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Abstract

• Adaptation planning and climate risk management are examples of decision pro-
cesses made under climate uncertainty.

• A variety of approaches exist for helping an analyst to evaluate alternatives
over future unknown states of the world. However, climate uncertainty requires
additional considerations, including how to use available climate information,
such as climate change projections, to inform the decision process without
overwhelming it.

• Decision Scaling is specifically designed to support decisionmaking under climate
uncertainty while it is general enough to address other uncertainties. The process
is designed to make the best and most efficient use of uncertain but potentially
useful climate change projections.

• DS consists of three steps: Decision Framing, Climate Stress Test, and Estimating
Climate-Informed Risks.

• This is accomplished by using weather generator tools and systematic sampling
algorithms to create an unbiased description of system response to plausible
climate changes.

• Climate information is incorporated as a sensitivity factor in the last stage of
analysis for aiding the process of prioritizing risks or choosing among adaptation
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options through evaluation of probabilities of underperforming strategies and the
need for adaptation.

• An important benefit of using DS is the establishment of open lines of com-
munication and trust among the analysts, decisionmakers, and representative
stakeholders. This is achieved through frequent consultation and validation of
models that will be used for the analysis.

12.1 Introduction

Decision Scaling (DS) originated in response to questions regarding the best
approaches to process and use climate change projections for adaptation planning.
At the time, and as continues to be the case, planners face an overwhelming number
of choices of climate change projections, which vary in terms of climate model,
downscaling approaches, emission scenarios, etc., and no clear guidance to navigate
among them.DSuses a decision analytic framework and structured, physically based,
multidimensional sensitivity analysis to first identify the priority climate-related con-
cerns, reserving climate projections for use in latter stages of the analysis, to inform
the level of concern for climate vulnerabilities that are identified. A formal proba-
bilistic framework is used to characterize the information from climate projections
in the spatial and temporal scales that maximize credibility.

The application of decision analysis techniques has evolved from an intent to
identify an optimal decision to an intent to fully explore the consequences and trade-
offs of alternative decisions, often to select a reduced set of best-performing or “non-
inferior” decisions. Public resource problems consist of multiple objectives, often
the goals of different groups or people or constituencies, and so are not reducible to a
single numeraire. For public resource problems, there are important considerations:

1. Multiple irresolvable preferences for the choice of a solution;
2. Full exploration of the performance space over various uncertainties and in terms

of multiple objectives;
3. Multiple beliefs about the future, possibly conflicting information regarding rel-

ative likelihoods or simply indications of plausibility of different futures.

A planning approach for climate change must address each of these considera-
tions. Methods for decisionmaking under uncertainty have long existed for exploring
multiple objectives and irresolvable preferences among those objectives, including
concepts such as preference dominance and Pareto optimality.

However, traditional methods do not address the issue of multiple beliefs about
future states of the world. Typically, the scenarios used to explore the outcomes
of different decisions include embedded beliefs that are not explicitly recognized.
For example, the choice of a particular set of climate simulations, or downscaling
approach, or emissions scenario, embeds the assumptions that those projections rep-
resent, and precludes other possible climate futures. Thus, the performance space
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of alternative decisions is affected and potentially biased by the choice of the cli-
mate futures considered, including those derived from climate models. Climate may
change in a number of ways. There are two approaches in common practice: (1) the
use of climate change projections from climate models (by far the most common)
and (2) the use of climate narratives, such as used in a scenario planning approach.

Scenario planning typically uses a small number of narratives, representing inter-
nally consistent and mutually exclusive possible futures that are developed indepen-
dently of climate projections or else informed by them (for example, considering the
range of projections). For many planning exercises, this is probably adequate. But
for natural resource systems or complex-coupled human-natural systems, such as a
water resource system, a small set of narratives provides a limited view of potential
climate change effects. Consequently, the resultant plans may be vulnerable to cli-
mate changes that could have been identified with a more comprehensive approach.
(So, at best, scenario planning is able to deal with Level 3 uncertainties, but not Level
4 uncertainties.)

The most common approach to exploring climate futures is the use of climate
change projections from general circulation model (GCM) simulations. Climate pro-
jections have the imprimatur of authority because they are used extensively by the
climate science community to better understand the earth’s climate, the effect of
anthropogenic emission of greenhouse gases and to inform key decisions regarding
the regulation of these emissions. However, they may not be the best source of cli-
mate futures for use in adaptation planning. Most significantly, GCM projections
are inefficient and biased samplers of possible future climate changes. They do not
explore the full range of climate changes, but rather the “minimum range of the
maximum uncertainty.” Projections typically have biases in terms of climate vari-
ability and extremes, which are sometimes the most important climate statistics in
terms of impacts. Using climate projections as scenario generators requires process-
ing steps that require many choices that can be controversial themselves. Many a
climate change study becomes bogged down in the evaluation of alternative down-
scaling approaches and choices of which climatemodels to use. In the end, the results
are dependent on these choices, and would be different if other choices were made,
further confusing the results.

In practice, adaptation planners are often overwhelmed by the many choices
involved in using climate projections for scenario analysis, including emissions sce-
narios, downscaling methods, model selection, and bias correction. In addition, with
new sets of climatemodels, or new downscalingmethods introduced every few years,
practitioners feel compelled to redo the entire analysis to see if results have changed.
Consequently, when using climate projections as the starting point, the analysis is
never complete, and the planner will (and should) always wonder if the results would
be different if a different set of projections were used.

DS reveals vulnerabilities to climate changes independent of climate projections,
thus negating the time-consuming and expensive debates on the choices related to
climate projection use. It does this through the application of a “climate stress test”
algorithm, which generates physically realistic climate changes over the widest plau-
sible range. It generates a comprehensive, unbiased estimation of climate effects on
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the system or decision of interest, without the assumptions and biases embedded
in climate change projections from climate models. Climate information from pro-
jections or other information sources are used only in the final stages of analysis,
to inform the vulnerabilities or differential performances that are identified in the
climate stress test. In this way, climate information is used as a sensitivity factor.
The understanding of climate change effects on a system only change if the system
changes—the understanding is not dependent on the climate projections that happen
to be used.

DS shares the general problem formulation and structure of decision analysis
frameworks (c.f., Schlaifer and Raiffa 1961), with the formal structuring of deci-
sions in terms of objectives, performance measures or “rewards,” unknown future
states of the world, and alternative choices. It is designed to be incorporated into
public decisionmaking processes, including with diverse sets of stakeholders hold-
ing different objectives and preferences for the matter at hand. It accommodates
multi-objective analysis and multiple “beliefs” or viewpoints on the more likely
future states of the world. This chapter explains the theoretical derivation of Deci-
sion Scaling, explains the process in detail, and summarizes a recent application to
the challenge of assessing climate risks to the water supply system for Colorado
Springs.

12.2 Technical Approach

12.2.1 Overview

DS was designed as a “fit-to-purpose” decision framework for the use of climate
change information in climate risk management and adaptation planning. “Deci-
sion Scaling” (DS) is positioned as a method to use climate information to improve
decisions made under climate uncertainty. DS inverts the usual order of forecast
information used in decision analysis, focusing on understanding how decisions are
sensitive to changing climate, and using that insight to tailor the climate information
provided by GCMs to provide the most credible information to inform the decision.
The approach is based on an implicit acceptance of the inherent uncertainty of future
climate, and the difficulty of attempting to reduce that future uncertainty. Instead,
the goal is to characterize the uncertainty in terms of its implications for decisions
and identify the best decisions in view of this uncertainty.

