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{foersth,mk}@informatik.uni-tuebingen.de

4 TU Wien, Vienna, Austria
noellenburg@ac.tuwien.ac.at

5 RIKEN Center for Advanced Intelligence Project,
University of Electro-Communications, Chōfu, Japan
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Abstract. While orthogonal drawings have a long history, smooth
orthogonal drawings have been introduced only recently. So far, only
planar drawings or drawings with an arbitrary number of crossings per
edge have been studied. Recently, a lot of research effort in graph draw-
ing has been directed towards the study of beyond-planar graphs such
as 1-planar graphs, which admit a drawing where each edge is crossed at
most once. In this paper, we consider graphs with a fixed embedding. For
1-planar graphs, we present algorithms that yield orthogonal drawings
with optimal curve complexity and smooth orthogonal drawings with
small curve complexity. For the subclass of outer-1-planar graphs, which
can be drawn such that all vertices lie on the outer face, we achieve
optimal curve complexity for both, orthogonal and smooth orthogonal
drawings.

1 Introduction

Orthogonal drawings date back to the 1980’s, with Valiant’s [24], Leiserson’s [17]
and Leighton’s [16] work on VLSI layouts and floor-planning applications and
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have been extensively studied over the years. The quality of an orthogonal draw-
ing can be judged based on several aesthetic criteria such as the required area,
the total edge length, the total number of bends, or the maximum number of
bends per edge. While schematic drawings such as orthogonal layouts are very
popular for technical applications (such as UML diagrams) still to date, from
a cognitive point of view, schematic drawings in other applications like subway
maps seem to have disadvantages over subway maps drawn with smooth Bézier
curves, for example, in the context of path finding [19]. In order to “smoothen”
orthogonal drawings and to improve their readability, Bekos et al. [6] introduced
smooth orthogonal drawings that combine the clarity of orthogonal layouts with
the artistic style of Lombardi drawings [11] by replacing sequences of “hard”
bends in the orthogonal drawing of the edges by (potentially shorter) sequences
of “smooth” inflection points connecting circular arcs. Formally, our drawings
map vertices to points in R

2 and edges to curves of one of the following two types.

Orthogonal Layout: Each edge is drawn as a sequence of vertical and hori-
zontal line segments. Two consecutive segments of an edge meet in a bend.

Smooth Orthogonal Layout [6]: Each edge is drawn as a sequence of vertical
and horizontal line segments as well as circular arcs: quarter arcs, semicircles,
and three-quarter arcs. Consecutive segments must have a common tangent.

The maximum vertex degree is usually restricted to four since every vertex
has four available ports (North, South, East, West), where the edges enter and
leave a vertex with horizontal or vertical tangents. In addition, the usual model
insists that no two edges incident to the same vertex can use the same port.
Throughout this paper, we restrict ourselves to graphs of maximum degree four.

The curve complexity of a drawing is the maximum number of segments used
for an edge. An OC k-layout is an orthogonal layout with curve complexity k,
that is, an orthogonal layout with at most k − 1 bends per edge. An SC k-layout
is a smooth orthogonal layout with curve complexity k. For results, see Table 1.

(a) OC3-layout (b) SC1-layout

Fig. 1. Two 2-planar drawings
of K5.

The well-known algorithm of Biedl and
Kant [7] draws any connected graph of max-
imum degree 4 orthogonally on a grid of size
n × n with at most 2n + 2 bends, bending
each edge at most twice (and, hence, yield-
ing OC3-layouts). For the output of their
algorithm applied to K5, see Fig. 1a. Note
that their approach introduces crossings to
the produced drawing. For planar graphs,
they describe how to obtain planar orthog-
onal drawings with at most two bends per
edge, except possibly for one edge on the outer face.

So far, smooth orthogonal drawings have been studied nearly exclusively for
planar graphs. Bekos et al. [5] showed how to compute an SC1-layout for any
maximum degree 4 graph, but their algorithm does not consider the embedding
of the given graph. For a drawing of K5 computed by their algorithm, see Fig. 1b.
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Also, in the produced drawings, the number of crossings that an edge may have is
not bounded. Bekos et al. also showed that, if one does not restrict vertex degrees,
many planar graphs do not admit (planar) SC1-layouts under the Kandinsky
model, where the number of edges using the same port is unbounded. They
proved, however, that all planar graphs of maximum degree 3 admit an SC1-
layout (under the usual port constraint). For the same class of graphs, Alam
et al. [1] showed how to get a polynomial drawing area (O(n2) × O(n)) when
increasing the curve complexity to SC2. Further, they showed that every planar
graph of maximum degree 4 admits an SC2-layout, but not every such graph
admits an SC1-layout where the vertices lie on a polynomial-sized grid. They also
proved that every biconnected outerplane graph of maximum degree 4 admits
an SC1-layout (respecting the given embedding).

