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Info-Gap Decision Theory (IG)

Yakov Ben-Haim

Abstract

• Info-Gap (IG)DecisionTheory is amethod for prioritizing alternatives andmaking
choices and decisions under deep uncertainty.

• An “info-gap” is the disparity between what is known and what needs to be known
for a responsible decision.

• Info-gap analysis does not presume knowledge of a worst-case or of reliable prob-
ability distributions.

• Info-gap models of uncertainty represent uncertainty in parameters and in the
shapes of functional relationships.

• IG Decision Theory offers two decision concepts: robustness and opportuneness.
• The robustness of an alternative is the greatest horizon of uncertainty up to which
that alternative satisfies critical outcome requirements.

• The robustness strategy satisfices the outcome and maximizes the immunity to
error or surprise. This differs from outcome optimization.

• The robustness function demonstrates the trade-off between immunity to error and
quality of outcome. It shows that knowledge-based predicted outcomes have no
robustness to uncertainty in that knowledge.

• The opportuneness of a decision alternative is the lowest horizon of uncertainty
at which that decision enables better-than-anticipated outcomes.

• The opportuneness strategy seeks windfalls at minimal uncertainty.
• We discuss “innovation dilemmas” in which the decisionmaker must choose
between two alternatives, where one is putatively better but more uncertain than
the other.

• Two examples of info-gap analysis are presented, one quantitative that uses math-
ematics and one qualitative that uses only verbal analysis.
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5.1 Info-Gap Theory: A First Look

Info-Gap (IG) is a non-probabilistic decision theory for prioritizing alternatives and
making choices and decisions under deep uncertainty (Ben-Haim 2006, 2010). They
might be operational alternatives (design a system, choose a budget, decide to launch
or not, etc.) or more abstract alternatives (choose a model structure, make a forecast,
formulate a policy, etc.). Decisions are based on data, scientific theories, empirical
relations, knowledge, and contextual understanding, all of which I’ll refer to as one’s
models, and these models often recognize and quantify uncertainty.

IG theory has been applied to decision problems in many fields, including various
areas of engineering (Kanno and Takewaki 2006; Chinnappen-Rimer and Hancke
2011; Harp and Vesselinov 2013), biological conservation (Burgman 2005), eco-
nomics (Knoke 2008; Ben-Haim 2010), medicine (Ben-Haim et al. 2012), homeland
security (Moffitt et al. 2005), public policy (Hall et al. 2012), and more (see www.
info-gap.com). IG robust satisficing has been discussed non-mathematically else-
where (Schwartz et al. 2011; Ben-Haim 2012a, b, 2018; Smithson and Ben-Haim
2015).

Uncertainty is often modeled with probability distributions. If the probability dis-
tributions are correct and comprehensive, then one can exploit the models exhaus-
tively to reliably achieve stochastically optimal outcomes, and one doesn’t need IG
theory. However, if one’s models will be much better next year when new knowl-
edge has become available (but youmust decide now), or if processes are changing in
poorly known ways, or if important factors will be determined beyond your knowl-
edge or control, then one faces deep uncertainty and IG theory might help. This
section presents an intuitive discussion of two basic ideas of IG theory: satisficing
and robustness. A more systematic discussion of IG robustness appears in Sect. 5.2.
Simple examples are presented in Sects. 5.3 and 5.4, and more detailed examples
appear in Chap. 10.

Knight (1921) distinguished between what he called “risk” (for which probability
distributions are known) and “true uncertainty” (for which probability distributions
are not known). Knightian (“true”) uncertainty reflects ignorance of many things,
including underlying processes, functional relationships, strategies or intentions of
relevant actors, future events, inventions, discoveries, surprises, and so on. Info-
gap models of uncertainty provide a non-probabilistic quantification of Knightian
uncertainty. An info-gap is the disparity between what you do know (or think to
be true) and what you need to know for making a reliable or responsible decision
(though what is needed may be uncertain). An info-gap is not ignorance per se, but
rather those aspects of one’s Knightian uncertainty that bear on a pending decision
and the quality of its outcome.

An info-gap model of uncertainty is particularly suitable for representing uncer-
tainty in the shape of a function. For instance, one might have an estimate of the
stress–strain curve for forces acting on a metal, or of the supply and demand curves
for a new product, or of a probability density function (pdf), but the shape of the
function (e.g., the shape of the elastic–plastic transition curve in the first case, or the

http://www.info-gap.com
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shapes of the supply and demand curves, or the tails of the pdf) may be highly uncer-
tain. Info-gap models are also widely used to represent uncertainty in parameters or
vectors, or sometimes uncertainty in sets of such entities.

Decisionmakers often try to optimize the outcome of their decisions. That is usu-
ally approached by using one’s best models to predict the outcomes of the various
alternatives, and then choosing the one whose predicted outcome is best. The aspi-
ration for excellence is commendable, but outcome optimization may be costly, or
one may not really need the best possible outcome. Schwartz (2004) discusses the
irrelevance of optimal outcomes in many situations.

Outcome optimization—using one’s models to choose the decision whose pre-
dicted outcome is best—works finewhen themodels are pretty good, because exhaus-
tively exploiting good models will usually lead to good outcomes.

However, when one faces major info-gaps one’s models contain major errors or
lacunae, and exhaustively exploiting the models can be unrealistic, unreliable, and
can lead to undesired outcomes (Ben-Haim 2012a). Under deep uncertainty, it is
better to ask: What outcomes are critical and must be achieved? This is the idea of
satisficing introduced by Simon (1956): achieving a satisfactory or acceptable, but
not necessarily optimal, outcome—“good enough” according to an explicitly stated
set of criteria.

Planners, designers, and decisionmakers in all fields have used the language of
optimization (the lightest, the strongest, the fastest) for ages. In practice, however,
satisficing is very widespread, although not always recognized as such. Engineers
satisfy design specifications (light enough, strong enough, fast enough). Stock bro-
kers, business people, and investors of all sorts do not really need tomaximize profits;
they only need to beat the competition, or improve on last year, ormeet the customer’s
demands. Beating the competition means satisficing a goal. The same can be said of
the public official who must reduce crime below a legislative target, or the foreign
aid planner who must raise public health to international standards.

Once the decisionmaker identifies the critical goals or outcomes that must be
achieved, the next step is to decide about something or choose an action that will
achieve those goals despite current ignorance or unknown future surprises.Adecision
has high robustness if it satisfices the performance requirements over a wide range of
unanticipated contingencies. Conversely, a decision has low robustness if even small
errors in our knowledge can prevent achievement of the critical goals. The robust-
satisficing decisionmaker prioritizes the alternatives in terms of their robustness
against uncertainty for achieving the critical goals. The decision methodology of
IG robust satisficing is often motivated by the pernicious potential of the unknown.
However, uncertainty can be propitious, and IG theory offers amethod for prioritizing
one’s alternatives with respect to the potential for favorable surprises. The idea of
“windfalling” supplements the concept of satisficing. The opportune windfalling
decisionmaker prioritizes the alternatives in terms of their potential for exploiting
favorable contingencies. This is illustrated in the example in Sect. 5.4.