DS consists of three steps (see also Sect. 1.5):

1. Decision Framing
2. Climate Stress Test
3. Estimating Climate-Informed Risks.

The decision framing step is used to identify the mission objectives, and metrics
for quantifying them, the uncertain factors that affect the decision, such as future
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climate, the models or functional relationships needed to represent the system being
investigated, and if adaptations are being considered, any choices among adaptation
alternatives. The climate stress test is a pragmatically designed multidimensional
sensitivity analysis that reveals the fundamental sensitivity of the sector to climate
changes, and/or, other uncertain factors. In doing so, it exposes the climate conditions
that are problematic for the sector. The final step is to prepare climate information,
such as downscaled climate projections, to assess the level of concern that one might
assign to the problematic conditions. This can be accomplished using both informal
approaches, such as “weight of evidence”, and formal approaches, such as proba-
bilistic methods.

DS is expected to yield benefits in at least three ways. First, the process will
provide a clear delineation of the climate risks that are problematic for a specific
sector, and the climate changes by which a sector is not threatened. These results are
independent of climate projections, and thus are not subject to the various choices
and uncertainties associated with processing steps such as downscaling. They also do
not require updating with every new generation of climate change projections. Sec-
ond, the approach allows the characterization of climate change projections in terms
relative to decisions and the revealed vulnerabilities. The effects of alternative meth-
ods for processing of climate change projections, including downscaling approaches
(e.g., statistical vs. dynamic) and methods for estimating probability distributions
of changes in climate variables, can be presented in terms of their implications
regarding the response of the system or sector to climate changes. The information
provided by the projections can inform judgments made relative to the level of con-
cern associated with any revealed problematic climate conditions or vulnerabilities
of a particular sector. Similarly, the information can be used to inform judgments
made relative to adaptation. In this way, the DS approach does not reject the use of
climate change information or projections, but rather is designed to use them in the
most decision-relevant and helpful way. Third, the approach is designed to facilitate
robust decisionmaking approaches, such as in the approaches described and applied
in Parts I and II of the book. DS includes quantification of the robustness of alter-
native system configurations or other policies, and a clear indication of the expected
risk reduction through alternative adaptations. This final benefit is not demonstrated
explicitly here, although the results should provide a conceptual understanding of
how this would be possible.

DS is based on traditional decision analytic approaches, in particular, the analysis
technique known as pre-posterior analysis (Schlaifer and Raiffa 1961). Pre-posterior
analysis involves identifying optimal decisions that youwouldmake given new infor-
mation (posterior to the new information) before you actually know what the new
information will tell you (thus, “pre”–posterior). For example, a user may be inter-
ested in knowing the expected value of a forecast (say a weather forecast) before
paying for it. One would have to account for the value of the improved decision that
results from receiving the forecast. But since the forecast result is unknown prior
to receiving it, one needs to evaluate the optimal decision for all possible future
forecast results, and then account for the probability of receiving each of these fore-
casts. Application of this framework yields the expected value of perfect information
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(EVPI) and the expected value of including uncertainty (EVIU), which are two use-
ful quantities for evaluating whether pursuing forecast information and considering
uncertainties is worth the effort. EVPI is the difference in value when a decision is
made with the uncertain outcome known and when a decision is made without con-
sidering a forecast. This serves as a check for whether to consider forecasts, since the
value of decisions with actual operational forecasts cannot exceed this upper bound.
EVIU is the value of a decision made taking account of the uncertain outcomes com-
pared to the value of that decision when uncertainty is ignored. Again, it provides a
check as to whether these more analytically demanding approaches are likely to be
worth the effort.

While the classic decision analytic framework is typically used to evaluate infor-
mation for decisionmaking prior to receiving it, it reveals insights about the decision
that are more broadly useful. In particular, through a systematic exploration of all
future states of theworld, it produces amapping of optimal decisions for each of these
states. More critically, since the analysis assumes the forecast is not yet received, the
mapping is created independent of the forecast or any expectations of future likeli-
hoods. This creates a clear separation between our understanding of the decision at
hand, and the estimates of probabilities of future states of the world.

DS exploits the advantages of this theoretical framework, using Monte Carlo
stochastic sampling tools and currently available high-powered computers to create
the mapping of the computed optimal decisions over the wide range of possible
futures. The mapping is then used to identify the scenarios where one decision is
favored over another and, in doing so, revealing what information would be most
helpful in selecting one decision over another. It also can be used to identify and
evaluate risks to an existing system or a planned system design.

DS provides several advantages for addressing uncertainties related to climate
change. In typical climate change analyses, there are multiple sources of climate
information available. These sources may be projections from general circulation
models (GCMs) or regional circulation models (RCMs), stochastic models based
on historical data, information drawn from paleoclimatological records, the historic
observed record, or some combination of these sources. Often the views they offer
for future climate vary widely and there is no clear guidance for choosing among
them, because estimating their skill in future projections is difficult or impossible
(Gleckler et al. 2008). Yet, because they vary, the results of any analysis are likely
to be highly influenced by the choice of futures to consider. In addition, in a multi-
stakeholder and multi-objective decisionmaking process, the stakeholders may hold
strongly divergent beliefs about future climate. Consequently, an analysis that is
driven by belief about future climate may not be responsive to some stakeholders,
and the process for selecting the future scenarios to consider can become contentious
and stall the process.

DS uses the mapping generated from a pre-posterior analysis framework to gen-
erate an understanding of optimal decisions prior to receiving “the forecast,” in this
case, a particular set of climate futures. Since the mapping is independent of any set
of futures, the selection of a set of futures to evaluate is no longer required. Instead
of being a potential sticking point, alternative beliefs about the future can be used as
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a sensitivity factor. Indeed, the concept of “belief dominance” can be used to select
the decisions that are best performing across the unknown probabilities of future
climate. This results in a non-inferior set of decisions across beliefs, analogous to
the more familiar preference dominance, which reveals the Pareto set of non-inferior
solutions across preference weightings.

The keymethodological challenge for applying this framework is the development
of an approach for sampling the plausible range of climate changes. Known issues
with climate projections, including their limited sampling of changes in extremes
and variability, the debates regarding choices for processing the projections (e.g.,
“downscaling”), and the fact, as Stainforth et al. (2007) state that they sample “the
minimum range of the maximum uncertainty,” preclude their utility for this purpose.
Instead, a fit for purpose climate andweather sampler algorithmwas created, allowing
efficient and systematic sampling of plausible climate changes (Steinschneider and
Brown 2013).1

12.2.2 Step 1. Decision Framing

A premise of DS is that attributes of decisions have a significant and possibly critical
effect on the utility of information produced to improve a given decision. In the
context of climate change, this implies that the value of climate information and
the best means of providing that information (in terms of both its attributes and the
effort and expense to provide it) is best discovered by investigating vulnerabilities
and decisions, rather than solely investigating the various ways of producing climate
information. Therefore, the first step of the analysis is to frame decisions in terms of
specific decision attributes and their context relative to climate change.

