Chapter 10 ®)
Info-Gap (IG): Robust Design St
of a Mechanical Latch
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Abstract

e Info-Gap (IG) Decision Theory, introduced in Chap. 5, is used to formulate, and
solve, the analysis of robustness in the early design of a mechanical latch.

e The three components necessary to assess robustness of the latch design (a system
model, performance requirement, and representation of uncertainty) are discussed.

e The robustness analysis indicates that the nominal design can accommodate sig-
nificant uncertainty before failing to deliver the required performance.

e The discussion concludes with the assessment of a variant design to show how a
decision (“which design should be chosen?”) can be confidently reached despite
the presence of significant gaps in knowledge.

10.1 Introduction

The role of numerical simulation to aid in decisionmaking has grown significantly
in the past three decades for a diverse number of applications, such as financial mod-
eling, weather forecasting, and design prototyping (Oden et al. 2006). Despite its
widespread use, numerical simulations suffer from unavoidable sources of uncer-
tainty, such as making simplifying assumptions to represent non-idealized behavior,
unknown initial conditions, and variability in environmental conditions. The ques-
tion posed herein is: How can simulations support a confident decision, given their
inherent sources of uncertainty? This chapter gives an answer to this question using
Info-Gap (IG) Decision Theory, the philosophy of which is presented in Chap. 5.
The main factors in selecting an approach to evaluate the effect of uncertainty on
a decision are (1) the nature and severity of the uncertainty, and (2) computational
feasibility. In cases of deep uncertainty, the development of a probability distribution
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cannot confidently be made. Further, uncertainty can often be unbounded and deci-
sionmakers will need to understand how much uncertainty they are accepting when
they proceed with a decision. A few examples of comparing methods can be found
in Hall et al. (2012) and Ben-Haim et al. (2009). Hall et al. (2012) compare 1G with
RDM (Chap. 2). Ben-Haim et al. (2009) compare IG with robust Bayes (a min—-max
approach with probability bounds known as P-boxes, and coherent lower previsions).
In all cases, the major distinction is the prior knowledge, or how much information
(theoretical understanding, physical observations, numerical models, expert judg-
ment, etc.) is available, and what the analyst is willing to assume if this information
does not sufficiently constrain the formulation of the decisionmaking problem. One
can generally characterize IG as a methodology that demands less prior information
than other methods in most situations. Furthermore, P-boxes can be viewed as a
special case of IG analysis (Ferson and Tucker 2008), which suggests that these two
approaches may be integrated to support probabilistic reasoning. The flexibility pro-
moted by IG, however, also makes it possible to conveniently analyze a problem for
which probability distributions would be unknown, or at least uncertain, and when a
realistic and meaningful worst case cannot be reliably identified (Ben-Haim 2006).

Applying IG to support confident decisionmaking using simulations hinges on the
ability to establish the robustness of the forecast (or predicted) performance to mod-
eling assumptions and sources of uncertainty. Robustness, in this context, means that
the performance requirement is met even if some of the modeling assumptions hap-
pen to be incorrect. In practice, this is achieved by exercising the simulation model
to explore uncertainty spaces that represent gaps in knowledge—that is, the “dif-
ference” between best-known assumptions and how reality could potentially deviate
from them. An analysis of robustness then seeks to establish that performance remains
acceptable within these uncertainty spaces. Some requirement-satisfying decisions
will tolerate more deviation from best-known assumptions than others. Given two
decisions offering similar attributes (feasibility, safety, cost, etc.), preference should
always be given to the more robust one—that is, the solution that tolerates more
uncertainty without endangering performance.

As discussed in Chap. 5, three components are needed to carry out an IG anal-
ysis: A system model, a performance requirement, and a representation of uncer-
tainty. This chapter shows how to develop these components to assess robustness
for the performance of a mechanical latch in an early phase of design prototyping.
IG is particularly suitable for design prototyping, because it offers the advantages of
accommodating minimal assumptions while communicating the results of an analysis
efficiently through a robustness function.

Our discussion starts in Sect. 10.2 by addressing how the three components of an
info-gap analysis (system model, performance requirement, and uncertainty model)
can be formulated for applications that involve policy topics. The purpose is to
emphasize that info-gap applies to a wide range of contexts, not just those from com-
putational physics and engineering grounded in first-principle equations. Section 10.3
introduces our simple mechanical example—the design of a latch, and its desired
performance requirements given that the geometry, material properties, and load-
ing conditions are partially unknown. The section also discusses the system model



10 Info-Gap (IG): Robust Design of a Mechanical Latch 203

defined to represent the design problem. Details of the simulation (how the geometry
is simplified, how some of the modeling assumptions are justified, how truncation
errors are controlled, etc.) are omitted, since they are not essential to understand how
an analysis of robustness is carried out.

Section 10.4 discusses the main sources of uncertainty in the latch design problem,
how they are represented with an info-gap model of uncertainty, and the implementa-
tion of robustness analysis. Two competing latch designs are evaluated in Sect. 10.5 to
illustrate how confident decisions can be reached despite the presence of significant
gaps in knowledge. A summary of the main points made is provided in Sect. 10.6.