Min-max or worst-case analysis is a widely used alternative to outcome opti-
mization when facing deep uncertainty and bears some similarity to IG robustness.
Neither min-max nor IG presumes knowledge of probabilities. The basic approach
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behind these two methods is to find decisions that are robust to a range of different
contingencies. Wald (1947) presented the modern formulation of min-max, and it
has been applied in many areas (e.g., Hansen and Sargent 2008). The decisionmaker
considers a bounded family of possible models, without assigning probabilities to
their occurrence. One then identifies the model in that set which, if true, would result
in a worse outcome than any other model in the family. A decision is made that
minimizes this maximally bad outcome (hence “min-max”). Min-max is attractive
because it attempts to insure against the worst anticipated outcome. However, min-
max has been criticized for two main reasons. First, it may be unnecessarily costly
to assume the worst case. Second, the worst usually happens rarely and therefore
is poorly understood. It is unreliable (and perhaps even irresponsible) to focus the
decision analysis on a poorly known event (Sims 2001).

Min-max and IG methods both deal with Knightian uncertainty, but in different
ways. The min-max approach is to choose the decision for which the contingency
with the worst possible outcome is as benign as possible: Identify and ameliorate the
worst case. The IG robust-satisficing approach requires the planner to think in terms
of the worst consequence that can be tolerated, and to choose the decision whose
outcome is no worse than this, over the widest possible range of contingencies. Min-
max and IG both require a prior judgment by the planner: Identify a worst model
or contingency (min-max) or specify a worst tolerable outcome (IG). These prior
judgments are different, and the corresponding policy selections may, or may not,
agree. Ben-Haim et al. (2009) compare min-max and IG further.

5.2 IG Robustness: Methodological Outline

This section is a systematic description of the IG robustness methodology for deci-
sionmaking under deep uncertainty. The following two sections present examples.

IG robustness is the attribute of satisfying critical requirements even when the
situation is, or evolves, differently from what is expected. A decision is robust to
uncertainty if it remains acceptable even if the understanding that was originally
available turns out to be substantiallywrong. The robustness is assessed by answering
the question:Howwrong can our currentmodel be so that the outcomeof this decision
will still be acceptable? In other words, how immune to our current ignorance is this
decision? A decision is highly robust if it remains acceptable throughout a wide
range of deviation of reality from the original understanding. More robustness to
uncertainty is better than less, so decisionmakers prefer the more robust decision
over one with less robustness to uncertainty. We will now formulate these ideas more
rigorously. Sections 5.3 and 5.4 present two simple examples.
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5.2.1 Three Components of IG Robust Satisficing

The IG analysis of robustness to uncertainty rests on three components: the model,
the performance requirements, and the uncertainty model. These components con-
stitute the framing of the analysis. Furthermore, this framing may be done in a quick
exploratory mode, or may be more fundamental and advanced. Likewise, decisions
based on the analysis may be short-term actions, long-term options, or adaptive
strategies that combine the short and long term.

The model, as defined earlier, is our understanding of the system or situation that
must be influenced, its temporal dynamics, the evidence, the environment, and any
other available relevant knowledge.

The performance requirements are specified in response to the question: What
do we need to achieve in order for the outcome of the decision to be acceptable?
The economist may require inflation within specified bounds; the engineer may
require an operational lifetime exceeding a given value; the military commander may
require a substantial decrease in insurgent violence, etc. The analyst together with the
decisionmaker makes judgments of the required or acceptable levels of performance.
More demanding performance entails greater vulnerability to uncertainty and hence
lower levels of robustness, as we will see.

Uncertainty model. We have best estimates of our model: the knowledge, under-
standing, and evidence relating to the situation. However, these estimates may be
wrong or incomplete. We may also be uncertain about the performance requirements
(how much inflation or insurgent violence is acceptable?). There are many specific
forms of info-gap models of uncertainty, encoding different information about the
uncertainty. However, they all express the intuition that we do not know how wrong
our best estimates are. The info-gap model also includes insights and contextual
understanding about this uncertainty. An info-gap model of uncertainty expresses
what we do know, as well as the unbounded horizon of uncertainty surrounding our
knowledge. It expresses the idea that we cannot confidently identify a realistic worst
case.

5.2.2 IG Robustness

The analyst must formulate and prioritize candidate decisions and will do so based
on their robustness against uncertainty for achieving acceptable outcomes: More
robustness is preferred over less robustness.We evaluate the robustness to uncertainty
of any candidate decision by combining these three components: the model, the
performance requirements, and the uncertainty model. We do this by addressing two
questions, the first regarding the putative performance; the second addressing the
robustness against uncertainty.

Putative performance. The putative performance of a decision is the outcome that
is predicted by the best understanding and the evidence in hand (the model). Given
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a candidate decision, we ask if its putative performance satisfies our performance
requirements. That is, we ask whether or not this outcome is acceptable (according
to the performance requirements) as assessed by the best understanding that we have
(our model). If the answer is negative, then we reject this decision alternative. At this
stage, we are ignoring uncertainty.

Robustness. Given a candidate decision that has gotten a positive answer to the
question regarding putative performance, we now ask: How much could the model
change without violating the performance requirements? This explicitly addresses
the uncertainty. We are asking: What is the greatest horizon of uncertainty (in the
uncertainty model) up to which the performance requirements are guaranteed by this
decision? Howmuch could reality deviate from our understanding and evidence (our
model) so that the decisionwe are contemplatingwould still satisfy the requirements?
Could the decision tolerate any error in the model, up to some large degree, without
violating the performance requirements (implying large robustness)? Or is there
some small error in the model that would jeopardize the requirements (implying low
robustness)?

5.2.3 Prioritization of Competing Decisions

More robustness is better than less robustness. This means that, given two alterna-
tive decisions that both putatively satisfy the performance requirements, we prefer
the decision that satisfies the performance requirements throughout a larger range
of uncertainty. This prioritization is called robust satisficing, because it selects the
decision that is more robust against uncertainty while also satisfying the performance
requirements.

Note that the robust-satisficing decision optimizes the robustness against uncer-
tainty rather than optimizing the substantive quality of the decision’s outcome.We do
not optimize the outcome. The outcome must be satisfactory, though the analyst can
choose the satisficing level to bemore or less demanding.We optimize the robustness
against uncertainty, and we satisfice the outcome.