Following a traditional decision analytic framework, the process begins with gath-
ering information on the decision at hand in a structured fashion, using four cate-
gories:

• Choices (e.g., to adapt or not; plan A vs. plan B)
• Uncertainties (e.g., future climate; future population)
• Consequences (e.g., net benefits, damages)
• Connections (e.g., system diagram, system model)

This is a general problem formulation framework common to many decision ana-
lytic frameworks; classic texts often use the alternative terminology “actions,” “states
of the world,” “rewards,” and “models” (c.f., Winston and Goldberg 2004). In this
book, the same framework is described as XPROW (X � exogenous uncertainties,

1For some applications, simpler methods could be used—for example, cases in which temporal and
spatial patterns of weather and climate are not critical to preserve. In addition, tools such as Latin
Hypercube Sampling and application of PRIM for scenario identification (e.g., Groves and Lempert
2007) have been productively applied.
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P � policies, R � relationships, O � outcomes, W � weights) (see Fig. 1.2)2. The
framework described here is intended to be intuitive for a general participant. The
articulation of choices should include not only the specific alternatives, but also
characteristics of the decisions, such as the decision hierarchy (at what hierarchi-
cal levels are decisions made?) and the temporal nature of the decision (one shot,
reversible, sequential, etc.). Uncertainties should include not only climate changes,
but also other relevant external factors, which will vary based on the specific decision
problem. Consequences should be quantifiable outcomes (also called performance
measures) that are meaningful to the decisionmaker and other stakeholders. Ideally,
they would represent the outcomes currently used to assess the performance of the
system or activity. Finally, connections are the way in which decisions yield conse-
quences, and the way by which uncertainties affect them. The connections between
climate and consequences often exist in functional relationships between weather or
climate and existing activities. In some cases, existing models quantify those func-
tional relationships. In other cases, historical data may be used to characterize the
relationships. In still other cases, such as for water supply, newmodels ormodel com-
binations that relate climate to the reliability of water serving a specific installation
may be required.

The decision framing serves to organize what can often seem a nebulous discus-
sion of information and desires into categories that fit directly into the analytical
framework. That is, the decisionmaker faces choices that are to be evaluated in terms
of their consequences that result from different realizations of the uncertainties. The
consequences of choices are estimated based on our understanding of the connections
between them, often represented by models or functions.

In many applications, the decision process will involve multiple stakeholders
convening to incorporate multiple viewpoints on the objectives and important con-
siderations for analysis. In public decisionmaking processes with many potentially
affected people, it is essential to involve representatives of these groups, and under-
stand their preferences and concerns. Otherwise, a decision may be optimal for a
narrow set of planners but judged to be far from optimal by those affected by the
decision. Trade-offs among objectives can be described and assessed in Step 3.

The results of the first stage of the analysis provide the inputs and information
needed for the following stages. These include an articulation of alternative decisions,
a list of key uncertainties to incorporate into the analysis, a list of the outcomes used
to evaluate the consequences of different decisions, and the models or relationships
used to represent the decision problem.Thefinal key product of Step 1 is the establish-
ment of open lines of communication and trust among the analysts, decisionmakers,
and representative stakeholders. This is achieved through frequent consultation and
validation of models that will be used for the analysis.

2In RDM the same framework is described as XLRM (X � exogenous uncertainties, L � levers, R
� relationships, and M � measures of performance (see Chap. 2)
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12.2.3 Step 2. Climate Stress Test

The climate stress test is the term given to the multidimensional sensitivity analysis
that is used to reveal the effects of possible climate changes, and other uncertain
factors, on the activity or system of interest. This step can be a more general stress
test, since the sensitivity factors need not be climate-related. However, since cli-
mate requires special handling due to its distributed spatial and correlated temporal
characteristics, this chapter focuses on the climate stress test. The approach is to
parametrically vary climate variables in a representation of the system or activity,
and infer from the results the response of the system to a wide range of climate
changes. The representation of the system can range from a simple empirical rela-
tionship to sophisticated models or sequences of models. In most cases, a formal
model of the natural, engineered, or socio-economic system is created that relates
climate conditions to the outcomes identified in Step 1. The models are mathemati-
cal representations of physical, social, or economic processes that allow the analysts
to systematically explore the potential effects of changes in climate on the system.
The models might be complex or simple, depending on the attributes of the deci-
sion and the available resources for the analysis. The only requirement is that the
representation includes some climate or weather inputs. Models are validated with
available data to ensure that they appropriately represent the system of interest and
the outcomes of interest in the terms the stakeholders utilize for decisionmaking.
The climate stress test approach is quite general. In principle, any model that could
be used for assessing climate change impacts via climate projections can be used for
the climate stress test, and likely more.

The climate stress test represents advancement over traditional sensitivity analy-
sis. In the past, single variable sensitivity analysis has been criticized because varying
a single factor individually will fail to reveal sensitivities that are caused by the cor-
related behavior of multiple variables. For example, separately varying temperature
and precipitation would not reveal problems that occur when both change together.
However, varying multiple variables simultaneously requires preserving the physical
relationships among these variables, if they are not independent, for the results to be
physically meaningful. In the case of weather and climate variables, the challenge
is maintaining spatial and temporal relationships in aspects such as precipitation,
temperature, and wind. The answer to this challenge resides in stochastic weather
generators, which are statistical models that are designed to produce stochastically
generated weather time series and have been used in the past in crop modeling and
hydrologic modeling to create alternative historical time series. They are used to
investigate the effects of possible alternative realizations of weather and climate
variability. These models can serve as the basis of climate stress testing.

The required attributes for amultipurpose climate stress testing algorithm include:

1. Physical fidelity—the algorithm must preserve known physical relationships
among climate variables.

2. Spatial and temporal cogency—the algorithm must produce results that have a
physically meaningful spatial and temporal scale (e.g., average annual tempera-
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ture for a 30-year period over the spatial area of study). This allows the results to
be linked to climate information, such as climate projections, which are always
positioned in time and space.

3. Modifiable—the climate conditions must be able to be changed in a controlled
and predictable way, to allow exploration of climate changes.

4. Representative variability—the representation of internal or “natural” variability,
the unpredictable chaotic nature of weather time series, should be accurate to the
degree possible. This is, especially, important because internal variability is typ-
ically dominant at the temporal and spatial scales of adaptation decisionmaking
and risk assessment. For example, at the spatial scale of a water resources system
and over a 30-year planning period, natural variability is likely to have a larger
explanatory role in the conditions experienced than any trends in climate change.

A climate stress testing algorithm was designed with these desired qualities. It
is fully described in Steinschneider and Brown (2013). As illustrated in that paper,
the climate stress testing algorithm can create a wider range of climate changes
than could have been derived from a typical downscaled, multi-model ensemble of
projections. More important, in some cases, the algorithm can more efficiently (in
terms of computational effort) sample a wide range of climate changes, due to its
systematic approach. This is important when the model or models used to repre-
sent a specific system are expensive in terms of computation time (e.g., a model
representing the California water supply system). Not all applications require such
a sophisticated approach. Water supply systems require careful simulation because
they are expected to provide water at very high reliability, and will only show sen-
sitivity during critical periods, or rare events consisting of very dry conditions. In
addition, they typically collect water from wide spatial areas, such as river basins,
and the transport and storage of water defies a simple linear representation. As a
result, the detailed representation of temporal and spatial variability is required to
accurately assess these systems. Other systems (i.e., systems that have no spatial
distribution) can be assessed using average conditions at a point location and do not
require the full features of a climate stress testing algorithm.

The stress test provides the analyst and decisionmaker with a response func-
tion that relates a change in decision-relevant outcomes measuring performance to
changes in the climate and socio-economic system, enabling the analyst to parse
the space of future conditions into regions of “acceptable” and “unacceptable” per-
formance (throughout this book, this process is termed Scenario Discovery (SD)).
This functional relationship is extremely powerful in the decisionmaking process.
For instance, it may indicate that the system is relatively insensitive to changes in
climate or other stressors and further analysis is unnecessary. Alternatively, the stress
test may reveal that the system is extremely sensitive to even a modest change in one
component of the climate system or small amounts of population growth, suggesting
that proactive measures may be needed sooner rather than later.