In this paper, we study orthogonal and smooth orthogonal layouts of non-
planar graphs, in particular, 1-planar graphs. Recall that k-planar graphs are
those graphs that admit a drawing in the plane where each edge has at most k
crossings. Our goal is to extend the well-established aesthetic criterion ‘curve
complexity’ of (smooth) orthogonal drawings from planar to 1-planar graphs.

1-planar graphs, introduced by Ringel [18], probably form the most-studied
class of the beyond-planar graphs, which extend the notion of planarity. There
are recent surveys on both 1-planar graphs [15] and beyond-planar graphs [10].
Mostly, straight-line drawings have been studied for 1-planar graphs. While every
planar graph has a planar straight-line drawing (due to Fáry’s theorem), this
is not true for 1-planar graphs [12,23]. For the 3-connected case, the statement
holds except for at most one edge on the outer face [2]. Given a drawing of a 1-
planar graph, one can decide in linear time whether it can be “straightened” [14].

An important subclass of 1-planar graphs are outer-1-planar graphs. These
are the graphs that have a 1-planar drawing where every vertex lies on the outer
(unbounded) face. They are planar graphs, can be recognized in linear time [4,
13], and can be drawn with straight-line edges and right-angle crossings [9].

We are specifically interested in 1-plane and outer-1-plane graphs, which
are 1-planar and outer-1-planar graphs together with an embedding. Such an
embedding determines the order of the edges around each vertex, but also which
edges cross and in which order. By the layout of a 1-plane graph we mean that
the layout respects the given embedding, without stating this again. In contrast,
the layout of a 1-planar graph can have any 1-planar embedding.

Our Contribution. Previous results and our contribution on (smooth) orthogonal
layouts are listed in Table 1. We present new layout algorithms for 1-planar
graphs in the orthogonal model (Sect. 3) and in the smooth orthogonal model
(Sect. 4), achieving low curve complexity and preserving 1-planarity. We study
1-plane graphs as well as the special case of outer-1-plane graphs, where all
vertices lie on the outer face. We conclude with some open problems; see Sect. 5.

In particular, we show that all 1-plane graphs admit OC4-layouts (Theo-
rem 2) and SC3-layouts (Theorem 5). We also prove that all biconnected outer-
1-plane graphs admit OC3-layouts (Theorem 4) and SC2-layouts (Theorem 7).
Three out of these four results are worst-case optimal: There exist biconnected
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1-plane graphs that do not admit an OC3-layout (Theorem 1) and biconnected
outer-1-plane graphs that do not admit OC2-layouts (Theorem 3) and SC1-
layouts (Theorem 6).

Table 1. Comparison of our results to previous work. The model K(andinsky)-SC1

does not restrict the number of edges per port to one. (�) except for the octahedron
(OC4). “Super-poly” means that the drawings are not known to be of polynomial size.

Graph class Max. deg. Curve complexity Drawing area Reference

Orthogonal drawings

General 4 OC3 n × n [7]

Planar 4 OC3 (�) n × n [7]

1-plane 4 �⊆ OC3 Theorem 1

4 OC4 O(n) × O(n) Theorem 2

Biconnected outer-1-plane 4 �⊆ OC2 Theorem 3

4 OC3 O(n) × O(n) Theorem 4

Smooth orthogonal drawings

Planar 4 SC2 super-poly [1]

Planar, poly-area 4 �⊇ SC1 — [1]

Planar, OC2 4 �⊆ SC1 — [1]

Planar 3 SC2 �n2/4� × �n/2� [1]

Planar 3 SC1 super-poly [5]

Biconnected outerplane 4 SC1 super-poly [1]

General (non-planar) 4 SC1 2n × 2n [5]

Planar ∞ �⊆ K-SC1 [6]

∞ K-SC2 O(n) × O(n) [5]