10.2 Application of Info-Gap Robustness for Policymaking

Our application suggests how info-gap robustness (see Chap. 5) can be used to
manage uncertainty in the early-stage design of a latch mechanism (Sects. 10.3
and 10.4) and how robustness functions may be exploited to support decisionmak-
ing (Sect. 10.5). The reader should not be misled, however, in believing that this
methodology applies only to contexts described by first-principle equations such as
the conservation of momentum (also known as Newton’s 2nd law, “Force = Mass x
Acceleration”) solved for the latch example. The discussion presented here empha-
sizes the versatility of IG robustness for other contexts, particularly those involving
policy topics for which well-accepted scientific models might be lacking.
Consider two high-consequence policymaking applications:

e Climate change: Policy decisions to address the impact on human activity of
changes in the global climate (and vice versa) tend to follow either the precau-
tionary principle or the scientific design of intervention. In the first case (precau-
tionary principle), decisionmakers would err on the side of early intervention to
mitigate the potentially adverse consequences of climate change, even if the sci-
entific understanding of what causes these changes, and what the consequences
might be, is lacking. In the second case (scientific design of intervention), longer-
range planning is implied while a stronger emphasis would be placed on gaining
a better scientific understanding and reducing the sources of uncertainty before
policy is enacted. In the presence of incomplete understanding of the phenomena
that drive changes in the global climate, effects on the planet’s eco-system, and
potential consequences for human activity, it is unclear which early intervention
strategies to adopt and how effective they might be. Given scientific uncertainty,
however, policymakers are inclined to adopt early precautionary intervention.

e Long-range infrastructure planning: The world population is increasingly concen-
trated in urban areas. The ten largest urban areas, such as Tokyo (Japan), Jakarta
(Indonesia), Delhi (India), and New York City (USA), feature population densities
between 2,000 and 12,000 individuals per km?, thus exceeding densities in rural
areas by more than two to three orders-of-magnitude. Managing these population
centers offers serious challenges in terms of housing, transportation, water and
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(a) Left: Satellite measurement of sea variability ~ (b) Right: Model prediction of sea variability

Fig. 10.1 Measurement and prediction of sea surface variability (Malone et al. 2003)

power supplies, access to nutrition, waste management, and many other critical
systems. Future infrastructure needs to be planned for many decades in the presence
of significant uncertainty regarding population and economic growth, urbaniza-
tion laws, and the adoption of future technologies. The development, for example,
of peer-to-peer transportation systems might render it necessary to rethink how
conventional public transportation networks and taxi services are organized. The
challenge of infrastructure planning is to design sufficient flexibility in these inter-
connected engineered systems when some of the factors influencing them, together
with the performance requirements themselves, might be partially unknown.

The challenge of policymaking for these and similar problems is, of course, how
to manage the uncertainty. These applications often involve incomplete scientific
understanding of the processes involved, elements of extrapolation or forecasting
beyond known or tested conditions, and aspects of the decisionmaking practice that
are not amenable to being formulated with mathematical models. Info-gap robust-
ness, nevertheless, makes it possible to assess whether a policy decision would deliver
the desired outcomes even if the definition of the problem features significant uncer-
tainty and some of the assumptions formulated in the analysis are incorrect.

Consider, for example, climate change. Developing a framework to support pol-
icymaking might start with a scientific description of how the oceans, atmosphere,
and ice caps interact. Figure 10.1 illustrates a satellite measurement of sea-level
variability (left) compared to the prediction obtained with a global circulation model
(right). The latter is based on historical data and observations made in the recent
past that are extrapolated to portray the conditions observed by the satellite over
a similar period. Smith and Gent (2002) describe the physics-based models solved
numerically to describe this phenomenology.

Even though simulations such as Fig. 10.1 are grounded in first-principle descrip-
tions, they are not immune to uncertainty. Executing this calculation with a one-
degree resolution (i.e., 360 grid points around the Earth), for example, implies that
some of the computational zones are as large as 314 km? near the equator, which
is nearly five times the surface area of Washington, D.C. It raises the question of
whether localized eddies that contribute to phenomena such as the Atlantic Ocean’s
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Gulf Stream are appropriately represented. Beyond the question of adequacy, settings
such as resolution, fidelity with which various processes are described, and conver-
gence of numerical solvers generate numerical uncertainty. These imply that code
predictions could differ, maybe significantly, from the “true-but-unknown” condi-
tions that analysts seek to know.

Other commonly encountered sources of uncertainty in first-principle simula-
tions include the variability or incomplete knowledge of initial conditions, boundary
conditions, constitutive properties (material properties, reactive chemistry, etc.), and
source functions (e.g., how much greenhouse gas is introduced into the atmosphere?).
This is in addition to not always understanding how different processes might be cou-
pled (e.g., how does the chemistry of the ocean change due to increased acidity of the
atmosphere?). Model-form uncertainty, which refers to the fact that the functional
form of a model might be unknown, is also pervasive in computational sciences.
An example would be to select a mathematical equation to represent the behav-
ior of a chemical at conditions that extrapolate beyond what can be experimentally
tested in a laboratory. Finally, large-scale simulation endeavors often require passing
information across different code platforms. Such linkages can introduce additional
uncertainty, depending on how the variables solved for in one code are mapped to
initialize the calculation in another code.