Although climate change is typically the focus of adaptation planning and climate
risk assessment, other changing factors or uncertainties may be as important or even
more so. The climate stress test incorporates these non-climate factors as well, in
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which case it is a more general type of stress test. The stress test uses stochastic
sampling techniques to determine the system response and the performance of alter-
natives over the full range of uncertainties considered. The framework allows both
simulation modeling and optimization modeling, and thus the response can be in
terms of the system performance (simulation) or optimal decision (optimization) for
each combination of factors considered.

Designing the climate stress test requires two additional considerations: the range
of the factors to be sampled and the structure of the sampling algorithm. The goal of
range setting on the uncertain factors is to sample all plausible values and not preclude
unlikely but plausible outcomes. The range should be broad enough that there is no
question that all plausible values are sampled. There should be little concern that
implausible values might be sampled, since the goal of this step is to understand the
response of the system, not to assess risks or vulnerabilities. If vulnerabilities are
identified near the edge of the sampling range, they can be disregarded during Step
3. That is the appropriate time to make judgments on the plausibility of identified
vulnerabilities.

The second consideration is the structure of the sampling algorithm and the preser-
vation of correlations among uncertain factors, if necessary. The climate stress testing
approach described earlier is specifically designed to preserve spatial and temporal
patterns in weather and climate statistics. This is necessary in order to sample phys-
ically realistic values. Likewise, there may be a need to preserve correlations among
other uncertain values. For example, the future demand for water may be an impor-
tant uncertain factor in water supply planning that is to be sampled over a wide
range of values. Depending on local conditions, water demand might be influenced
by temperature and precipitation. Therefore, there may be a need to ensure that this
relationship is preserved in the sampling technique—for example, by enforcing a pos-
itive correlation between water demand and temperature. While the procedures for
doing so go beyond the scope of this chapter, there are several possible approaches,
including parametric correlation functions and nonparametric (data-based) sampling
techniques.

A water supply climate stress test provides an illustration of the approach. In the
case of assessing vulnerabilities of awater system, a series ofmodels is developed that
can be used to identify the vulnerabilities of all components of the water resources
system that serve the water demands of the installation. These models typically
include the following three steps: (1) climate/weather generation, (2) hydrologic
modeling, and (3) water resources system modeling (Fig. 12.1).

Stochasticweather generators can create newsequences ofweather consistentwith
current or a changed climate that simultaneously exhibit different long-term mean
conditions and alternative expressions of natural climate variability. The scenarios
created by the weather generator are created independent of climate projections,
allowing for a systematic exploration of future climates. The scenarios are designed
to maintain physical attributes of weather and climate, such as spatial and temporal
patterns and correlations. Furthermore, climate scenarios exhibiting the same mean
climate changes can be stochastically generated many times to explore the effects
of internal climate variability. In this way, the climate-weather generator (i.e., a
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Fig. 12.1 Three sequential elements of the vulnerability assessment modeling environment

weather generator linked to specific mean climate conditions) can be used to fully
describe the response of the system to possible climate changes without making
strong assumptions about how likely the particular climate changes are.

The climate information from the weather generator is fed into a hydrologic
model. The hydrologic model translates changes in weather variables to hydrologic
variables of interest (e.g., streamflow at inflow points to water infrastructure). The
water resourcesmodel accepts hydrologic variables as inputs, as well as other driving
variables (e.g., water demanded from domestic or agricultural users; environmental
release requirements), simulates the infrastructure operation and conveyance plans
that determine the flow of water through the engineered system, and calculates the
variables that are of interest for policy andmanagement (e.g., reservoir storage, water
delivered to users, water released to the environment). This process is repeated a large
number of times (total scenario runs may number in the thousands to fully sample
climate and other changes), the performance of proposed plans is calculated, and
the results are presented on a “climate response surface” that displays the climate
changes that are problematic (Fig. 12.2). [In the rest of the book, this process is called
Exploratory Modeling (EM).]

Figure 12.2 is an illustration of the results for a typical climate stress test. It shows
a map of changes in climate (both precipitation and temperature) and the resulting
impact. In this case, the area in red indicates that the impacts have exceeded an
impact level, adaptation tipping point, or threshold beyond which adaptation would
be required. Thus, the climate changes represented by the red area indicate the cli-
mate changes that would cause adaptation to be necessary. The way of determining
threshold levels is not necessarily dependent on any specified threshold; thresholds
are completely malleable and can be specified by the individual analyst for the ques-
tion of interest.
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Fig. 12.2 Illustration of climate stress test results indicating the climate conditions that cause
unacceptable performance (red area) (Color figure online)

The climate response surface is a two-dimensional visualization of the response
of the system to climate change. In this case, the response variable is the reliability
of water supply calculated for a 50-year simulation. The climate response surface
summarizes the effects of climate change on the system, including changes in mean
climate and the range of variability. In this case, the effects of mean climate changes
were estimated with 13 stochastically generated weather time series of 50 years in
length. The carefully designed sampling of mean climate changes and variability
produces the best unbiased estimate of future system performance, and accounts for
the internal variability of the climate system.

In a multidimensional uncertainty analysis, more than two dimensions may be
needed to display all the effects of uncertain factors. There are a number of ways to
display multidimensional results, including “parallel coordinate plots” and “tornado
plots”. However, experience has shown that stakeholders are most receptive to two-
dimensional visualizations, and these 2D figures can be created as slices of the
multidimensional response surface for any two variables. The representation of the
climate response surface is best determined through iteration with the stakeholder
partners.

12.2.4 Step 3. Estimation of Climate-Informed Risks

The final step of DS is the characterization of risk associated with the problematic
conditions for a given system. Here the term risk is used to denote the probability of
occurrence of the problematic conditions. Up to this point, the analysis is free of the
use of probabilities for particular scenarios. This allows exploration of the decision
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space that is not biased by prior probability assumptions that are weakly supported
or not agreed, and that are thus deeply uncertain. At this step, the available sources
of information regarding possible future outcomes is described quantitatively using
a probabilistic framework. The information is then used as a sensitivity factor to
inform final decisions. The use of a probabilistic framework facilitates accounting
for the sampling characteristics of the source information, such as the sample size
and the dependence among different sources. Ignoring sampling characteristics has
been a common mistake in decisionmaking under uncertainty approaches to climate
change uncertainty (e.g., the assumption that all projections are equally likely).

Because climate change projections are often commonly used and misused for
long-term scenarios, the tailoring of climate information is described in detail here.
The climate stress test is designed to create physically representative time series
of weather variables at specific spatial scales that can match the source of climate
information that is most credible. This enables the mapping of climate information
from climate projections or other sources directly to the climate response surface,
and thus to the decision. In the case of climate projections, the weather generator
design can allow the projections to be used at the spatial and temporal scales where
they have most skill (generally coarse scales, large areas (100’s of kilometers), and
long averaging periods [e.g., 30 years]). Then inference on the relative likelihood of
climate changes of interest can be made using the most credible scales of the climate
projections.

Another way to increase the credibility of estimations of future climate changes
is to create categories of interest and to estimate the likelihood of these categories,
rather than the full probability distribution of outcomes. This approach has long been
used in seasonal climate forecasts. Seasonal climate forecasts are forecasts made of
the mean climate expected for an upcoming season, such as mean temperature and
mean precipitation. The basis of these forecasts is typically deterministic or near-
deterministic components of the climate system,which typically includes persistence
of ocean temperatures and the resulting effects on atmospheric circulation. The El
Niño/Southern Oscillation is the most well-known example. Given the amount of
uncertainty associated with these forecasts, they are typically made as probabilities
assigned to terciles of outcomes. For example, a typical forecast assigns probabil-
ities to precipitation being Above Average, Near Average, or Below Average. This
reflects the skill of the forecasts (nomore precise forecasts can bemade credibly) and
the potential utility of the categories for stakeholders (it is useful to know whether
precipitation may be above average).

