabane,
I. Judson, C. Poulain, P. Liang, A. Pesah, L. Romaszko, X. Baro Solé, E. Watson, F. Zhingri,
M. Zyskowski. Some initial analyses of the challenge results were performed by I. Chaabane,
J. Lloyd, N. Macia, and A. Thakur were incorporated in this paper. Katharina Eggensperger,
Syed Mohsin Ali and Matthias Feurer helped with the organization of the Beat AutoSKLearn
challenge. Matthias Feurer also contributed to the simulations of running auto-sklearn on 2015–
2016 challenge datasets.

Bibliography

1. Alamdari, A.R.S.A., Guyon, I.: Quick start guide for CLOP. Tech. rep., Graz University of
Technology and Clopinet (May 2006)

2. Andrieu, C., Freitas, N.D., Doucet, A.: Sequential MCMC for Bayesian model selection. In:
IEEE Signal Processing Workshop on Higher-Order Statistics. pp. 130–134 (1999)

3. Assunção, F., Lourenço, N., Machado, P., Ribeiro, B.: Denser: Deep evolutionary network
structured representation. arXiv preprint arXiv:1801.01563 (2018)

216 I. Guyon et al.

4. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using
reinforcement learning. arXiv preprint arXiv:1611.02167 (2016)

5. Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperparameter tuning. In: 30th
International Conference on Machine Learning. vol. 28, pp. 199–207. JMLR Workshop and
Conference Proceedings (May 2013)

6. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8), 1798–1828 (2013)

7. Bennett, K.P., Kunapuli, G., Jing Hu, J.S.P.: Bilevel optimization and machine learning. In:
Computational Intelligence: Research Frontiers, Lecture Notes in Computer Science, vol.
5050, pp. 25–47. Springer (2008)

8. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal of Machine
Learning Research 13(Feb), 281–305 (2012)

9. Bergstra, J., Yamins, D., Cox, D.D.: Making a science of model search: Hyperparameter opti-
mization in hundreds of dimensions for vision architectures. In: 30th International Conference
on Machine Learning. vol. 28, pp. 115–123 (2013)

10. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimiza-
tion. In: Advances in Neural Information Processing Systems. pp. 2546–2554 (2011)

11. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning.
Artificial Intelligence 97(1–2), 273–324 (December 1997)

12. Boullé, M.: Compression-based averaging of selective naive bayes classifiers. Journal of
Machine Learning Research 8, 1659–1685 (2007), http://dl.acm.org/citation.cfm?id=1314554

13. Boullé, M.: A parameter-free classification method for large scale learning. Journal of Machine
Learning Research 10, 1367–1385 (2009), https://doi.org/10.1145/1577069.1755829

14. Brazdil, P., Carrier, C.G., Soares, C., Vilalta, R.: Metalearning: Applications to data mining.
Springer Science & Business Media (2008)

15. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
16. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from libraries of

models. In: 21st International Conference on Machine Learning. pp. 18–. ACM (2004)
17. Cawley, G.C., Talbot, N.L.C.: Preventing over-fitting during model selection via Bayesian

regularisation of the hyper-parameters. Journal of Machine Learning Research 8, 841–861
(April 2007)

18. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel programming. Annals of
Operations Research 153, 235–256 (2007)

19. Dempe, S.: Foundations of bilevel programming. Kluwer Academic Publishers (2002)
20. Dietterich, T.G.: Approximate statistical test for comparing supervised classification learning

algorithms. Neural Computation 10(7), 1895–1923 (1998)
21. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, 2nd edn. (2001)
22. Efron, B.: Estimating the error rate of a prediction rule: Improvement on cross-validation.

Journal of the American Statistical Association 78(382), 316–331 (1983)
23. Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., Leyton-Brown, K.:

Towards an empirical foundation for assessing bayesian optimization of hyperparameters. In:
NIPS workshop on Bayesian Optimization in Theory and Practice (2013)

24. Escalante, H.J., Montes, M., Sucar, L.E.: Particle swarm model selection. Journal of Machine
Learning Research 10, 405–440 (2009)

25. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and
robust automated machine learning. In: Proceedings of the Neural Information Processing
Systems, pp. 2962–2970 (2015), https://github.com/automl/auto-sklearn

26. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Methods for
improving bayesian optimization for automl. In: Proceedings of the International Conference
on Machine Learning 2015, Workshop on Automatic Machine Learning (2015)

27. Feurer, M., Springenberg, J., Hutter, F.: Initializing bayesian hyperparameter optimization via
meta-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp. 1128–
1135 (2015)

http://dl.acm.org/citation.cfm?id=1314554
https://doi.org/10.1145/1577069.1755829
https://github.com/automl/auto-sklearn

10 Analysis of the AutoML Challenge Series 2015–2018 217

28. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter, F.: Practical automated
machine learning for the automl challenge 2018. In: International Workshop on Automatic
Machine Learning at ICML (2018), https://sites.google.com/site/automl2018icml/

29. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. The Annals of
Statistics 29(5), 1189–1232 (2001)

30. Ghahramani, Z.: Unsupervised learning. In: Advanced Lectures on Machine Learning. Lecture
Notes in Computer Science, vol. 3176, pp. 72–112. Springer Berlin Heidelberg (2004)

31. Guyon, I.: Challenges in Machine Learning book series. Microtome (2011–2016), http://www.
mtome.com/Publications/CiML/ciml.html

32. Guyon, I., Bennett, K., Cawley, G., Escalante, H.J., Escalera, S., Ho, T.K., Macià, N., Ray,
B., Saeed, M., Statnikov, A., Viegas, E.: AutoML challenge 2015: Design and first results.
In: Proc. of AutoML 2015@ICML (2015), https://drive.google.com/file/d/0BzRGLkqgrI-
qWkpzcGw4bFpBMUk/view

33. Guyon, I., Bennett, K., Cawley, G., Escalante, H.J., Escalera, S., Ho, T.K., Macià, N., Ray,
B., Saeed, M., Statnikov, A., Viegas, E.: Design of the 2015 ChaLearn AutoML challenge. In:
International Joint Conference on Neural Networks (2015), http://www.causality.inf.ethz.ch/
AutoML/automl_ijcnn15.pdf

34. Guyon, I., Chaabane, I., Escalante, H.J., Escalera, S., Jajetic, D., Lloyd, J.R.,
Macía, N., Ray, B., Romaszko, L., Sebag, M., Statnikov, A., Treguer, S., Vie-
gas, E.: A brief review of the ChaLearn AutoML challenge. In: Proc. of AutoML
2016@ICML (2016), https://docs.google.com/a/chalearn.org/viewer?a=v&pid=sites&srcid=
Y2hhbGVhcm4ub3JnfGF1dG9tbHxneDoyYThjZjhhNzRjMzI3MTg4

35. Guyon, I., Alamdari, A.R.S.A., Dror, G., Buhmann, J.: Performance prediction challenge. In:
the International Joint Conference on Neural Networks. pp. 1649–1656 (2006)

36. Guyon, I., Bennett, K., Cawley, G., Escalante, H.J., Escalera, S., Ho, T.K., Ray, B., Saeed, M.,
Statnikov, A., Viegas, E.: Automl challenge 2015: Design and first results (2015)

37. Guyon, I., Cawley, G., Dror, G.: Hands-On Pattern Recognition: Challenges in Machine
Learning, Volume 1. Microtome Publishing, USA (2011)

38. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.): Feature extraction, foundations and
applications. Studies in Fuzziness and Soft Computing, Physica-Verlag, Springer (2006)

39. Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: The entire regularization path for the support
vector machine. Journal of Machine Learning Research 5, 1391–1415 (2004)

40. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: Data mining,
inference, and prediction. Springer, 2nd edn. (2001)

41. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general
algorithm configuration. In: Proceedings of the conference on Learning and Intelligent
OptimizatioN (LION 5) (2011)

42. Ioannidis, J.P.A.: Why most published research findings are false. PLoS Medicine 2(8), e124
(August 2005)

43. Jordan, M.I.: On statistics, computation and scalability. Bernoulli 19(4), 1378–1390 (Septem-
ber 2013)

44. Keerthi, S.S., Sindhwani, V., Chapelle, O.: An efficient method for gradient-based adaptation
of hyperparameters in SVM models. In: Advances in Neural Information Processing Systems
(2007)

45. Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast bayesian hyperparameter
optimization on large datasets. In: Electronic Journal of Statistics. vol. 11 (2017)

46. Kohavi, R., John, G.H.: Wrappers for feature selection. Artificial Intelligence 97(1–2), 273–
324 (December 1997)

47. Langford, J.: Clever methods of overfitting (2005), blog post at http://hunch.net/?p=22

https://sites.google.com/site/automl2018icml/
http://www.mtome.com/Publications/CiML/ciml.html
http://www.mtome.com/Publications/CiML/ciml.html
https://drive.google.com/file/d/0BzRGLkqgrI-qWkpzcGw4bFpBMUk/view
https://drive.google.com/file/d/0BzRGLkqgrI-qWkpzcGw4bFpBMUk/view
http://www.causality.inf.ethz.ch/AutoML/automl_ijcnn15.pdf
http://www.causality.inf.ethz.ch/AutoML/automl_ijcnn15.pdf
https://docs.google.com/a/chalearn.org/viewer?a=v&pid=sites&srcid=Y2hhbGVhcm4ub3JnfGF1dG9tbHxneDoyYThjZjhhNzRjMzI3MTg4
https://docs.google.com/a/chalearn.org/viewer?a=v&pid=sites&srcid=Y2hhbGVhcm4ub3JnfGF1dG9tbHxneDoyYThjZjhhNzRjMzI3MTg4
http://hunch.net/?p=22