Biconnected 1-plane 4 SC3 O(n) × O(n2) Theorem 5

Biconnected outer-1-plane 4 �⊆ SC1 Theorem 6

4 SC2 super-poly Theorem 7

2 1-Planar Bar Visibility Representation

As an intermediate step towards orthogonal drawings, we introduce 1-planar bar
visibility representations: Each vertex is represented as a horizontal segment –
called bar – and each edge is represented as either a vertical segment or a polyline
composed of a vertical segment and a horizontal segment between the bars of its
adjacent vertices. Edges must not intersect other bars. If an edge has a horizontal
segment, we call it red. The horizontal segment of a red edge must be on top of
its vertical segment and crosses exactly one vertical segment of another edge –
which is called blue. The vertical segment of a red edge must not be crossed; see
Fig. 2. We consider every edge as a pair of two half-edges, one for each of its two
endpoints. Red edges are split at their bend – the construction bend, such that
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each half-edge consists of either a vertical or a horizontal segment. Observe that
horizontal half-edges are always red. We show that every 1-planar graph has a
1-planar bar visibility representation, following the approach of Brandenburg [8]:

For a 1-planar embedding, we define a kite to be a K4 induced by the end
vertices of two crossing edges with the property that each of the four triangles
induced by the crossing point and one end vertex of each of the two crossing
edges is a face. A crossing is caged if its end vertices induce a kite. Let now G be
a 1-planar graph. As a preprocessing step, G is augmented to a not necessarily
simple graph G′, with the property that any crossing is caged and no planar
edge can be added to G′ without creating a new crossing or a double edge [2].

After the preprocessing step, all crossing edges are removed and a bar visi-
bility representation for the produced plane graph Gp is computed [20,22]. To
this end an st-ordering of a biconnected supergraph of Gp is computed, i.e., an
ordering s = v0, v1, . . ., vn−2, vn−1 = t of the vertices such that each vertex
except s and t is adjacent to both, a vertex with a greater and a lower index.
The st-number is the index of a vertex. The y-coordinate of each bar is chosen
to be the st-number of the respective vertex.

Faces of size four that correspond to the kites of G have three possible con-
figurations: left/right wing or diamond configuration. Figure 2 shows the config-
urations and how to insert the crossing edges in order to obtain a 1-planar bar
visibility representation of G′. Removing the caging edges results in a 1-planar
bar visibility representation of G.

(a) left wing (b) right wing (c) diamond

Fig. 2. Different configurations for kites in a 1-planar bar visibility representation
(Color figure online).

An edge is a left, right, top or bottom edge for a bar if it is attached to the
respective side of that bar. Note that only red edges of G can be left or right edges
for exactly one of their endpoints (and top edge for their other endpoint). If a
bar has no bottom (top) edges, it is a bottom (top) bar, respectively. Otherwise
it is a middle bar. For a bottom (top) bar, consider the x-coordinates of the



514 E. Argyriou et al.

touching points of its edges. We define its leftmost and rightmost edge to be
the edge with the smallest and largest x-coordinate, respectively. If such a bar
has a left or right edge then, by the previous definition, this is its leftmost or
rightmost edge, respectively. Note that by the construction of the bar visibility
representation, each bar has at most one left and at most one right red edge.

3 Orthogonal 1-Planar Drawings

In this section, we examine orthogonal 1-planar drawings. In particular, we give a
counterexample showing that not every biconnected 1-plane graph of maximum
degree 4 admits an OC3-layout. On the other hand, we prove that every 1-
plane graph of maximum degree 4 admits an OC4-layout that preserves the
given embedding. For biconnected outer-1-plane graphs we achieve optimal curve
complexity 3.

3.1 Orthogonal Drawings for General 1-Planar Graphs

Theorem 1. Not every biconnected 1-plane graph of maximum degree 4 admits
an OC3-layout. Moreover, there is a family of graphs requiring a linear number
of edges of complexity at least 4 in any OC4-layout respecting the embedding.

Proof. Consider the 1-planar embedding of a K5 as shown in Fig. 3a. The outer
face is a triangle T and all vertices have their free ports in the interior of T .
Hence, T has at least 7 bends, and at least one edge of T has at least 3 bends.