The same approach can be used to improve the credibility of information about
future climate change. Indeed, the DS approach enables the creation of categories
that are directly relevant to the decision at hand, and also directly coordinated with
the spatial and temporal scales at which climate information is most credible. Groves
and Lempert (2007) describe the use of a cluster analysis approach to derive ex post
socio-economic scenarios from the results of a sensitivity analysis. This approach
can be employed with the results of a climate stress test, as described in Brown et al.
(2012). This creates ex post categories of climate change, to which probabilities
of occurrence can be assigned. The probabilities are conditional on the source (e.g.,
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Fig. 12.3 Fraction of probable futures for which the system (left) and the adapted system (right)
provide acceptable performance (blue) and unacceptable performance (red) based on stakeholder-
derived performance thresholds (Color figure online)

climate projections under a specific emissions scenario). The use of categories allows
the information to be conveyed in terms that are meaningful for decisionmakers, and
is a more credible prescription of a full probability distribution.

When the system is found to be sensitive to certain future scenarios, the process can
be repeated and applied to evaluate possible adaptation strategies aswell, by repeating
the analysis for the new alternatives considered. The results of this analysis reveal
how well each adaptation strategy can preserve system performance over a wide
range of futures. Specifically, this analysis determineswhich adaptations can preserve
outcomes above their thresholds across the range of future scenarios. The decision to
accept a specific adaptation strategy then relies on an appraisal of the resilience of the
original system and the alternatives considered. The climate risk analysis can be used
to compare alternative plans or to evaluate the additional robustness that a specific
planned adaptation might provide. Figure 12.3 is an illustration of how comparative
analysis could be conducted using the results of the climate risk screening. The figure
shows the probable fraction of futures for which the current system and the adapted
system provide acceptable performance. In this case, the adapted system is more
robust, as it performs acceptably over more of the future space. Note that these results
are conditional on the assumed probability distribution, and in some cases it will be
beneficial to use multiple distributions and compare across them. For example, see
Moody andBrown (2013), where alternative adaptations are evaluated conditional on
alternative future probability distributions of climate change, including those based
on historical conditions and climate change projections from GCM.

This discussion has focused primarily on the particular treatment of climate infor-
mation for informing decisions related to long-term plans that may be affected by
climate change. In cases where climate change is not a key consideration, the analysis
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methods presented here are likely unnecessary. Other important aspects of formal
decisionmaking processes are also not discussed here. These include the process of
problem formulation, facilitating stakeholder discussions, and the enumeration of
possible adaptation options. In addition, the selection of outcomes is an important
component of decisionmaking. While the discussion here used robustness for illus-
trative purposes, the best or optimal performance for each alternative, the expected
value of performance, and regrets are other useful means for evaluating performance.
A rigorous analysis would use multiple outcomes to compare and evaluate alterna-
tives.

12.3 Case Study: Assessing Climate Risks to the Water
Supply for Colorado Springs, Colorado, USA

The Colorado Springs Utility (CSU) embarked on a long-term strategic planning
process to create an Integrated Water Resource Plan (IWRP). The ultimate goal of
this plan is to provide “reliable and sustainable water supply to customers in a cost-
effective manner.” The overall planning process incorporates consideration of water
supply and demand, water quality, infrastructure, and regulatory and financial issues.
It includes activities such as stakeholder outreach, internal planning with Board
leadership, and technical studies involving modeling and analysis. The planning
time frame is defined as a future scenario described as “Build-Out,” meaning 50 or
more years in the future when the city reaches a sustained equilibrium population.
The planning process sought to answer these specific questions:

• What is an acceptable level of risk in addressing future water demands?
• What is an appropriate approach for CSU to follow in meeting regional water
demands within the Pikes Peak region?

• What role do different supply options contribute to achieving a balanced water
supply portfolio?

• How do we ensure a proper level of investment in CSU’s existing and future water
system to maintain an acceptable level of risk?

As part of the planning process, CSU in collaboration with the University of
Massachusetts and the National Center for Atmospheric Research, applied DS to
investigate the effects of climate change on the reliability of their water supply
deliveries. The analysis leveraged the planning processes that identified the key
questions described above, as well as a cataloging of performance measures and
possible investments. Much of this information was compiled through an earlier
climate change study that incorporated aspects of Robust Decision Making. CSU
maintain hydrologic models and water system models that were available for this
analysis. This case study describes the application of DS to characterize the risk that
climate change poses to the water supply reliability for Colorado Springs. Although
the framework could be used to also evaluate alternative investments to address
vulnerabilities, this was not part of the analysis.
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In this case study, focus is given to a novel component of the analysis that relates
to how we assess climate change uncertainty and integrate that evaluation with the
vulnerability assessment to characterize climate-related risks towater supply. Specif-
ically, we explore the processing of climate change projections, with particular atten-
tion to climate model similarity, and demonstrate how this issue can affect decisions
related to adaptation measures taken by the water utilities.

12.3.1 Step 1: Decision Framing

A key principle of the DS framework is tailoring the analysis to address the primary
concerns of planners and decisionmakers. In this case, in order to provide useful
information to inform municipality-level adaptations for water supply, it is critical
to understand the water supply objectives of the municipality, identify quantitative
outcome indicators that can measure those objectives, determine thresholds for those
objectives that would indicate unacceptablewater supply performance, determine the
context and scale of a municipality’s water supply system, and identify the adapta-
tion options available to the municipality. All of these components are necessary to
adequately frame the future water supply risks facing amunicipality, and the possible
actions that can be taken to manage those risks.

In this case study, much of the decision framing had been established as part of
the IWRP process. CSU established desired attributes for their strategy, including
robustness to a wide variety of future conditions, economic sustainability (mean-
ing that the strategy could be supported by available resources), reliability of water
delivery services, and that the strategy was ultimately explainable and acceptable
to customers and stakeholders. The analysis would look forward roughly 50 years
(long term), and considered a “Build-Out” scenario as described above. It would also
consider a wide range of possible investment options to meet its goals of reliable and
sustainable water service. These included four different levels of demand manage-
ment: multiple water reuse and non-potable water supply options, new agricultural
transfers, construction of new reservoirs, and enlargement of existing reservoirs. An
extended list of performance measures was also created for evaluation of current
and future performance and for evaluation of the various options. For the purpose of
this case study, reliability of water supply was used as an illustrative performance
measure.

The spatial extent of the study included the entire water collection system (which
extends to the continental divide in western Colorado) and the entire service area.
The CSU water collection system serves an estimated 458,000 people, including the
residents of Colorado Springs, the Ute Pass communities west of the city, and several
military installations, including the United States Air Force Academy. Currently, the
firm yield of potable and non-potable water for the system is about 187 million cubic
meters per year, with potable deliveries at approximately 22 billion gallons per year.
CSU estimates that they currently have enough water to meet the demand of their
customers until approximately 2040, assuming average projections of population
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Fig. 12.4 Source water for the Colorado Springs Utilities water collection system, a map of the
Upper Colorado River Basin, b map of the Upper Arkansas River Basin
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growth, per capita water demand changes, and the completion of planned infrastruc-
ture projects. These assumptions do not account for any changes in climate, however,
and beyond 2040 additional water demands also become a substantial concern.