5.2.4 How to Evaluate Robustness: Qualitative
or Quantitative?

Many decisions under uncertainty are amenable to quantitative analysis (i.e., using
mathematics). Many other situations depend on conceptual models and verbal for-
mulations that cannot be captured with equations. IG theory has been applied in both
qualitative and quantitative analyses, as we illustrate in Sects. 5.3 and 5.4, respec-
tively. These examples are independent and one can read either or both.
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5.3 IG Robustness: A Qualitative Example

We begin with a simple math-free qualitative example. In this section, we examine
five conceptual proxies for the concept of robustness (Ben-Haim and Demertzis
2016) and then discuss a simple example based on qualitative reasoning.

5.3.1 Five Conceptual Proxies for Robustness

Like all words, “robustness” has many connotations, and its meanings overlap with
themeanings of otherwords.1 We discuss five concepts that overlap significantlywith
the concept of robustness against uncertainty, and that are useful in the qualitative
assessment of decisions under uncertainty. Each of these five concepts emphasizes a
different aspect of robustness, although they also overlap. The five proxies for robust-
ness are resilience, redundancy, flexibility, adaptiveness, and comprehensiveness. A
decision, policy, action, or system is highly robust against uncertainty if it is strong
in some or all of these attributes; it has low robustness if it is weak in all of them.
We will subsequently use the term “system” quite broadly, to refer to a physical
or organizational system, a policy for formulating or implementing decisions, or a
procedure for political foresight or clinical diagnosis, etc.

Resilience of a system is the attribute of rapid recovery of critical functions.
Adverse surprise is likely when facing deep uncertainty. A system is robust against
uncertainty if it can rapidly recover from adverse surprise and achieve critical out-
comes.

Redundancy of a system is the attribute of providingmultiple alternative solutions.
Robustness to surprise can be achieved by having alternative responses available.

Flexibility (sometimes called agility) of a system is the ability for rapid modifi-
cation of tools and methods. Flexibility or agility, as opposed to stodginess, is often
useful in recovering from surprise. A physical or organizational system, a policy, or
a decision procedure is robust to surprise if it can be modified in real time.

Adaptiveness of a system is the ability to adjust goals and methods in the mid- to
long-term. A system is robust if it can be adjusted as information and understanding
change. Managing Knightian uncertainty is rarely a once-through procedure. We
often must re-evaluate and revise assessments and decisions. The emphasis is on the
longer time range, as distinct from on-the-spot flexibility.

Comprehensiveness of a system is its interdisciplinary system-wide coherence.
A system is robust if it integrates relevant considerations from technology, organi-
zational structure and capabilities, cultural attitudes and beliefs, historical context,
economic mechanisms and forces, or other factors. A robust system addresses the
multi-faceted nature of the problem.

1The representation of knowledgewithwords is fraughtwith info-gaps (Ben-Haim2006, Sect. 13.2).
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5.3.2 Simple Qualitative Example: Nuclear Weapon Safety

Nuclear weapons play a role in the national security strategy of several countries
today. Like all munitions, the designer must assure effectiveness (devastating explo-
sion duringwartime use) together with safety (no explosion during storage, transport,
or abnormal accident conditions). The “always/never” dilemma is “the need for a
nuclear weapon to be safe and the need for it to be reliable …. A safety mecha-
nism that made a bomb less likely to explode during an accident could also, during
wartime, render it more likely to be a dud.… Ideally, a nuclear weapon would always
detonate when it was supposed to—and never detonate when it wasn’t supposed to”
(Schlosser 2013, pp. 173–174). There are many quantitative methods for assessing
effectiveness, safety, and the balance between them, but there remains a great need
for human judgment based on experience. We briefly illustrate the relevance of the
five qualitative proxies for assessing and achieving robustness to uncertainty.

Nuclear weapon safety is assured, in part, by the requirement for numerous inde-
pendent actions to arm and detonate the weapon. Safety pins must be removed, secret
codes must be entered, multiple activation keys controlled by different individuals
must be inserted and turned, etc. This redundancy of safety features is a powerful
concept for assuring the safety of weapon systems. On the other hand, the wartime
detonation of the weapon is prevented if any of these numerous redundant safety fea-
tures gets stuck and fails to activate the device. Redundancy for safety is a primary
source of the “always/never” dilemma.

Resilience of the weapon system is the ability to recover critical functions—det-
onation during wartime in the present example—when failure occurs. For example,
resilience could entail the ability to override safety features that fail in the locked
state in certain well-defined circumstances. This override capability may be based on
a voting system of redundant safety features, or on human intervention, or on other
functions. The robustness to uncertainty is augmented by redundant safety features
together with a resilient ability to countervail those safety features in well-defined
situations where safety features have failed in the locked mode.

Sometimes, the critical function of a system is not a physical act, like detonation,
but rather the act of deciding.Acommand and control hierarchy, like those controlling
nuclear weapon use, needs to respond effectively to adverse surprise. The decision
to initiate the use of nuclear weapons in democratic countries is usually vested
exclusively in the highest civilian executive authority.A concern here is that a surprise
“decapitation” strike against that civilian authority could leave the country without a
nuclear-response capability. The decisionmaking hierarchy needs flexibility against
such a surprise: the ability to exercise the critical function of deciding to use (or not
to use) nuclear weapons after a decapitating first strike by an adversary. Flexibility
could be attained by a clearly defined line of succession after incapacitation of the
chief executive, together with both physical separation between the successors and
reliable communication among them. It is no simple matter to achieve this finely
balanced combination of succession, separation, and communication. The concept
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of flexibility assists in assessing alternative implementations in terms of the resulting
robustness against uncertainty in hierarchical decisionmaking.

Hierarchical decisionmaking needs to be adaptive in response to changing circum-
stances in the mid- to long-term. For example, the US line of Presidential succession
is specified in the US Constitution, and this specification has been altered by amend-
ment and clarified by legislation repeatedly over time to reflect new capabilities and
challenges.

The comprehensiveness of a decision is the interdisciplinary scope of the mech-
anisms and interactions that it accounts for and the implications it identifies. The
uncertainties regarding nuclear weapons are huge, because many mechanisms, inter-
actions, and implications are unknown or poorly understood. This means that the
potential for adverse surprise is quite large. Comprehensiveness of the decision anal-
ysis is essential in establishing robustness against uncertainty. Thinking “outside
the box” is a quintessential component in achieving comprehensiveness, and human
qualitative judgment is of foremost importance here.

We now use these ideas to schematically prioritize two alternative hypothetical
strategies for supervising nuclear weapons in a liberal democracy such as the USA,
based on the proxies for robustness.