The aforementioned sources of uncertainty, while they are multifaceted in nature
and can be severe, are handled appropriately by a number of well-established meth-
ods, such as statistical sampling (Metropolis and Ulam 1949), probabilistic reliability
(Wu 1994), worst-case analysis, and IG robustness. In the last case, the system model
is the simulation flow that converts input settings to performance outcomes. The per-
formance requirement defines a single criterion or multiple criteria that separate
success from failure. The uncertainty model describes the sources of variability and
lack-of-knowledge introduced by the simulation flow. Once the three components
are defined, a solution procedure is implemented to estimate the robustness function
of a given decision. Competing decisions can then be assessed by their ability to
meet the performance requirement. Likewise, the confidence placed in a decision is
indicated by the degree to which its forecasted performance is robust, or insensitive,
to increasing levels of uncertainty in the formulation of the problem. Regardless of
how sophisticated a simulation flow might be, IG analysis always follows this generic
procedure, as is discussed in Sects. 10.3 and 10.4 for the latch application.

Eventually, information generated from first-principle models yields indicators
that need to be combined with “soft” data to support policy decisions. Figure 10.2
(Bamber et al. 2009) is a notional illustration where sea levels (left) predicted over
Western Europe would be combined with population densities (right) to assess how
to mitigate the potentially adverse consequences of rising waters. In this example,
one source of information (sea levels) comes from a physics-based global circula-
tion model, while the other one (projected population levels) represents “softer” data,
since the future population levels need to be extrapolated from spatially and tem-
porally sparse census data. As one moves away from science-based modeling and
simulation, the data, opinions, and other considerations integrated to support pol-
icy decisions contribute sources of uncertainty of their own. This uncertainty might
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(a) Left: Prediction of costal sea level (b) Right: Prediction of population

Fig. 10.2 Predictions of coastal sea-level rise and population growth in Western Europe
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also get amplified from extrapolating to conditions that have not been previously
observed, or when forecasts are projected into the future. Figure 10.3 suggests what
happens, for example, to forecasts of the world’s population (United Nations 2014).

IG robustness makes it possible to assess the extent to which a policy decision is
affected by what may be unknown, even in the presence of sources of uncertainty that
donot lend themselves to parametric representations such as probability distributions,
polynomial chaos expansions, or intervals. Accounting for an uncertainty such as the
gray region of Fig. 10.3 is challenging if a functional form is lacking. One might not
know if the world’s population can be modeled as increasing or decreasing, or even
if the trend can be portrayed as monotonic.
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Fig. 10.4 Representing increasing levels of uncertainty for the world’s population

Figure 10.4 suggests one possibility to handle this challenge, whereby increasing
levels of uncertainty, as indicated by the uncertainty spaces U(c) (blue region) and
U(ay) (green region), are defined around a nominal trend (red-dashed line). The
uncertainty can be explored by selecting population values within these sets and
without necessarily having to formulate a parametric representation (e.g., “popu-
lation growth is exponential”) if policymakers are not willing to postulate such an
assumption. The figure illustrates two values chosen in set U(x;) at year Y, and
three values selected in the larger-uncertainty set U(«;) at year Y,. This procedure
would typically be implemented to assess if the policy objective is met as future
populations deviate from the nominal trend in unknown ways.

Another type of uncertainty, often encountered in the formulation of policy prob-
lems and which lends itself naturally to info-gap analysis, is qualitative information
or expert opinions that introduce vagueness or non-specificity. For example, one
might state from Fig. 10.3 that “World population is growing”, without characteriz-
ing this trend with a mathematical equation. Policymakers might seek to explore if
decisions they consider can accommodate this type of uncertainty while delivering
the desired outcomes. The components of such an analysis would be similar to those
previously discussed. A system model is needed to analyze the consequences of spe-
cific conditions, such as “the population is growing” or “the population is receding”,
and a performance requirement is formulated to separate success from failure. The
uncertainty model would, in this case, include alternative statements (e.g., “the pop-
ulation is growing” or “the population is growing faster”) to assess if the decision
meets the performance requirement given such an uncertainty.
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Fig. 10.5 Conceptual
illustration of the
compartment door of a
consumer electronics product

10.3 Formulation for the Design of a Mechanical Latch

To provide a simple example of applying IG, we illustrate its use in the design of
a latch for the compartment door of a consumer electronics product conceptually
illustrated in Fig. 10.5. The objective of the design is to ensure proper opening and
closing of the door. The challenge is that the geometry of the door, material properties,
and loading conditions are not precisely known, which is common in an early design
phase. Establishing that the performance of a given design is robust to these gaps in
knowledge, as discussed in Sect. 10.4, demonstrates that the requirement can be met
in the presence of potentially deep uncertainty. The decisionmaker or customer can
rely on this information to appreciate the relative merits of different design decisions.