The CSU water collection system acquires its water from two primary
sources—the Upper Colorado River Basin (Fig. 12.4a) and the Arkansas River Basin
(Fig. 12.4b). The Upper Colorado River Basin is one of the most developed and com-
plicated water systems in the world. Waters from the Colorado serve people in seven
states and Mexico, and are allocated according to a complex set of compacts and
water rights provisions. CSU holds one such water right, albeit a junior right, and
acquires approximately 70% of its annual water supply through four transmountain
diversions that divert water across the continental divide into storage reservoirs oper-
ated by CSU. In this way, the water supply security of the CSU is directly linked to
the broader water supply risks facing the entire Colorado River Basin. The remain-
ing 30% of the CSU water supply is derived from local runoff in the Arkansas River
Basin that must also be shared with users downstream of Colorado Springs. In order
to assess the climate-related risks to the CSU water supply, both the Upper Col-
orado and Arkansas systems need to be accounted for in the analysis. This presents
a substantial challenge, which required significant modeling efforts and persistent
collaboration and communication with the CSU engineering team, and composed a
substantial portion of the ongoingCSU IntegratedWaterResources Planning process.

12.3.2 Step 2: Climate Stress Test

The goal of the climate stress test is to identify the vulnerabilities of the CSU water
delivery system to climate change. Step 2 starts with a vulnerability assessment. In
this assessment, CSU system performance is systematically tested over a wide range
of annual mean climate changes to determine under what conditions the system no
longer performs adequately. The approach is illustrated in Fig. 12.5. This stress test
is driven using a daily stochastic weather generator that creates new sequences of
climate that simultaneously exhibit different long-term mean conditions and alterna-
tive expressions of natural climate variability. These weather sequences are passed
through a series of hydrosystemmodels of the relevant river basins and infrastructure
network to estimate how these changes in climate will translate into altered water
availability for the customers of CSU, including the Air Force Academy. The results
of the stress test are summarized in a climate response surface, which provides a
visual depiction of changes in critical system outcomes due to changes in the cli-
mate parameters altered in the sensitivity analysis. The different components of the
vulnerability assessment are detailed below.

Stochastic Climate Generator

This work utilizes a stochastic weather generator (Steinschneider and Brown 2013)
to produce the climate time series over which to conduct the vulnerability analy-
sis. The weather generator couples a Markov Chain and K-nearest neighbor (KNN)
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Fig. 12.5 Vulnerability assessment flow chart

resampling scheme to generate appropriately correlated multisite daily weather vari-
ables (Apipattanavis et al. 2007), with a wavelet autoregressive modeling (WARM)
framework to preserve low-frequency variability at the annual time scale (Kwon
et al. 2007). A quantile mapping technique is used to post-process simulations of
precipitation and impose various distributional shifts under possible climate changes;
temperature is changed using simple additive factors. The parameters of the model
can be systematically changed to produce new sequences of weather variables that
exhibit a wide range of characteristics, enabling detailed climate sensitivity analy-
ses. The scenarios created by the weather generator are independent of any climate
projections, allowing for a wide range of possible future climates to be generated.
Furthermore, climate scenarios exhibiting the same mean climate changes can be
stochastically generated many times to explore the effects of internal climate vari-
ability. The preservation of internal climate variability is particularly important for
the CSU system, because precipitation in the region exhibits substantial decadal
fluctuations that can significantly influence system performance (Nowak et al. 2012;
Wise et al. 2015). The stochastic model is designed to reproduce this low-frequency
quasi-oscillatory behavior; many downscaled climate projections often fail in this
regard (Johnson et al. 2011; Rocheta et al. 2014; Tallaksen and Stahl 2014).

The WARM component of the weather generator was fit to annual precipitation
data over the Upper Colorado River Basin. These data were provided by CSU, and
are derived from theDAYMETdatabase (Thornton et al. 2014). TheWARMmodel is
used to simulate time series of annual precipitation averaged over theUpperColorado
Basin, with appropriate inter-annual and decadal variability. A Markov Chain and
KNN approach is then used to resample the historic daily data to synthesize new
daily time series, with the resampling conditioned on the annual WARM simulation.
The data are resampled for both the Upper Colorado and Arkansas River Basins to
ensure consistency between the synthesized climate data across both regions. In this
way, the major modes of inter-annual and decadal variability are preserved in the
simulations, as is the daily spatio-temporal structure of climate data across both the
Upper Colorado and Arkansas River Basins.
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CSU HydroSystems Models

The climate scenarios from the weather generator are used to drive hydrosystem
models that simulate hydrologic response, water availability and demand, and infras-
tructure operations in the river basins that provide water to CSU. The output of the
hydrosystem model simulations under each climate time series is used to create a
functional link between water supply risk and a set of mean climate conditions. The
CSU system requires two separate hydrosystem models, because water is sourced
from both the Upper Colorado River Basin on the western side of the continental
divide and the headwaters of the Arkansas River on the eastern side of the divide.
These models are described in more detail below.

Upper Colorado River Basin Hydrosystems Model

The Water Evaluation and Planning System (WEAP) model (Yates et al. 2005) was
used to simulate the hydrologic response, reservoir operations, withdrawals, and
transmountain diversions of the Upper Colorado River Basin system. By necessity,
the WEAP model simplifies the extreme complexity of the Upper Colorado system,
yet still requires nearly 40 minutes per 59-year (period-of-record) run on a standard
desktop computer (HP Z210 Workstation with a 3.40 GHz processor and 18.0 GB
of RAM). The WEAP model approximates how the climate scenarios developed
above translate into changes in water availability for users throughout the Colorado
River system. Importantly, the WEAP model of the Upper Colorado simulates the
availability of water for transfer across four transmountain diversion points that
feed into the CSU system. Changes in these diversions substantially alter the water
available for CSU and its customers.

Upper Arkansas River Basin Hydrosystems Model

The transmountain diversions estimated by the WEAP model are used to force a
MODSIM-DSS model (Labadie et al. 2000) that represents the Eastern slope water-
works system operated by CSU. In addition to these diversions, theMODSIMmodel
requires additional inflow data to a variety of nodes. But these inflows cannot be
modeled as natural hydrologic response to meteorological forcings, because there
are legal constraints on the inflows not accounted for by MODSIM. Therefore, his-
torical years of inflow data, which implicitly account for legal constraints, are resam-
pled from the historic record in all future simulations. To ensure that these flows are
correctly correlated with the Western slope simulations from WEAP, the stochastic
weather generator is used to produce synthetic weather simultaneously across both
Western slope and Eastern slope regions. Natural streamflow response from the East-
ern slope system under synthetic climate is estimated using the hydrologic model
in WEAP calibrated to naturalized flows in the Arkansas River. A nearest-neighbor
resampling scheme is then used to resample historic years based on a comparison
between historical, naturalized Arkansas River streamflow, and modeled hydrology
of the Arkansas River under synthetic climate. Inflow to all MODSIM nodes besides
those associatedwithWestern slope diversions are then bootstrapped for use in future
simulations based on the resampled years. One major drawback of this approach is
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the simplicity of the WEAP hydrologic model used to simulate natural flow in the
Arkansas River.

Climate and Demand Alterations Considered

The weather generator described above is used to generate day-by-day, 59-year
(period-of-record length) climate sequences with different mean temperature and
precipitation conditions that maintain the historic decadal variability in the observed
data (McCabe et al. 2004, 2007). To impose various climate changes in simulated
weather time series, multiplicative (additive) factors are used to adjust all daily pre-
cipitation (temperature) values over the simulation period, thus altering their mean
annual values. Annual changes are most important for the long-term planning pur-
poses of the CSU system, because the significant reservoir storage on both sides
of the continental divide largely mitigates the impact of seasonal changes to runoff
and snowmelt timing, consistent with classical reservoir operations theory (Hazen
1914; Barnett et al. 2005; Connell-Buck et al. 2011). This does not preclude the
importance of other hydrologic characteristics for long-term planning, such as the
effects of climate extremes on flood reduction capacity or water quality, but these
issues are not addressed in this study. Annual changes to the precipitation mean were
varied from−10% to +10% of the historic mean using increments of 5% (5 scenarios
altogether), while temperature shifts were varied from approximately −1 to +4 °C
using increments of 0.5 °C (10 scenarios). These changes were chosen to ensure the
identification of climate changes that cause system failure. Each one of the 50� 5×
10 scenarios of climate change is simulated with the weather generator seven times
to partially account for the effects of internal climate variability while balancing the
computational burden of the modeling chain, leading to a total of 350 � 5 × 10 × 7
weather sequences.