The first strategy is based on current state-of-the-art (SotA) technologies, and
authority is vested in the President as commander in chief. Diverse mechanisms
assure redundancy of safety features aswell as resilience andflexibility of the systems
to assure only operational detonation, and adaptability in response to changes over
longer times. The system of controls is comprehensive, but primarily based on human
observation, communication, and decision.

The second strategy is new and innovative (NaI) and extensively exploits auto-
mated sensor- and computer-based access, authentication, communication, control,
and decision. The strategy employs “big data” and artificial intelligence in assessing
threats and evaluating risks. Humans are still in the loop, but their involvement is
supported to a far greater extent by new and innovative technologies.

Our best understanding of these strategies—SotA and NaI—predicts that the sec-
ond strategywould provide better safety and operability. However, deep uncertainties
surround both strategies, and more so for the innovative second strategy because of
its newness. The innovation dilemma is that the putatively preferable innovative alter-
native is more uncertain, and hence potentially worse, than the standard alternative.
Two properties of robustness assist in resolving this dilemma: zeroing and trade-off.

The zeroing property of an IG robustness assessment states that the predicted
performances have no robustness to uncertainty. This is because even small errors or
lacunae in the knowledge or understanding (upon which predictions are based) could
result in outcomes that are worse than predicted. Hence, prioritizing the strategies
based on the predictions is unreliable and irresponsible.Wemust ask what degrees of
safety and operability are essential for acceptable performance. That is, we satisfice
the performance, rather than trying to optimize it.

We then note that more demanding performance requirements can fail in more
ways and thus are more vulnerable to uncertainty. This implies a trade-off between
performance and robustness to uncertainty: Greater robustness is obtained only by
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accepting more modest performance. In high-consequence systems, such as nuclear
weapons, the performance requirements are very demanding. Nonetheless, the trade-
off is irrevocable and it iswishful thinking to ignore it. The robustness of each strategy
is assessed by its strength in the conceptual proxies. The robust-satisficing preference
is for the strategy that satisfies the performance requirements at greater robustness.

Suppose that the predicted performance of the SotA strategy only barely satisfies
the performance requirements. The proxies for robustness of the SotA will have
low strength, because small errors can jeopardize the adequacy of the performance.
This may in fact have motivated the search for the NaI strategy whose predicted
performance exceeds the requirements. In this case, the robust preference will be for
NaI, although considerationmust be given to the strength of its proxies for robustness.
If the proxies for robustness of NaI are also weak, then neither alternative may be
acceptable.

Alternatively, suppose that the SotA satisfies the performance requirements by a
wide margin. Its proxies for robustness will be strong and probably stronger than for
NaI. In this case, the robust preference is for SotA, illustrating the potential for a
reversal of preference between the strategies: NaI is putatively preferred (based on
predicted outcomes), but SotA is more robust, and hence SotA is preferred (based
on robustness) over NaI. This emphasizes the difference between robustly satisficing
the performance requirements (which leads to either SotA or NaI, depending on the
requirements) as distinct from prioritizing based on predicted outcomes (which leads
to the putatively better alternative, NaI).

5.4 IG Robustness and Opportuneness: A Quantitative
Example

We have discussed qualitative concepts for assessing deep uncertainty and for prior-
itizing the options facing a decisionmaker: trade-off between robustness and perfor-
mance requirements, zero robustness of predicted outcomes, innovation dilemmas,
and preference reversals. These concepts are embodied in mathematical theorems
of IG theory, and they have quantitative realizations, as we illustrate in this section
with a simple mechanical example. The one-dimensional linear model of a gap-
closing electrostatic actuator with uncertainty in a single parameter stands in for
other systems, often significantly more complex and uncertain in their models and
predictions.

The nonlinear force–displacement relation for the gap-closing electrostatic actu-
ator (a type of electric switch) in Fig. 5.1 is fairly well represented by:

F � kx − εAV 2

2(g − x)2
(5.1)



5 Info-Gap Decision Theory (IG) 103

Fig. 5.1 Gap-closing electrostatic actuator. The figure is reproduced here with the permission of
Prof. David Elata, head, Mechanical Engineering Micro Systems (MEMS) lab, Technion—Israel
Institute of Technology

Fig. 5.2 Mechanically linearized gap-closing electrostatic actuator. The figure is reproduced here
with the permission of Prof. David Elata

where F is the applied force, x is the displacement, 2is the dielectric constant, A is
the area of the plates, V is the electric potential on the device, k is the spring stiffness,
and g is the initial gap size.

Clever mechanical design can circumvent the complex nonlinearity of Eq. (5.1).
Figure 5.2 shows a mechanically linearized modification of the device for which the
force–displacement relation is, putatively, linear:

F � Kx (5.2)

whereK is a constant stiffness coefficientwhose value is uncertain because it depends
on the precise shapes of the cams that may vary in manufacture. We will explore
the robustness to uncertainty in the stiffness coefficient of the linearized device. We
will also explore robustness to uncertainty in a probabilistic model. Finally, we will
consider opportuneness. We assume F and x to be positive.



104 Y. Ben-Haim

In our first approach to this problem, we suppose that our knowledge of the
stiffness coefficient, K , is quite limited. We know an estimated value, ˜K , and we
have an estimate of the error, s, but the most we can confidently assert is that the true
stiffness, K , deviates from the estimate by ±s or more, although K must be positive.
We do not know a worst-case or maximum error, and we have no probabilistic
information about K .

There are many types of info-gap models of uncertainty (Ben-Haim 2006). A
fractional-error info-gap model is suitable to this state of knowledge:

U (h) �
{

K : K > 0,

∣

∣

∣

∣

K − ˜K

s

∣

∣

∣

∣

≤ h

}

, h ≥ 0 (5.3)

The info-gap model of uncertainty in Eq. (5.3) is an unbounded family of sets
of possible values of the uncertain entity, which is the stiffness coefficient K in
the present case. For any non-negative value of h, the set U(h) is an interval of K
values. Like all info-gapmodels, this one has two properties: nesting and contraction.
“Nesting”means that the setU(h) becomesmore inclusive (containingmore andmore
elements) as h increases. “Contraction” means thatU(h) is a singleton set containing
only the known putative value ˜K when h � 0. These properties endow h with its
meaning as a “horizon of uncertainty.”

5.4.1 IG Robustness

IG robustness is based on three components: a systemmodel, an info-gap uncertainty
model, and one or more performance requirements. In this present case, Eq. (5.2) is
the system model and Eq. (5.3) is the uncertainty model. Our performance require-
ment is that the displacement, x, be no less than the critical value xc.