For another example refer to Fig. 3b, where vertices a, b, and c create a
triangle with the same properties. We use t copies of the graph of Fig. 3b in a
column and glue them together by connecting the top and bottom gray vertices
of consecutive copies with an edge, as well as the topmost vertex of the topmost
copy and the bottommost vertex of the bottommost copy. The graph has n = 9t
vertices and at least t edges of complexity at least 4. ��

(a) K5

a b

c

(b) a 9-vertex graph

Fig. 3. Biconnected 1-plane graphs without OC3-layout

In order to achieve an OC4-layout for 1-plane graphs, we will use a general
property of orthogonal drawingsof planar graphs: Consider two consecutive
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bends on an edge e with an incident face f . We say that the pair of bends
forms a U-shape if they are both convex or both concave in f and an S-shape,
otherwise. It follows from the flow model of Tamassia [21] that if a planar graph
has an orthogonal drawing with an S-shape then it also has an orthogonal draw-
ing with the identical sequence of bends on all edges except for the two bends of
the S-shape that are removed. Thus, by planarization, any pair of S-shape bends
can be removed as long as the two bends are not separated by crossings.

Theorem 2. Every n-vertex 1-plane graph of maximum degree 4 admits an
OC4-layout on a grid of size O(n) × O(n).

Proof. Let G be a 1-planar graph of maximum degree 4 and consider a 1-planar
bar visibility representation of G. If G is not connected, we draw each connected
component separately, therefore we assume that G is connected.

Each vertex is placed on its bar. Figures 4 and 5 indicate how to route the
adjacent half-edges. Recall that the S-shape bend pairs can be eliminated. Thus,
a horizontal half-edge gets at most one extra bend and a vertical half-edge gets at
most two extra bends; see Fig. 5. We call a half-edge extreme if it was horizontal
and got one bend or vertical and got two bends that create a U-shape.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Replacing a middle bar with a vertex in the presence of (a)–(c) zero, (d)–(e) one,
and (f) two horizontal half-edges

It suffices to show that the edges can be routed such that no edge is composed
of two extreme half-edges. Even for red edges where we have the construction
bend, we either get one extra bend from the horizontal (extreme) half-edge or
two extra bends from the vertical (extreme) half-edge. Observe that an edge is
extreme if and only if it is the rightmost or leftmost edge of a bottom or top bar,
respectively, and it is attached to the bottom or top of the vertex, respectively.
For each bottom or top bar we have the free choice to set either its rightmost
or leftmost half-edge to become extreme. Consider the following bipartite graph
H. The vertices of H are the top and bottom bars, as well as their leftmost and
rightmost edges. A bar-vertex and an edge-vertex are adjacent in H if and only
if the bar and the edge are incident. Observe that each bar-vertex has degree two
and each edge-vertex has degree at most two, thus H is a union of disjoint paths
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(a) (b) (c)

(d) (e)

Fig. 5. Replacing a bottom bar of degree 4 with a vertex.

and cycles and there is a matching of H in which each bar-vertex is matched.
This matching defines the extreme half-edges. It assigns exactly one half-edge to
every bottom or top-bar and matches at most one half-edge of each edge. ��

3.2 Orthogonal Drawings of Outer-1-Plane Graphs

Since outer-1-planar graphs are planar graphs [4], a planar orthogonal layout
could be computed with curve complexity at most three. For example, in Fig. 6a
we can see an outer-1-plane graph with a planar embedding in Fig. 6b. Arguing
similarly as we did for the proof of Theorem 1 it follows that there will be at
least two bends on an edge of the outer face. In this particular case, Fig. 6c
shows an outer-1-planar drawing of the same graph with at most two bends per
edge. In the following we compute 1-planar orthogonal layouts for biconnected
outer-1-planar graphs with optimal curve complexity three that also preserve
the initial outer-1-planar embedding.

(a) outer-1-planar embedding (b) planar embedding (c) OC3-layout

Fig. 6. An outer-1-plane graph.

Theorem 3. Not every biconnected outer-1-plane graph of maximum degree 4
admits an OC2-layout.

Proof. K4 is a biconnected outer-1-plane graph. Actually, it has a unique OC2-
layout as shown in Fig. 7a. When connecting two copies of K4 by two intersecting
edges as in Fig. 7b, it is not possible to draw the resulting graph such that the
connector edges intersect and have curve complexity two. ��
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(a) K4 (b) two biconnected copies of K4

Fig. 7. Constructing a biconnected outer-1-plane graph that does not admit an OC2-
layout with the same embedding.

Theorem 4. Every biconnected outer-1-plane graph of maximum degree 4
admits an OC3-layout in an O(n)×O(n) grid, where n is the number of vertices.