The first step is to define the problem, its loading scenario, and decision criterion.
Expert judgment suggests that the analysis be focused on stresses generated in the
latch when opening and closing the door. Figure 10.6 indicates the latch component
considered for analysis. For simplicity, the rest of the compartment is ignored, the
contact condition is idealized, and severe loading conditions, such as those produced
when dropping the device on the ground, are not modeled. Likewise, non-elastic
deformation, plasticity, damage, and failure mechanics are not considered. A linear,
isotropic, and homogeneous material model is specified. Such a model is useful
to characterize the performance of the nominal design as long as one understands
that the final material selected for manufacturing could exhibit characteristics that
deviate significantly from this baseline. Assessing performance solely based on these
nominal properties is, therefore, not a sound design strategy. It is necessary to assess
the robustness of that performance to changes in the material (and other) properties.

The geometry of the latch shown on the right of Fig. 10.6 is simplified by con-
verting the round corners to straight edges. This results in dimensions of 3.9 mm
(length) by 4.0 mm (width) by 0.8 mm (thickness). The latch’s head, to which the
contact displacement is applied, protrudes 0.4 mm above the surface. A perfectly
rigid attachment to the compartment door is assumed, which makes it possible to
neglect the door altogether and greatly simplifies the implementation.
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Fig. 10.6 Geometry of the compartment door and detail of the latch analyzed

Aloading scenario also needs to be specified to carry out the analysis. Itis assumed
that the latch locks securely in place in the compartment’s receptacle to close the
door after deflecting by a specified amount. Given the simplification of the geometry
considered, this condition can be analyzed by applying a displacement whose nominal
value is:

Ucontact = 0.50 mm. (10.1)

The nominal value, however, is only a best estimate obtained from the manufac-
turing of similar devices, and it is desirable to guarantee that the latch can meet its
performance requirement given the application of contact displacements different
from 0.50 mm (either smaller or greater).

Finally, a performance requirement must be defined for simulation-based deci-
sionmaking. Multiple criteria are often considered in structural design, sometimes
conflicting with each other. One wishes, for example, to reduce the weight of a com-
ponent while increasing its stiffness. For clarity, a single requirement is proposed
here. Applying the displacement Uconee generates a bending deformation, which
produces a force that varies in time as the latch relaxes from its initial deflection.
The dynamically applied load that results produces stresses in the material. A com-
mon performance criterion is to ensure that the material can withstand these stresses
without breaking. The design is said to be requirement-compliant if the maximum
stress anywhere in the latch does not exceed a critical stress value:

OMax = OCritial (102)

The upper bound is defined as a fraction of the yield stress that indicates material
failure:
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ocritical = (1 — fs)0viel (10.3)

where fg denotes a safety factor defined in 0 < fs < 1. The yield stress is 0 yjeld =
55 MPa for the generic polycarbonate material analyzed.

With this formulation, the analyst can select a desired safety factor and ascertain
how much uncertainty can be tolerated given this requirement. A well-known trade-
off, which is observed in Sect. 10.4, is that demanding more performance by selecting
a larger value of fs renders the design more vulnerable (or less robust) to modeling
uncertainty.

The analysis of mechanical latches is a mature field after several decades of their
common use in many industries. An example is given in BASF (2001), where peak
strain values obtained for latches of different geometries are estimated using a com-
bination of closed-form formulae and empirical factors. While these simplifications
enable derivations “by hand,” they also introduce assumptions that are thought to be
inappropriate for this design problem. The decision is therefore made to rely on a
finite element representation (Zienkiewicz and Taylor 2000) to estimate stresses that
result from imposing the displacement (10.1) and assess whether the requirement-
compliant condition (10.2) is met. The finite element model discretizes the latch’s
geometry into elemental volumes within which the equations-of-motion are solved.
The Newmark algorithm is implemented to integrate the equations in time (Newmark
1959). This procedure also introduces assumptions, such as the type of interpolation
function selected for the elemental volumes. These choices add to the discretization
of the geometry to generate truncation errors. Even though they are important, these
mesh-size and run-time considerations are not discussed in order to keep our focus
on the info-gap analysis of robustness.

To briefly motivate the modeling choices made, it suffices to state that the three-
dimensional representation of the latch’s geometry yields a more realistic prediction
of the deformation shape by capturing the curvature caused by the applied load.
This is illustrated in Fig. 10.7, which depicts the computational mesh and defor-
mation pattern resulting from applying the nominal displacement of 0.50 mm. This
simulation is performed with standalone, MATLAB®-based, finite element software
developed by the authors. The predicted deformation, i.e., displacements such as
those depicted in Fig. 10.7, and corresponding forces are extracted and provided to
a one-dimensional approximation based on linear beam theory to estimate the peak
stress, o pax. Predicting o vax depends, naturally, on choices made to setup the sim-
ulation such as values of the applied displacement (“Is the displacement equal to
0.50 mm or something else?”’) and material properties (“Are the stiffness and density
properties prescribed using the nominal values or something else?”’). Next, an anal-
ysis of robustness is carried out to assess the extent to which the design will remain
requirement-compliant even if some of these assumptions are changed.