The IG robustness is the greatest horizon of uncertainty h up to which the system
model obeys the performance requirement:

ĥ(xc) � max

{

h :

(

min
K∈U (h)

x

)

≥ xc

}

(5.4)

Reading this equation from left to right, we see that the robustness ĥ is the maxi-
mum horizon of uncertainty h up to which all realizations of the uncertain stiffness
K in the uncertainty set U(h) result in displacement x no less than the critical value
xc.

Robustness is a useful decision support tool because more robustness against
uncertainty is better than less. Given two options that are approximately equiva-
lent in other respects but one is more robust than the other, the robust-satisficing
decisionmaker will prefer the more robust option. In short, “bigger is better” when
prioritizing decision options in terms of robustness.
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Fig. 5.3 Robustness curve
of Eq. (5.5). F/s � 3,
˜K/s � 1

Derivation of the robustness function is particularly simple in this case. From
the system model, we know that x � F/K . Let m(h) denote the inner minimum in
Eq. (5.4), and note that this minimum occurs, at horizon of uncertainty h, when
K � ˜K + sh. The robustness is the greatest value of h up to which m(h) is no less
than xc:

m(h) � F
˜K + sh

≥ xc ⇒ ĥ(xc) � 1

s

(

F

xc
− ˜K

)

(5.5)

or zero if this is negative which occurs if the performance requirement xc is too large
to be obtained with the putative system.

5.4.2 Discussion of the Robustness Results

The robustness function in Eq. (5.5) demonstrates two fundamental properties that
hold for all IG robustness functions: trade-off and zeroing, illustrated in Fig. 5.3.

The performance requirement is that the displacement x be no less than the critical
value xc. This requirement becomes more demanding as xc increases. We see from
Eq. (5.5) and Fig. 5.3 that the robustness decreases as the requirement becomes more
demanding. That is, robustness trades off against performance: The robustness can
be increased only by relaxing the performance requirement. The negative slope in
Fig. 5.3 represents the trade-off between robustness and performance: Strict perfor-
mance requirements, demanding very good outcome, are less robust against uncer-
tainty than lax requirements. This trade-off quantifies the intuition of any healthy
pessimist: More demanding requirements are more vulnerable to surprise and uncer-
tainty than lower requirements.

The second property illustrated in Fig. 5.3 is zeroing. Our best estimate of the
stiffness is ˜K , so the predicted displacement is x � F/˜K . Equation (5.5) shows that
the robustness becomes zero precisely at the value of the critical displacement xc
that is predicted by the putative model: xc � F/˜K , which equals 3 for the parameter
values in Fig. 5.3. Stated differently, the zeroing property asserts that best-model
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predictions have no robustness against error in the model. Like trade-off, this is true
for all info-gap robustness functions.

Models reflect our best understanding of the system and its environment. Nonethe-
less, the zeroing propertymeans thatmodel predictions are not a good basis for design
or planning decisions, because those predictions have no robustness against errors
in the models. Recall that we are discussing situations with large info-gaps as rep-
resented in Eq. (5.3): The putative value of the stiffness ˜K is known, but the size of
its deviation from the true stiffness K is unknown. If your models are correct (no
info-gaps), then you do not need robustness against uncertainty. However, robustness
is important when facing deep uncertainty.

The zeroing property asserts that the predicted outcome is not a reliable character-
ization of the system. The trade-off property quantifies how much the performance
requirement must be reduced in order to gain robustness against uncertainty. The
slope of the robustness curve reflects the cost of robustness: What decrement in
performance “buys” a specified increment in robustness. Outcome quality can be
exchanged for robustness, and the slope quantifies the cost of this exchange. In
Fig. 5.3, we see that the cost of robustness is very large at large values of xc and
decreases as the performance requirement is relaxed.

The robustness function is a useful response to the pernicious side of uncertainty.
In contrast, the opportuneness function is useful in exploiting the potential for pro-
pitious surprise. We now discuss the info-gap opportuneness function.

5.4.3 IG Opportuneness

IG opportuneness is based on three components: a system model, an info-gap model
of uncertainty, and a performance aspiration. The performance aspiration expresses
a desire for a better-than-anticipated outcome resulting from propitious surprise.
This differs from the performance requirement for robustness, which expresses an
essential or critical outcome without which the result would be considered a failure.

We illustrate the opportuneness functionwith the same example, for positiveF and
x. The robust-satisficing decisionmaker requires that the displacement be no less than
xc. The opportune windfalling decisionmaker recognizes that a larger displacement
would be better, especially if it exceeds the anticipated displacement, F/˜K . For
the opportune windfaller, the displacement would be wonderful if it is as large as
xw, which exceeds the anticipated displacement. The windfaller’s aspiration is not a
performance requirement, but it would be great if it occurred.

Achieving a windfall requires a favorable surprise, so the windfaller asks: What is
the lowest horizon of uncertainty atwhichwindfall is possible (though not necessarily
guaranteed)? The answer is the opportuneness function, defined as:

β̂(xw) � min

{

h :

(

max
K∈U (h)

x

)

≥ xw

}

(5.6)
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Reading this equation from left to right, we see that the opportuneness β̂ is the
minimum horizon of uncertainty h up to which at least one realization of the uncer-
tain stiffness K in the uncertainty set U(h) results in displacement x at least as large
as the wonderful windfall value xw. The opportuneness function β̂(xw) is the com-
plement of the robustness function ĥ(xc) in Eq. (5.4). The min and max operators
in these two equations are reversed. This is the mathematical manifestation of the
inverted meaning of these two functions. Robustness is the greatest uncertainty that
guarantees the required outcome, while opportuneness is the lowest uncertainty that
enables the aspired outcome.

Opportuneness is useful for decision support, because a more opportune option
is better able to exploit propitious uncertainty than a less opportune option. An
option whose β̂ value is small is opportune, because windfall can occur even at low
horizon of uncertainty. The opportune windfaller prioritizes options according to the
smallness of their opportuneness function values: An option with small β̂ is preferred
over an option with large β̂. That is, “smaller is better” for opportuneness, unlike
robustness for which “bigger is better.” We again note the logical inversion between
robustness and opportuneness.

Whether a decisionmaker prioritizes the options using robustness or opportune-
ness is a methodological decision that may depend on the degree of risk aversion of
the decisionmaker. Furthermore, these methodologies may or may not prioritize the
options in the same order.

The opportuneness function is derived in a manner analogous to the derivation of
Eq. (5.5), yielding:

β̂(xw) � 1

s

(

˜K − F

xw

)

(5.7)

or zero if this is negative, which occurs when xw is so small, modest, and unambitious
that it is possible even with the putative design and does not depend on the potential
for propitious surprise.