The seven realizations of internal climate variability were selected in a collab-
orative process with the CSU engineering team as part of their Integrated Water
Resources Planning process. The seven series were chosen among 10,000 original
weather generator simulations to span the range of natural climate fluctuations that
could influence the system. This selection proceeded in two steps. First, 40 simu-
lations were selected from the original 10,000 to symmetrically span the empirical
distribution of a precipitation-based drought outcome indicator preferred by the util-
ity. Second, the subset of 40 simulations was run through the hydrosystem models
(described above), and seven final simulations were chosen that spanned the empiri-
cal distribution of minimum total system reservoir storage across the 40 runs. Long-
term climate changes were then imposed on these final seven climate simulations,
and were used to force the hydrosystem models, producing a comprehensive vulner-
ability assessment that maps CSU system performance to long-term climate changes
while also accounting for the effects of internal climate variability.

CSUconsiders two scenarios forwater demands on their system. The first scenario
is called the Status Quo. It reflects current water demands after accounting for the
connection of several communities to the system’s supply thatwas to be completed by
2016. The second demand scenario, referred to as “Build-Out Conditions,” reflects a
substantial increase in system demand. No date is associated with the water demands
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of the “Build-Out” scenario, but it is assumed that under current growth projections
this level of demand will be reached around the year 2050. The stress test is repeated
for both of these water demand scenarios to enable an assessment of the relative
importance of climate and water demand changes on water resources vulnerability
and risk.

12.3.3 Step 3. Estimation of Climate-Informed Risks

Over the past decade, the climate science community has proposed different tech-
niques to develop probabilistic projections of climate change from ensemble climate
model output. The most recent efforts (Groves et al. 2008; Manning et al. 2009;
Hall et al. 2012; Christierson et al. 2012) for risk-based long-term planning have
relied on climate probability density functions pdfs from perturbed physics ensem-
bles (PPEs) (Murphy et al. 2004), a Bayesian treatment of multi-model ensembles
(MMEs) (Tebaldi et al. 2005; Lopez et al. 2006; Smith et al. 2009; Tebaldi and Sanso
2009), or a combination thereof (Sexton et al. 2012). Of interest here, probabilities
of change based on MMEs often assume each individual climate model in an MME
serves as an independent representation of the Earth system. This assumption ignores
the fact that many GCMs follow a common genealogy and supposes a greater effec-
tive number of data points than are actually available (Pennell and Reichler 2011).
Following Masson and Knutti (2011) and Knutti et al. (2013), we consider models
to share a common genealogy (or to be within the same family) if those models were
developed at the same institution or if one is known to have borrowed a substantial
amount of code from the other (e.g., the entire atmospheric model).

To address this issue, recentwork has exploredmethods to optimally choose a sub-
set of models to capture the information content of an ensemble (Evans et al. 2013)
or to weight models based on the correlations in their error structure over a hindcast
period (Bishop and Abramowitz 2013). This latter approach of independence-based
weighting has recently shownpromise in ensuring that observations and the ensemble
of projections are more likely to be drawn from the same distribution, and conse-
quently improve estimates of the ensemble mean and variance for climate variables
of interest (Haughton et al. 2015). As noted in Haughton et al. (2015), improvements
from independence-based weighting could provide substantial gains in projection
accuracy and uncertainty quantification that may be relevant for informing adapta-
tions to large climate changes.

For this case, we used an ensemble of projections from the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) to develop probabilistic climate information,
with andwithout an accounting of inter-model correlations for the river basins serving
the CSU system, and use the pdfs to estimate mid-century climate-related risks to the
water supply security of CSU. Climate change pdfs from both methods are coupled
with the previously described vulnerability assessment of the CSU water resources
system to estimate climate-related risks to water supply. The probability that climate
change will lead to inadequate future performance is estimated by sampling 10,000
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Fig. 12.6 Climate response surfaces for the CSU system based on regions of climate change space
that have 100% indoor water supply reliability. Acceptable (blue) and unacceptable (red) regions
of performance are highlighted for both the Status Quo and Build-Out demand scenarios (Color
figure online)

samples of �T and �P using the pdfs from above and counting the fraction of sam-
ples that coincide with climate changes in the vulnerability assessment with indoor
water demand shortfalls (Moody and Brown 2013).

Vulnerability Assessment Results

There are many outcome indicators that can be used to assess the performance of the
CSU system, but for the screening purposed in the Integrated Water Resources Plan-
ning process, CSU initially wanted to focus on two measures: (1) storage reliability
and (2) supply reliability. Storage reliability reflects the frequency that total system
storage drops below a critical threshold set by the utility, while supply reliability
represents the percentage of time that indoor water demands are met in a simulation.
At the most basic level, system performance is considered adequate for a particular
climate sequence if indoor water demands are met for the entire simulation (i.e.,
100% supply reliability), since any drop in supply reliability suggests that the tap
runs dry for some customers, which is considered unacceptable. We note that indoor
water demand is a representative rather than encompassing performance measure,
but will be the outcome we focus on in this assessment.

We first present the results of the vulnerability assessment without any consider-
ation of climate model output. Figure 12.6 shows the climate response surface of the
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CSU system to changes in mean precipitation and temperature under the Status Quo
and Build-Out demand scenarios. The response surfaces, developed without the use
of any projection-based data, show the mean precipitation and temperature condi-
tions under which the utility can provide adequate water services, and those climate
conditions under which the reliability of their service falls below an acceptable level.

Fig. 12.7 a Scatterplot of mean temperature and precipitation over the Upper Colorado and
Arkansas River Basin area from GCMs for a baseline (1975–2004) and future (2040–2070) period.
The different models are colored according to their associated “families”, b Marginal probability
density functions for mid-century temperature and precipitation change across the Upper Colorado
and Arkansas regions developed with (red-dashed) and without (black solid) accounting for intra-
family model correlations (Color figure online)
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Here, we define unacceptable performance as an inability to meet indoor municipal
water demands. For the Status Quo system, the response surface suggests that the
system can effectively manage moderately increasing temperatures and declining
precipitation, but large changes beyond +2.2 °C, coupled with declining precipita-
tion, will cause the system to fail. For the Build-Out demand scenario, the current
system cannot adequately deliver water even under baseline climate conditions (no
changes in temperature andprecipitation), let alone reducedprecipitation or increased
temperatures. These results highlight that the CSU system is at risk of water supply
shortages simply due to the expected growth of water demands over the next several
decades. These risks grow when the specter of climate change is considered, which
is considered next.