10 Info-Gap (IG): Robust Design of a Mechanical Latch 211

Fig. 10.7 Computational

mesh and deformation of the
latch due to a 0.50-mm 354
displacement 3

Z-direction (mm)
e

10
05 _ - 2
Y-direction (mm) 0 4 X-direction (mm)

10.4 The Info-Gap Robust Design Methodology

This section discusses the methodology applied to achieve an info-gap robust design.
Three issues need to be discussed before illustrating how the robustness function is
calculated and utilized to support decisionmaking. The first issue is to define the
design space. The second issue is to determine the sources of uncertainty against
which the design must be robust. The third question is how to represent this uncer-
tainty mathematically without imposing unwarranted assumptions. These choices
are discussed before showing how the robustness function is derived.

Several parameters of the geometry are available to define the design space, includ-
ing the length, width, thickness, and overall configuration of the latch’s geometry.
For computational efficiency, it is desirable to explore an as-small-as-possible design
space while ensuring that the parameters selected for design optimization exercise an
as-significant-as-possible influence on performance, which here is the peak stress,
0 Max, Of Eq. (10.2).

The first issue is to define the design space by judiciously selecting parameters
that describe the geometry of the latch. This is achieved using global sensitivity
analysis to identify the most influential parameters (Saltelli et al. 2000). Five sizing
parameters are considered. They are the total length (L), width (W¢), and depth
(Dc) of the latch; and geometry (length, Ly, and depth, Dy) of the surface where
the displacement U congact 1S applied. An analysis-of-variance is performed based on
a three-level, full-factorial design of computer experiments that requires 33 = 243
finite element simulations. The parameters L (total length) and W ¢ (width) are found
to account for approximately 76% of the total variability of peak-stress predictions
when the five dimensions (L; W¢; D¢; Dy; Ly) are varied between their lower and
upper bounds. Design exploration is therefore restricted to the pair (L; W¢).
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Table 10.1 Definition of sources of uncertainty in the simulation model

Variable Description Nominal value Typical range

E Modulus of elasticity 2.0 GPa 2.0-3.0 GPa

G Shear modulus 0.73 GPa 0.71-1.11 GPa

v Poisson’s ratio 0.37 0.35-0.40

o Mass density 1.20 x 10%3 1.20-1.25 x 10*3 kg/m?

kg/m®

U contact Applied contact 0.50 mm 0.20-0.80 mm
displacement

Fos Dynamic overshoot factor 1.0 0.5-1.5

The second issue is to define the sources of modeling uncertainty against which the
design must be robust. This uncertainty represents the fact that real-world conditions
might deviate from what is assumed in the simulation model. To make matters more
complicated, the magnitude of these deviations, which indicates by how much the
model could be incorrect, is unknown. Furthermore, precise probability distributions
are lacking. It is essential that the representation of uncertainty can account for these
attributes of the problem without imposing unwarranted assumptions.

Table 10.1 defines the sources of modeling uncertainty considered in the analysis.
The first four variables (E; G; v; p) represent the variability of polycarbonate plastics.
The nominal values (third column) and typical ranges (fourth column) originate
from surveying material properties published by various manufacturers. We stress,
however, that the actual values may fall outside of these ranges. The fifth variable,
U Contact> accounts for uncertainty of the actual displacement to which the latch might
be subjected when opening and closing the compartment door. The dynamic load
overshoot factor (sixth variable), F s, is purely numerical. It expresses that the actual
loading may differ from how the displacement condition is specified in the simulation.
Variable F g is used as a scaling factor that changes the dynamic overshoot resulting
from the application of a short-duration transient load.

The modulus of elasticity (E) is an uncertain material property. It is estimated at
2.0 GPa, and it is confidently known that it will not be less than this value, though it
could be greater by one GPa or more. The most that can be said about this variable
is that it falls in a one-sided range of unknown size, which can be represented by an
unbounded family of nested intervals:

E® <E < EO 4+ pw(P, (10.4)

where E© = 2.0 GPa and W""™*” = 1.0 GPa. In this formulation, the quantity &
represents the unknown horizon-of-uncertainty (k& > 0). Likewise, the nominal value
of the shear modulus (G) is 0.73 GPa, an estimate that could err as low as 0.71 GPa
(or less), and as high as 1.11 GPa (or more). Thus, a family of nested asymmetric
intervals captures the uncertainty in G:
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GO —hwl™ < G < GO+ hWiP, (10.5)

where G© = 0.73 GPa, W3 = 0.02 GPa, and W5™” = 0.38 GPa. Uncertainty
in v and p is represented by uncertain intervals similar to Eq. (10.5).

The fifth variable of Table 10.1 is the displacement U contact- The latch must allow
reliable opening and closing of the compartment door for a nominal 0.50-mm dis-
placement. This value, however, is only an estimate and the range defined in the
table (0.20 mm < Uconaer < 0.80 mm) expresses that the applied displacement is
unknown. There is no fundamental reason that U copiace cannot be less than 0.20 mm
or cannot exceed 0.80 mm. These are estimates based on extreme events, which are
typically poorly known because they tend to be postulated rather than being observed.

A formulation with nested intervals acknowledges that this range is uncertain:

U ©)

(Lower) 0)
Contact hWU " =< Ucontact = U

— “ Contact

+ hWPe0, (10.6)

where UL = 0.50 mm and W = WP = 030 mm.