5.4.4 Discussion of Opportuneness Results

The robustness and opportuneness functions, Eqs. (5.5) and (5.7), are plotted in
Fig. 5.4. The opportuneness function displays zeroing and trade-off properties,whose
meanings are the reverse of those for robustness. The opportuneness function equals
zero at the putative outcome x � F/˜K like the robustness function. However, for
the opportuneness function this means that favorable windfall surprise is not needed
for enabling the predicted outcome. The positive slope of the opportuneness function
means that greaterwindfall (larger xw) is possible only at larger horizonof uncertainty.

The robustness and opportuneness functions may respond differently to proposed
changes in the design solution, as we now illustrate. From Eq. (5.5), we note that
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Fig. 5.4 Robustness and
opportuneness curves of
Eqs. (5.5) and (5.7)

ĥ decreases as the putative stiffness ˜K increases. From Eq. (5.7), we see that β̂

increases as ˜K increases:

∂ ĥ

∂ ˜K
< 0,

∂β̂

∂ ˜K
> 0 (5.8)

Recall that “bigger is better” for robustness while “smaller is better” for oppor-
tuneness.We see that any increase in ˜K will make both robustness and opportuneness
worse, and any decrease in ˜K will improve them both. In summary, robustness and
opportuneness are sympathetic with respect to change in stiffness.

Now consider the estimated error, s in the info-gap model of Eq. (5.3). A smaller
value of s implies greater confidence in the estimate ˜K while a larger s implies a
greater propensity for error in the estimate. From Eq. (5.5), we see that robustness
improves (ĥ increases) as s decreases: Better estimate of ˜K implies greater robustness
against uncertainty in s. In contrast, from Eq. (5.7) we see that opportuneness gets
worse (β̂ increases) as s decreases: a lower opportunity for windfall as the uncertainty
of the estimate declines. In short:

∂ ĥ

∂s
< 0,

∂β̂

∂s
< 0 (5.9)

A change in the estimated error acts differently on robustness and opportune-
ness: By reducing the error of the estimated stiffness, one increases the robustness
but diminishes the opportuneness; increasing the error acts in the reverse. In short,
robustness and opportuneness are antagonistic with respect to the error in the esti-
mated stiffness.

5.4.5 An Innovation Dilemma

An innovation dilemma occurs when the decisionmaker must choose between
two options, where one is putatively better but more uncertain than the other.
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Fig. 5.5 Robustness curves
for innovative and
state-of-the-art options

Technological innovations provide the paradigm for this dilemma. An innovation
is supposedly better than the current state of the art, but the innovation is new so
there is less experience with it and in practice it may turn out worse than the current
state of the art. We will illustrate an innovation dilemma with the previous example,
demonstrating its resolution using the robustness functions of the two options.

Consider two alternative designs (Option 1 and Option 2) of the linear elastic
system (Eq. 5.2), one of which has lower estimated stiffness than the other:

˜K1 < ˜K2 (5.10)

Both designs will operate under the same positive force F, so the predicted dis-
placement, x � F/˜K , is greater with Option 1. Thus, Option 1 is preferred based on
the estimated stiffnesses and the requirement for large displacement.

However, the putatively better Option 1 is based on innovations for which the
actual stiffness in operation is more uncertain than for Option 2, which is the state of
the art. Referring to the uncertainty estimate, s, in the info-gap model of Eq. (5.3),
we express this as:

s1 > s2 (5.11)

The dilemma is that Option 1 is putatively better (Eq. 5.10) but more uncertain
(Eq. 5.11). This dilemma ismanifested in the robustness functions for the twooptions,
which also leads to a resolution, as we now explain. To illustrate the analysis, we
evaluate the robustness function for each option (Eq. 5.5) with the following param-
eter values: F � 1, ˜K1 � 1/6, s1 � 1, ˜K2 � 1/3 � s2. The robustness curves are
shown in Fig. 5.5.

The innovative Option 1 in Fig. 5.5 (dashed curve) is putatively better than the
state-of-the-art Option 2 (solid curve), because the predicted displacement of Option
1 is F/˜K1 � 6, while the predicted displacement for Option 2 is only 3. However,
the greater uncertainty of Option 1 causes a stronger trade-off between robustness
and performance than for Option 2. The cost of robustness is greater for Option 1
for xc values exceeding about 2, causing the robustness curves to cross one another
at about xc � 2.4.
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Fig. 5.6 Robustness and
opportuneness curves for
innovative (dashed) and
state-of-the-art (solid)
options

The innovation dilemma is manifested graphically by the intersection
of the robustness curves in Fig. 5.5, and this intersection is the basis for the res-
olution. Option 1 is more robust than Option 2 for highly demanding requirements
(xc > 2.4), and hence, Option 1 is preferred for this range of performance require-
ments. Likewise, Option 2 is more robust for more modest requirements (xc < 2.4),
and hence, Option 2 is preferred for this lower range of performance requirements.

The robust-satisficing designer will be indifferent between the two options for
performance requirements at or close to the intersection value of xc � 2.4. Con-
siderations other than robustness can then lead to a decision. Figure 5.6 shows the
robustness curves from Fig. 5.5 together with the opportuneness curves (Eq. 5.7)
for the same parameter values. We note that the innovative (dashed) Option is more
opportune (smaller β̂) than the state-of-the-art Option (solid) for all values of xw
exceeding the putative innovative value. Designers tend to be risk averse and to pre-
fer robust satisficing over opportune windfalling. Nonetheless, opportuneness can
“break the tie” when robustness does not differentiate between the options at the
specified performance requirement.

5.4.6 Functional Uncertainty

We have discussed the IG robustness function and its properties of trade-off, zeroing,
and cost of robustness. We have illustrated how these concepts support the decision
process, especially when facing an innovation dilemma. We have described the IG
opportuneness function and its complementarity to the robustness function. These
ideas have all been illustrated in the context of a one-dimensional linear system with
uncertainty in a single parameter. In most applications with deep uncertainty, the
info-gaps include multiple parameters as well as uncertainty in the shapes of func-
tional relationships. We now extend the previous example to illustrate the modeling
and management of functional or structural uncertainty in addition to the paramet-
ric uncertainty explored so far. This will also illustrate how uncertain probabilistic
models can be incorporated into an IG robust-satisficing analysis.
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Let the stiffness coefficient K in Eq. (5.2) be a random variable whose estimated
probability density function (pdf) p̃(K ) is normal with mean μ and variance σ 2.
We are confident that this estimate is accurate for K within an interval around μ of
known size ±δs. However, outside of this interval of K values, the fractional error of
the pdf is unknown. In other words, we are highly uncertain about the shape of the
pdf outside of the specified interval. This uncertainty derives from lack of data with
extreme K values and absence of fundamental understanding that would dictate the
shape of the pdf.We face “functional uncertainty” that can be represented by info-gap
models of many sorts, depending on the type of information that is available. Given
the knowledge available in this case, we use the following fractional-error info-gap
model:

U (h) �
⎧

⎨

⎩

p(K ) :

∞
∫

−∞
p(K )dK � 1, p(K ) ≥ 0 for all K ,

p(K ) � p̃(K ) for|K − μ| ≤ δs,
∣

∣

∣

∣

p(K ) − p̃(K )

p̃(K )

∣

∣

∣

∣

≤ h for|K − μ| > δs

}

, h ≥ 0 (5.12)

The first row of this info-gap model states that the set U(h) contains functions
p(K) that are normalized and non-negative (namely, mathematically legitimate pdfs).
The second line states that these functions equal the estimated pdf in the specified
interval around the mean, μ. The third line states that, outside of this interval, the
functions in U(h) deviate fractionally from the estimated pdf by no more than h.
In order to avoid some technical complications, we assume that the pdfs in U(h)
are non-atomic: containing no delta functions. In short, this info-gap model is the
unbounded family of nested sets, U(h), of pdfs that are known within the interval
μ ± δs but whose shapes are highly uncertain beyond it. This is one example of an
info-gap model for uncertainty in the shape of a function.

The system fails if x < xc where x � F/K and F is a known positive constant.
x is now a random variable (because K is random) so the performance requirement
is that the probability of failure not exceed a critical value Pc. We will explore the
robustness function. We consider the special case that F/xc > μ ± δs, meaning that
the failure threshold for K lies outside the interval in which the pdf of K is known.
The probability of failure is:

Pf(p) � Prob(x < xc) � Prob(K > F/xc) �
∞

∫

F/xc

p(K )dK (5.13)

For the estimated pdf, p̃(K ), one finds the following expression for the estimated
probability of failure:



112 Y. Ben-Haim

Fig. 5.7 Robustness curve
for Eq. (5.16)

Pf( p̃) � 1 − �

(

(F/xc) − μ

σ

)

(5.14)

where �(·) is the cumulative pdf of the standard normal variate.
The robustness function, ĥ(Pc), is the greatest horizon of uncertainty h up to

which all pdf’s p(K) in the uncertainty set U(h) do not have failure probability Pf(p)
in excess of the critical value Pc:

ĥ(Pc) � max

{

h :

(

max
p∈U (h)

Pf(p)

)

≤ Pc

}

(5.15)

After some algebra, one finds the following expression for the robustness:

ĥ(Pc) �

⎧

⎪

⎨

⎪

⎩

0 if 0 ≤ Pc < Pf( p̃)
Pc

Pf( p̃)
− 1 if Pf( p̃) ≤ Pc ≤ 2Pf( p̃)

∞ otherwise

(5.16)

The robustness function in Eq. (5.16) is illustrated in Fig. 5.7 for [(F/xc)− μ]/σ �
3, meaning that the failure threshold is 3 standard deviations above the mean. Hence,
the estimated probability of failure is Pf( p̃) � 1.35 × 10−3. The trade-off property is
evident in this figure: Lower (better) required probability of failure Pc entails lower
(worse) robustness ĥ(Pc). Note the discontinuous jump of robustness to infinity at
Pc � 2Pf( p̃). This is because the actual probability of failure Pf(p) cannot exceed
more than twice the estimated value Pf( p̃) resulting from constraints on the pdfs in
the info-gap model of Eq. (5.12). The zeroing property is expressed by robustness
becoming zero when the performance requirement Pc equals the estimated value
Pf( p̃).
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5.5 Conclusion and Future Challenges

We live in an innovative world. Our scientific optimism embodies the belief that
knowledge and understanding will continue to grow, perhaps at an ever-increasing
rate. An inescapable implication of scientific optimism is that we are currently quite
ignorant, and that we will be repeatedly and profoundly surprised in the near and not-
so-near future. Because of this uncertainty, the planner, designer, or decisionmaker
faces a profound and unavoidable info-gap: the disparity between what is currently
known (or thought to be true) and what needs to be known for making a responsible
decision (but is still hidden in the future). IG theory provides two complementary
methodologies for managing this uncertainty. Robust satisficing helps in protecting
against pernicious surprise and in achieving critical outcomes.Opportunewindfalling
helps in exploiting favorable surprise and in facilitating windfall outcomes.

We have illustrated the info-gap analysis in two examples, one quantitative and
using mathematics, and one qualitative and using only verbal analysis. We discussed
the trade-off between robustness and outcome requirements, showing that enhanced
robustness against uncertainty is obtained only by relaxing the outcome requirements.
In quantitative analysis, this allows an explicit assessment of the cost (in terms of
reduced robustness) of making the requirements more demanding.

We also showed that predicted outcomes—based on the best available models
and understanding—have no robustness against uncertainty in that knowledge. This
has a profound implication for the decisionmaker and for the conventional concep-
tion of optimization. One’s alternatives cannot be responsibly prioritized with their
predicted outcomes, because those predictions have no robustness against uncer-
tainty and surprise. Attempting to optimize the outcome, based on zero-robustness
predictions, is not recommended when facing deep uncertainty. Instead, one should
prioritize the alternatives according to their robustness for achieving critical out-
comes, supplemented perhaps by analysis of opportuneness for windfall. This is
particularly pertinent when facing an innovation dilemma: the choice between a new
and putatively better alternative that is more uncertain due to its newness, and a more
standard state-of-the-art alternative. The info-gap analysis of robustness enables the
decisionmaker to assess the implications of uncertainty and to prioritize the alterna-
tives to robustly achieve critical goals. We showed that this can lead to a reversal of
the preference from the putatively optimal choice.

Many challenges remain. The quantitative analysis of robustness and opportune-
ness of large and complicated systems often faces algorithmic or numerical diffi-
culties resulting from high dimensionality of the computations. Another challenge
arises in response to new types of information and new forms of uncertainty. Many
different mathematical forms of info-gap models of uncertainty exist (here we have
examined only a few). However, analysts sometimes need to construct new types of
info-gap models of uncertainty.

Another challenge is in bridging the gap between mathematics and mean-
ing: between quantitative and qualitative analysis. Mathematics is a powerful
tool that has facilitated the exploration of everything under the sun. However,
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the incorporation of mathematics is difficult when knowledge is predominantly ver-
bal, and when the meanings of subtle concepts are crucial to the decisionmaking pro-
cess. A mathematical equation expresses a structural relationship between abstract
entities. Meaning can be attributed to an equation, but meaning is not inherent in the
equation. Witness the fact that the same equation can describe diverse and unrelated
phenomena. Bridging the divide between mathematics and meaning is challenging
in both directions. Quantitative analysts are often challenged to appreciate the lim-
itations of their tools, while qualitative analysts often find it difficult to appreciate
the contribution that mathematics can make.