Likelihood of Future Climate Changes

Regional mean annual temperature and accumulated precipitation for a baseline
(1975–2004) and future (2040–2070) period averaged over the Upper Colorado and
Arkansas River Basins are shown in Fig. 12.7a for the Representative Concentration
Pathway (RCP) (Meinshausen et al. 2011) 8.5 scenario. Models that originate from
the same institution or share large blocks of code are grouped into the families used
in this analysis and denoted by the same color (Knutti et al. 2013). For example, the
models within the NCAR family all use key elements of the CCSM/CESM model
developed at NCAR. Likewise, the MPI and CMCC models are combined because
they are based on the ECHAM6 and ECHAM5 atmospheric models, respectively.
Being in the same family does not guarantee that regional climate characteristics
of related models will cluster, but global clustering analyses (Masson and Knutti
2011; Knutti et al. 2013) suggest an increased likelihood of clustering even on small
regional scales, a hypothesis which we test here.

Byvisual inspection of Fig. 12.7a, there is nontrivial clustering in both temperature
and precipitation among models belonging to the same family. A formal hierarchical
clustering of the baseline and future climatology (not shown) confirms the tendency
of models within the same family to cluster with respect to simulated regional pre-
cipitation and temperature averages. The degree to which clustering occurs within
each family depends on the model family being considered (GISS and HadGEM
cluster well, IPSL/CMCC less so). There is a tendency for models with very similar
atmospheric structures to cluster, even if other components are different.

Probabilitymodels are fit to the climatemodel datawith andwithout an accounting
of the correlation among individual models within a family. The estimate of intra-
family model correlation for both annual mean temperature and precipitation are sta-
tistically different from zero at the 0.05 significance level. Figure 12.7b shows pdfs of
annual mean temperature and precipitation changewith andwithout an accounting of
within-family correlation. When inter-model correlations are included, an increase
in variance is clear for both variables due to increased sampling uncertainty associ-
ated with a reduction in the effective number of data points. Beyond the increased
variance of projected climate changes, high inter-model correlations also shift the
mean climate change estimate, since entire families of models are no longer regarded
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as independent data points, allowing, for example, centers with only a single model
to assume more weight in the calculation.

The pdfs of regional climate change can be used to determine the risk posed to
the CSU water system. Figure 12.8 shows the climate response surface for the Col-
orado water utility under 2016 demand conditions presented previously, but with
the bivariate pdfs of annual temperature and precipitation change with and without
intra-family correlations superimposed. We do not show the Build-Out demand con-
ditions because system performance is unacceptable under that scenario evenwithout
climate change. The degree to which the pdfs extend into the region of unacceptable
system performance in Fig. 12.8 describes the risk that the water utility may face
from climate change. Visually, it is clear that the tails of the pdf developed with an
accounting of intra-family model correlations extend into the region of unaccept-
able system performance, while those of the pdf with an independence assumption
do not. A climate robustness metric is used to summarize the risk by numerically
integrating the pdf mass in the region of unacceptable performance. For the pdf
that does not account for model correlation, essentially 0% of its mass falls into
the region of unacceptable performance. When correlations are accounted for, the
metric increases to 0.7%. While still small, this non-negligible probability (similar
in magnitude to a 100-year event) is important because of the intolerable impact that
such shortfalls would have on the local community. Any nontrivial probability that
indoor water use will have to be forcibly curtailed would motivate the water utility to

Fig. 12.8 Climate response
surface displaying the
conditions of mean
precipitation and temperature
under which CSU can (blue)
and cannot (red) provide
reliable indoor drinking
water. Bivariate pdfs of mean
temperature and precipitation
are superimposed on the
response surface. The red pdf
was developed with an
accounting of intragroup
model correlation, while the
black pdf was not. Both pdfs
are contoured at the same
levels, with the final level
equal to 1.5 × 103 (Color
figure online)
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invest in measures to prevent such an outcome. Thus, there is an important increase
in decision-relevant, climate-change-related risk facing the water utility when we
alter our interpretation of the information content present in the model ensemble.

12.4 Conclusions

DS leverages traditional decision analytic methods to create a decision analysis
approach specifically designed for the treatment of climate change uncertainty, while
also incorporating other uncertain and deeply uncertain factors. A distinctive attribute
of the approach is the use of a climate stress-testing algorithm, or stochastic weather
sampler,whichproduces anunbiased estimationof the responseof the systemof inter-
est to climate change. This avoids the numerous difficulties that are introduced when
climate projections from climate models are used to drive an analysis. Instead, the
information from climate projections can be introduced after the climate response is
understood, in order to provide an indication of whether problematic climate changes
are more or less likely than non-problematic climate changes. The approach is effec-
tive for estimating climate risks and evaluating alternative adaptation strategies. It can
be incorporated into typical collaborative stakeholder processes, such as described
in Poff et al. (2015). DS has been applied in a number of cases around the world,
including adaptation planning for the Great Lakes of North America (Moody and
Brown 2012), evaluation of climate risks to USmilitary installations (Steinschneider
et al. 2015a, b), evaluation of water supply systems (Brown et al. 2012; Whateley
et al. 2014), and evaluation of long-lived infrastructure investments (e.g., Ghile et al.
2014; Yang et al. 2014), among others. It also serves as the basis for a climate risk
assessment process widely adopted at the World Bank (Ray and Brown 2015).

The process of DS is designed to generate insightful guidance from the often
confusing and conflicting set of climate information available to decisionmakers. It
generates information that is relevant and tailored to the key concerns and objectives
at hand. The process bridges the gap in methodology between top-down and bottom-
up approaches to climate change impact assessment. It uses the insights that emerge
from a stakeholder-driven bottom-up analysis to improve the processing of GCM
projections to produce climate information that improves decisions. The process is
best applied to situations where the impacts of climate change can be quantified and
where models exist or can be created to represent the impacted systems or decisions.
Historical data are necessary. The process can be applied both in conjunction with
large climate modeling efforts and where the analysis depends simply on globally
available GCM projections. It is most effective when conducted with strong engage-
ment and interactionwith the decisionmakers and stakeholders of the planning effort.
The transparent nature of the process attempts tomake the analysis accessible to non-
technical participants, but having some participants with technical backgrounds is
beneficial.

DS was one activity in the large set of activities that comprised the CSU IWRP
development process. Through the approach, the climatic conditions that caused the
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system to not be able to meet their performance objectives were identified. Indeed,
these conditions were identified in a way that preserves the findings from the usual
uncertainty associated with projecting future climate conditions. In this case, it was
found that the current system is very robust to climate changes when considering
the current water demand. The problematic climate conditions were a precipitation
reduction of greater than 20% from the long-term average when accompanied by a
mean temperature increase of 3 °C or more. Such extreme changes were considered
to have a low level of concern, as is discussed below. However, for the “Build-Out”
scenario, which includes an increase in water demand, the climate conditions that
cause vulnerability were much wider. In this case, the system is not able to meet
their performance objectives unless precipitation increases substantially and mean
temperatures do not increase more than 2 °C. This scenario was considered to have
a much higher level of concern.

The level of concern associated with these vulnerability scenarios could be esti-
mated from discussion with experts on Colorado climate change, derived from an
ensemble of skillful climate projections, or (preferably) discussion with experts that
are informed by skillful climate projections. In this case, careful attention was given
to producing the most meaningful climate information available from an ensemble
of climate projections. For example, the skill of the GCMs as indicated by past per-
formance, and the fact that many GCMs are not truly independent, were accounted
for in our estimation of probabilities from the ensemble. These probabilities are
not intended to represent the known probabilities of future climate change for the
region. Rather, they are a quantitative representation of the information contained in
the ensemble of projections. In this case, the results show that the projections indicate
a very low probability of the problematic scenario identified for current demand. On
the other hand, they also indicate substantial probability for the problematic condi-
tions identified for the future Build-Out demand.

What may be required are new tools that can effectively approximate and prop-
agate the uncertainty at each stage of the modeling chain with greater efficiency
to reduce the computational burden. This is an important avenue of future work to
emerge from this research.
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