The above description of intervals for variables (E; G; v; p; Ucontact; Fos)
addresses the third and final question, which is how to mathematically represent
the model uncertainty. Little is typically known about sources of uncertainty such
as these in the early stage of a design. For this reason, and to avoid injecting unsub-
stantiated assumptions in the analysis, no probability law or membership function is
assumed. Even the ranges listed in Table 10.1 are questionable, as collecting more
information or choosing a different material for manufacturing could yield values
outside of these assumed intervals. For these reasons, the uncertainty of each variable
is represented as a range of unknown size, which defines a family of six-dimensional
hypercubes:

Uh) = {e = (64) < <6 such that AW < g, — 0¥ < pw PP ] (10.7)

with 2 > 0. The vector = (6;) ;< collects the six variables (E; G; v; p; Ucontacts

Fos), and 9,50) denotes a nominal value (third column of Table 10.1). The IG model of
uncertainty, U(h), is not a single set (hypercube in this case), but rather an unbounded
family of nested sets (hypercubes). The hypercubes grow as h gets larger, endowing
h with its meaning as a horizon-of-uncertainty. The scaling coefficients W.""""
and W,((Upper) are set such that the assumed ranges (fourth column of Table 10.1)
are recovered when i = 1. It is emphasized that this definition is arbitrary. What is
essential in this formalism is that the horizon-of-uncertainty, %, is unknown, which
expresses our ignorance of the extent to which modeling assumptions might deviate
from reality. The definition of Eq. (10.7) makes it explicit that there is no worst case,
since the horizon-of-uncertainty can increase indefinitely.

Table 10.2 summarizes the components of info-gap analysis for the latch prob-
lem, as defined in Chap. 5. For a given horizon-of-uncertainty, 4, numerical values of
the six variables are selected from the IG model of uncertainty, U(h), of Eq. (10.7).
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Table 10.2 The three
components of 1G analysis
applied to the latch design
problem System model Finite element simulation, as
illustrated in Fig. 10.7

1G Component Application to the Latch Design
Problem

Performance requirement Equations (10.2) and (10.3)

Uncertainty model Equation (10.7), informed from
values listed in Table 10.1

These variables define a single realization of the system model analyzed to eval-
uate the performance of the latch, which is defined herein as a peak stress. This
is repeated with newly selected values from U(h) until the uncertainty model at
this horizon-of-uncertainty has been thoroughly explored and the maximal (worst)
stress, {Grenl%)} omax (0), has been found. The maximal stress can be compared to the

compliance requirement of Eq. (10.2). Equation (10.8) shows how searching for the
maximal stress within the uncertainty model, U(h), relates to the robustness of the
design.

Note that the IG uncertainty model (10.7) does not introduce any correlation
between variables, because such information is usually unknown in an early design
stage. A correlation structure that would be only partially known can easily be
included. An example of info-gapping the unknown correlation of a financial security
model is given in Ben-Haim (2010).

At this point of the problem formulation, a two-dimensional design space p = (L;
W) is defined together with the performance requirement (10.2). Modeling uncer-
tainty is identified in Table 10.1 and represented mathematically in Eq. (10.7). The
finite element simulation indicates that the peak stress experienced by the nominal
design is o'Max = 28.07 MPa, which does not exceed the yield stress of 55 MPa and
provides a safety factor of f s = 49%. Even accounting for truncation error introduced
by the lack of resolution in the discretization (see the discussion of Fig. 10.9), the
conclusion is that the nominal design is requirement-compliant.

The question we wish to answer is whether the design remains requirement-
compliant if real-world conditions to which the latch might be subjected deviate
from those assumed in the simulation. More explicitly, we ask: What is the greatest
horizon-of-uncertainty, fz, up to which the predicted peak stress, onax, does not
violate the requirement (10.2) for all realizations of the uncertain variables in the
info-gap model (10.7)? The question is stated mathematically as:

h(0critical) = max< max opax(0) < GCritical) (10.8)
{h=0} \ {6€U (h)}

where / is the robustness of the design given a performance requirement, o cyigical-
Answering this question amounts to assessing how performance, such as the peak

stress o pax here, evolves as increasingly more uncertainty is explored using the sim-

ulation model (Ben-Haim 2006). Section 10.5 shows how robustness functions of
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Fig. 10.8 Conceptual illustration of how the robustness function of a design is constructed

competing designs can be utilized to support decisionmaking. Figure 10.8 concep-
tually illustrates how robustness of the design is evaluated, as we now explain.

The robustness function, which is progressively constructed in Fig. 10.8 by explor-
ing larger-uncertainty spaces, U(h), maps the worst-case performance as a function
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of horizon-of-uncertainty. Its shape indicates the extent to which performance dete-
riorates as increasingly more uncertainty is considered. A robust design is one that
tolerates as much uncertainty as possible without entering the “failure” domain (red
region) for which the requirement is no longer met.

Applying the concept of robustness to the latch design problem is simple. One
searches for the maximal (worst) stress, {erenl%)} oMax (0), obtained from finite element

simulations where the variables 0 vary within the uncertainty space U(h) defined in
Eq. (10.7). As stated in Eq. (10.8), robustness is the greatest size of the uncertainty
space such that the design is requirement-compliant irrespective of which model is
analyzed within U (h). Said differently, all system models belonging to the uncertainty
space U (h) are guaranteed to meet the performance requirement of Eq. (10.2). The
horizon-of-uncertainty, £, is nevertheless unknown and may exceed h. Notall system
models in uncertainty sets U(h), for h greater than h, are compliant.