218 I. Guyon et al.

48. Lloyd, J.: Freeze Thaw Ensemble Construction. https://github.com/jamesrobertlloyd/automl-
phase-2 (2016)

49. Momma, M., Bennett, K.P.: A pattern search method for model selection of support vector
regression. In: In Proceedings of the SIAM International Conference on Data Mining. SIAM
(2002)

50. Moore, G., Bergeron, C., Bennett, K.P.: Model selection for primal SVM. Machine Learning
85(1–2), 175–208 (October 2011)

51. Moore, G.M., Bergeron, C., Bennett, K.P.: Nonsmooth bilevel programming for hyperparam-
eter selection. In: IEEE International Conference on Data Mining Workshops. pp. 374–381
(2009)

52. Niculescu-Mizil, A., Perlich, C., Swirszcz, G., Sindhwani, V., Liu, Y., Melville, P., Wang,
D., Xiao, J., Hu, J., Singh, M., et al.: Winning the kdd cup orange challenge with ensemble
selection. In: Proceedings of the 2009 International Conference on KDD-Cup 2009-Volume 7.
pp. 23–34. JMLR. org (2009)

53. Opper, M., Winther, O.: Gaussian processes and SVM: Mean field results and leave-one-out,
pp. 43–65. MIT (10 2000), massachusetts Institute of Technology Press (MIT Press) Available
on Google Books

54. Park, M.Y., Hastie, T.: L1-regularization path algorithm for generalized linear models. Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 69(4), 659–677 (2007)

55. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research 12, 2825–2830 (2011)

56. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient neural architecture search via
parameter sharing. arXiv preprint arXiv:1802.03268 (2018)

57. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Le, Q., Kurakin, A.: Large-scale
evolution of image classifiers. arXiv preprint arXiv:1703.01041 (2017)

58. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook.
Springer (2011)

59. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press (2001)

60. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning
algorithms. In: Advances in Neural Information Processing Systems 25, pp. 2951–2959 (2012)

61. Statnikov, A., Wang, L., Aliferis, C.F.: A comprehensive comparison of random forests and
support vector machines for microarray-based cancer classification. BMC Bioinformatics 9(1)
(2008)

62. Sun, Q., Pfahringer, B., Mayo, M.: Full model selection in the space of data mining operators.
In: Genetic and Evolutionary Computation Conference. pp. 1503–1504 (2012)

63. Swersky, K., Snoek, J., Adams, R.P.: Multi-task Bayesian optimization. In: Advances in Neural
Information Processing Systems 26. pp. 2004–2012 (2013)

64. Swersky, K., Snoek, J., Adams, R.P.: Freeze-thaw bayesian optimization. arXiv preprint
arXiv:1406.3896 (2014)

65. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka: Automated selection and
hyper-parameter optimization of classification algorithms. CoRR abs/1208.3719 (2012)

66. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka: Combined selection and
hyperparameter optimization of classification algorithms. In: 19th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. pp. 847–855. ACM (2013)

67. Vanschoren, J., Van Rijn, J.N., Bischl, B., Torgo, L.: Openml: networked science in machine
learning. ACM SIGKDD Explorations Newsletter 15(2), 49–60 (2014)

https://github.com/jamesrobertlloyd/automl-phase-2
https://github.com/jamesrobertlloyd/automl-phase-2

10 Analysis of the AutoML Challenge Series 2015–2018 219

68. Vapnik, V., Chapelle, O.: Bounds on error expectation for support vector machines. Neural
computation 12(9), 2013–2036 (2000)

69. Weston, J., Elisseeff, A., BakIr, G., Sinz, F.: Spider (2007), http://mloss.org/software/view/29/
70. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint

arXiv:1611.01578 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://mloss.org/software/view/29/
http://creativecommons.org/licenses/by/4.0/

	10 Analysis of the AutoML Challenge Series 2015–2018
	10.1 Introduction
	10.2 Problem Formalization and Overview
	10.2.1 Scope of the Problem
	10.2.2 Full Model Selection
	10.2.3 Optimization of Hyper-parameters
	10.2.4 Strategies of Model Search

	10.3 Data
	10.4 Challenge Protocol
	10.4.1 Time Budget and Computational Resources
	10.4.2 Scoring Metrics
	10.4.3 Rounds and Phases in the 2015/2016 Challenge
	10.4.4 Phases in the 2018 Challenge

	10.5 Results
	10.5.1 Scores Obtained in the 2015/2016 Challenge
	10.5.2 Scores Obtained in the 2018 Challenge
	10.5.3 Difficulty of Datasets/Tasks
	10.5.4 Hyper-parameter Optimization
	10.5.5 Meta-learning
	10.5.6 Methods Used in the Challenges

	10.6 Discussion
	10.7 Conclusion
	Bibliography