The analysis and management of deep uncertainty faces many challenges, but
our scientific optimism, tempered by recognition of our persistent ignorance, will
carry us through as we acquire new understanding and face new surprises. As John
Wheeler wrote (1992): “We live on an island of knowledge surrounded by a sea of
ignorance. As our island of knowledge grows, so does the shore of our ignorance.”

References

Ben-Haim, Y. (2006). Info-gap decision theory: Decisions under severe uncertainty (2nd ed.).
London: Academic Press.

Ben-Haim, Y. (2010). Info-gap economics: An operational introduction. London: Palgrave-
Macmillan.

Ben-Haim, Y. (2012a). Doing our best: Optimization and the management of risk. Risk Analysis,
32(8), 1326–1332.

Ben-Haim, Y. (2012b). Why risk analysis is difficult, and some thoughts on how to proceed. Risk
Analysis, 32(10), 1638–1646.

Ben-Haim, Y. (2018).Dilemmas of wonderland: Decisions in the age of innovation. Oxford: Oxford
University Press.

Ben-Haim, Y., Dacso, C. C., Carrasco, J., & Rajan, N. (2009). Heterogeneous uncertainties in
cholesterol management. International Journal of Approximate Reasoning, 50, 1046–1065.

Ben-Haim,Y.,&Demertzis,M. (2016).Decisionmaking in times ofKnightian uncertainty:An info-
gap perspective,Economics, TheOpen-Access,OpenAssessment e-journal, Special IssueRadical
Uncertainty and Its Implications for Economics. No. 2016-23: 1–29. http://www.economics-
ejournal.org/economics/journalarticles/2016-23.

Ben-Haim, Y., Zetola, N. M., & Dacso, C. (2012). Info-gap management of public health policy for
TB with HIV-prevalence. BMC Public Health, 12, 1091. https://doi.org/10.1186/1471-2458-12-
1091.

Burgman, M. (2005). Risks and decisions for conservation and environmental management. Cam-
bridge: Cambridge University Press.

Chinnappen-Rimer, S., & Hancke, G. P. (2011). Actor coordination using info-gap decision theory
in wireless sensor and actor networks. International Journal of Sensor Networks, 10(4), 177–191.

Hall, J. W., Lempert, R. J., Keller, K., Hackbarth, A., Mijere, C., & McInerney, D. J. (2012).
Robust climate policies under uncertainty: A comparison of robust decision making and info-gap
methods. Risk Analysis, 32(10), 1657–1672.

Hansen, L. P., & Sargent, T. J. (2008). Robustness. Princeton: Princeton University Press.
Harp, D. R., & Vesselinov, V. V. (2013). Contaminant remediation decision analysis using infor-
mation gap theory. Stochastic Environmental Research and Risk Assessment, 27(1), 159–168.

Kanno, Y., & Takewaki, I. (2006). Robustness analysis of trusses with separable load and structural
uncertainties. International Journal of Solids and Structures, 43(9), 2646–2669.

http://www.economics-ejournal.org/economics/journalarticles/2016-23
https://doi.org/10.1186/1471-2458-12-1091


5 Info-Gap Decision Theory (IG) 115

Knight, F. H. (1921). Risk, uncertainty and profit. Houghton Mifflin Co. (Re-issued by University
of Chicago Press, 1971).

Knoke, T. (2008). Mixed forests and finance—Methodological approaches. Ecological Economics,
65(3), 590–601.

Moffitt, L. J., Stranlund, J. K., & Field, B. C. (2005). Inspections to avert terrorism: Robustness
under severe uncertainty. Journal ofHomeland Security andEmergencyManagement, 2(3). http://
www.bepress.com/jhsem/vol2/iss3/3.

Schlosser, E. (2013). Command and control: Nuclear weapons, the Damascus accident, and the
illusion of safety. New York: Penguin Books.

Schwartz, B. (2004). Paradox of choice: Why more is less. New York: Harper Perennial.
Schwartz, B., Ben-Haim, Y., & Dacso, C. (2011). What makes a good decision? Robust satisficing
as a normative standard of rational behaviour. The Journal for the Theory of Social Behaviour,
41(2), 209–227.

Simon,H. (1956). Rational choice and the structure of the environment.Psych. Rev., 63(2), 129–138.
Sims, C. A. (2001). Pitfalls of a minimax approach to model uncertainty. American Economic
Review, 91(2), 51–54.

Smithson, M., & Ben-Haim, Y. (2015). Reasoned decision making without math? Adaptability and
robustness in response to surprise. Risk Analysis, 35(10), 1911–1918.

Wald, A. (1947). Sequential analysis. J. Wiley & Sons (re-issued by Dover Publications, 1973).
Wheeler, J. A. (1992). Quoted in Scientific American, December, 1992, p. 20.

Prof. Yakov Ben-Haim (Technion—Israel Institute of Technology) is a professor of mechanical
engineering and holds the Yitzhak Moda’i Chair in Technology and Economics. He initiated and
developed Info-Gap (IG) Decision Theory for modeling and managing deep uncertainty. IG the-
ory has impacted the fundamental understanding of uncertainty in human affairs and is applied by
scholars and practitioners around the world in engineering, biological conservation, economics,
project management, climate change, natural hazard response, national security, medicine, and
other areas (see info-gap.com). He has been a visiting scholar in many countries and has lectured
at universities, technological and medical research institutions, public utilities, and central banks.
He has published more than 100 articles and 6 books.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://www.bepress.com/jhsem/vol2/iss3/3
http://creativecommons.org/licenses/by/4.0/

	5 Info-Gap Decision Theory (IG)
	5.1 Info-Gap Theory: A First Look
	5.2 IG Robustness: Methodological Outline
	5.2.1 Three Components of IG Robust Satisficing
	5.2.2 IG Robustness
	5.2.3 Prioritization of Competing Decisions
	5.2.4 How to Evaluate Robustness: Qualitative or Quantitative?

	5.3 IG Robustness: A Qualitative Example
	5.3.1 Five Conceptual Proxies for Robustness
	5.3.2 Simple Qualitative Example: Nuclear Weapon Safety

	5.4 IG Robustness and Opportuneness: A Quantitative Example
	5.4.1 IG Robustness
	5.4.2 Discussion of the Robustness Results
	5.4.3 IG Opportuneness
	5.4.4 Discussion of Opportuneness Results
	5.4.5 An Innovation Dilemma
	5.4.6 Functional Uncertainty

	5.5 Conclusion and Future Challenges
	References