The procedure, therefore, searches for the worst-case peak stress within the uncer-
tainty space U(h). This is a global optimization problem (Martins and Lambe 2013)
whose resolution provides one datum for the robustness function, such as the point
(015 h1) inFig. 10.8b that results from exploring the uncertainty space U(h;). For sim-
plicity, the uncertainty spaces illustrated on the left side of the figure are represented
with two variables, 0 = (6; 6,). It should not obscure the fact that most applications
will deal with larger-size spaces (the latch has six variables 6;). Figure 10.8c indi-
cates that the procedure is repeated by increasing the horizon-of-uncertainty from 4,
to hy, hence performing an optimization search over a larger space U (hy).

The procedure outlined above stops when requirement-compliance is no longer
guaranteed—that is, as the worst-case peak stress exceeds the critical stress o cyiical-
The corresponding point (Ocritical; fz) is necessarily located on the edge of the (red)
failure region. By definition of robustness (10.8), h is the maximum level of uncer-
tainty that can be tolerated while guaranteeing that the performance requirement is
always met.

Figure 10.9 depicts the robustness function of the nominal latch design. It estab-
lishes the mapping between critical stress (o critical, horizontal axis) and robustness
(h, vertical axis). The horizontal gray lines indicate the truncation error that origi-
nates from discretizing the continuous equations on a finite-size mesh (Hemez and
Kamm 2008). They are upper bounds of truncation error that can be formally derived
(Mollineaux et al. 2013) and numerically evaluated through mesh refinement to sup-
port sensitivity and calibration studies (van Buren et al. 2013). For the nominal
geometry (L = 3.9 mm and W¢ = 4.0 mm), running the simulation with a 200-pm
mesh on a dual-core processor of a laptop computer takes four minutes and produces
a truncation error of 4.76 MPa. A run with a 100-p.m mesh reduces this upper bound
of error to 1.63 MPa at the cost of a 54-min solution time. The need to perform several
hundred runs to estimate the robustness function motivates the choice of the 200-p.m
mesh resolution. The resulting level of truncation error (4.76 MPa) is acceptable for
decisionmaking, since it represents a numerical uncertainty of only ~10% relative
to the critical stress (0 critical = 55 MPa).
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Fig. 10.9 Robustness function of the nominal design

The robustness function is obtained by continuing the process suggested in
Fig. 10.8, where more and more points are added by considering greater and greater
levels of horizon-of-uncertainty. For any performance limit o ¢yitica; On the horizon-
tal axis, the corresponding point on the vertical axis is the greatest tolerable uncer-
tainty, namely, the robustness h (0critical) - The positive slope of the robustness function
indicates a trade-off between performance requirement and robustness, as we now
explain. Suppose that the analyst is willing to allow the peak stress to reach 55 MPa,
which provides no safety margin (fs = 0). From Fig. 10.9, it can be observed that the
greatest tolerable horizon-of-uncertainty is h = 0.40. (Note that this value accounts
for truncation error, which effectively “shifts” the robustness function by 4.76 MPa
to the right.) It means that the design satisfies the performance requirement (10.2)
as long as none of the model variables 8 = (E; G; v; p; Ucontct; Fos) deviates from
its nominal value by more than 40%. Said differently, the design is guaranteed to
satisfy the critical stress criterion as long as real-world conditions do not deviate from
nominal settings of the simulation by more than 40%, even accounting for truncation
effects.

Suppose, however, that the analyst wishes to be more cautious—for instance, by
requiring that the peak stress not exceed 45 MPa. Now the safety factor is fs =
18%. From Fig. 10.9, not exceeding this peak stress is satisfied if model variables
do not deviate from their nominal values by more than approximately 10%. In other
words, the more demanding requirement (fs = 18%) is less robust to uncertainty (h
= 0.10) than the less demanding requirement (f s = 0 and h = 0.40). More generally,
the positive slope of the robustness function expresses the trade-off between greater
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caution in the mechanical performance (increasing f's) and greater robustness against
uncertainty in the modeling assumptions (increasing h).

Choices offered to the decisionmaker are clear. If it can be shown that real-world
conditions cannot possibly deviate from those assumed in the simulation model
by more than 40%, then the nominal design is guaranteed requirement-compliant.
Otherwise an alternate design offering greater robustness should be pursued. This
second path is addressed next.

10.5 Assessment of Two Competing Designs

This section illustrates how robustness functions, such as the one discussed in
Sect. 10.4, can be exploited to select between two competing designs. Figure 10.10
depicts a comparison between geometries that differ in their choices of design vari-
ables, p = (L; W¢). The left side is the nominal geometry (L = 3.9 mm, W, =
4.0 mm), and the right side shows a 20% larger design (L = 4.68 mm, W¢ =
4.80 mm). Given that the thickness is kept the same in both geometries, the volume
of the variant design increases by ~44%. This consideration is important because
selecting the variant design would imply higher manufacturing costs. The decision-
maker, therefore, would want to establish that the performance of the variant geom-
etry is significantly more robust to the modeling uncertainty than what the nominal
design achieves.

Figure 10.11 compares the robustness functions of the nominal and 20% larger
geometries. The blue-solid line identifies the nominal design, and the variant is
shown with a green-dashed line. Horizontal gray lines quantify the upper bounds of
truncation error that originates from mesh discretization. The results are meaningful
precisely because the prediction uncertainty due to truncation effects is sufficiently
small with the mesh discretization used.

ominal Latch Deasgn Goommetry. Beeptian 58 Variasd Latch Cosign Gosmetry

Langth Cosrsinata, 2 jmm)
HE B = oM oW & w

Linng Cosrtnate, 2 pmem)
A B = B oW s w

E]
3 W 3 a W o, )

(a) Left: Nominal design (b) Right: 20%-larger design variant

Fig. 10.10 Meshes of the competing nominal and variant latch designs
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Fig. 10.11 Robustness functions of the nominal (blue) and variant (green) designs

Figure 10.11 illustrates that, when no modeling uncertainty is considered, the
variant design clearly predicts a better performance. This is observed on the horizontal
axis (at h= 0) where the peak stress of the variant geometry (o pax = 16 MPa) is less
than half the value for the nominal design (o pax = 34 MPa). This result is consistent
with the fact that in the variant design the applied force is spread over a larger surface
area, which reduces stresses generated in the latch.

Suppose that the analyst requires a safety factor of fg = 18%, implying that the
stress must be no greater than 45 MPa. As observed in Fig. 10.9 (reproduced in the
blue curve of Fig. 10.11), the nominal geometry tolerates up to 10% change in any
or all of the model variables without violating the performance requirement. The
larger-size geometry, however, can tolerate up to 100% change without violating the
same requirement. In other words, the variant design is more robust (fz = 1.0 instead
of h =0.10 nominally) at this level of stress (o cyitical = 45 MPa).

The slopes of the two robustness functions can also be compared in Fig. 10.11. The
slope represents the trade-off between robustness and performance requirement. A
steep slope implies a low cost of robustness that can be increased by a relatively small
relaxation of the required performance. The figure suggests that the cost of robustness
for the nominal design (blue curve) is higher than for the variant geometry (green
curve). Selecting the 20% larger design is undoubtedly a better decision, given that
it delivers better predicted performance (lower predicted value of o) and is less
vulnerable to potentially incorrect modeling assumptions. In fact, the variant design
offers an 18% safety margin (fs = 18%) even if model variables deviate from their
nominal values by up to 100% (h =1.0). The only drawback of the variant design is
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the 244% larger volume that increases manufacturing costs relative to those of the
nominal design.

10.6 Concluding Remarks

This chapter has presented an application of simulation-based 1G robust design.
The need for robustness stems from recognizing that an effective design should
guarantee performance even if real-world conditions deviate from modeling and
analysis assumptions. Info-gap robustness is versatile, easy to implement, and does
not require assuming information that is not available.

IG robust design is applied to the analysis of a mechanical latch for a consumer
electronics product to provide a simple, mechanical illustration. The performance
criterion is the peak stress at the base of the latch resulting from displacements that
are applied to open or close the compartment. The geometry, simulation model, and
loading scenario are simplified for clarity. Round corners, for example, that mitigate
stress concentrations, are altered to straight edges. Likewise, severe impact loads
experienced when dropping the device on a hard surface are not considered. The
description of the analysis, however, is comprehensive and can easily be translated
to other, more realistic, applications.

The robustness of the nominal design is studied to assess the extent to which
performance is immune to sources of uncertainty in the problem. This uncertainty
expresses the fact that real-world conditions could differ from what is assumed in
the simulation without postulating either probability distributions or knowledge of
worst cases. One example of how real-world conditions can vary from modeling
assumptions is the variability of material properties. Uncertainty also originates from
assumptions embodied in the simulation model that could be incorrect. One example
is the dynamic overshoot factor used to mitigate the ignorance of how materials
behave when subjected to fast-transient loads. The analysis of the mechanical latch
pursued in this chapter indicates that the design can tolerate up to 40% uncertainty
without exceeding the peak-stress performance requirement.

The performance of an alternate design, which proposes to spread the contact
force over a larger surface area, is assessed for its ability to provide more robustness
than the nominal design. The analysis indicates that the variant latch is predicted to
perform better, while its robustness to modeling uncertainty is greater at all perfor-
mance requirements. The variant geometry features, however, a 44% larger volume,
which would imply higher manufacturing costs. The discussion presented in this
chapter illustrates how an analysis of robustness helps the decisionmaker answer the
question of whether an improvement in performance, or the ability to withstand more
uncertainty about real-world conditions, warrants the cost associated with a design
change.

The simplicity of the example discussed here should not obscure the fact that
searching for a robust design might come at a significant computational expense
if the simulation is expensive or the uncertainty space is large-dimensional. This
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is nevertheless what automation is for and what software is good at. Developing
the technology to perform large-scale explorations frees the analyst to apply his/her
creativity to more challenging aspects of the design.
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