Proof (sketch). Let G be an outer-1-planar graph of maximum degree 4. Observe
that all crossings can be caged without changing the embedding: A maximal
outer-1-planar graph always admits a straight-line outer-1-planar drawing in
which all faces are convex [9,12]. We would directly obtain the required curve
complexity if there were no top or bottom bars of degree 4. Instead, our proof
is based on a 1-planar bar visibility representation of G produced by a specific
st-ordering. Let s and t be two vertices on the outer face. Define Sl and Sr to
be the sequences of vertices on the left path and on the right path from s to t
along the outer face of G, respectively. We choose s, Sl, Sr, t as our st-ordering.
Observe that this is also an st-ordering of the caged and planarized graph Gp.

We process middle bars as in the algorithm of Theorem 2. For the top and
bottom bars of degree 4 we choose differently which half-edge will be attached
to the north or south port, respectively. Let v be a vertex such that b(v) is a top
or bottom bar of degree 4. Let el = (v, vl) and er = (v, vr) be its leftmost and
rightmost edge, respectively. Assume that v ∈ Sl ∪{s} and b(v) is a bottom bar.
If vl ∈ Sl, we choose edge el to be attached to the south port of v, otherwise we
choose edge er. If b(v) is a top bar of degree 4 we choose its leftmost edge el to
be attached to the north port of v. Symmetrically, if v ∈ Sr ∪ {t} and b(v) is a
top bar, we choose er for the north port of v if vr ∈ Sr, otherwise we choose el.
If b(v) is a bottom bar we choose its rightmost edge er for the south port of v.

The above choice has the following property (see the full version [3] for a
detailed proof): Any edge with three or four bends contains two consecutive
bends that create an S-shape. The two bends are always connected with a vertical
segment. If this is an uncrossed edge of G, the S-shape can be eliminated. For
crossing edges, we prove that only one edge per crossing may have more than
two bends. If the vertical segment connecting the two bends of the S-shape is
crossed, we apply the flow technique of Tamassia [21] around the crossing point
and reduce the number of bends (for details see the full version [3]). ��

4 Smooth Orthogonal 1-Planar Drawings

In this section we examine smooth orthogonal 1-planar drawings. In particular,
we show that every 1-plane graph of maximum degree 4 admits an SC3-layout
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(a) (b) (c)

Fig. 8. Smoothing process of U-shapes created by top (bottom) bars.

that preserves the given embedding. For biconnected outer-1-plane graphs, we
achieve SC2, which is optimal for this graph class.

4.1 Smooth Orthogonal Drawings for General 1-Planar Graphs

Theorem 5. Every 1-plane graph of maximum degree 4 admits an SC3-layout
in O(n) × O(n2) area.

Proof. We compute an SC3-layout based on an OC4-layout computed by the
algorithm of Theorem 2. Observe that in the OC4-layouts calculated by our
approach, the area bounded U-shaped half-edges created at top and bottom
bars is vertex-free (see gray area in Fig. 8a), and, each vertex is located on a
separate level. We replace one bend of each U-shaped half-edge by a dummy
vertex; see Fig. 8a. By doing so, we split each U-shaped half-edge into a vertical
edge and an L-shaped half-edge. In the following, we treat the L-shaped half-edge
as if the bend was on an L-shaped half-edge incident to the dummy vertex. We
process V = {v1, v2, . . . , vn} in the ascending vertical order of vertices (including
dummy vertices). For vi, let Δ↑

i be the largest horizontal distance between vi
and any bend on incident L-shaped half-edges leading to neighbors with larger
index. Let Δ↓

i be the corresponding value for bends at incident L-shaped half-
edges and construction bends of red edges incident to edges leading to neighbors
with smaller index. We increase the y-coordinate of all vj with j ≥ i by Δ↓

i

units and then the y-coordinate of all vk with k > i by Δ↑
i units. Bends on L-

shaped half-edges and construction bends of red edges leading to neighbors with
smaller index will be moved together with the corresponding vertex. Note that
the region enclosed by U-shapes created at top and bottom bars remains empty;
see Fig. 8b. After the stretching, we remove the additional dummy vertices.

Each U-shaped half-edge will be replaced by a semi-circle which fits into the
corresponding stretched empty region. We place the semi-circle directly incident
to the endpoint which created the U-shape; see Fig. 8c. Then we replace each
intersected S-shaped half-edge formed by a construction bend of a red edge by
two consecutive quarter arcs incident to the top endpoint of the edge. Recall
that if a red edge has an S-shape from its top vertex, it has no bend from its
bottom vertex. Further we replace each remaining bend by a quarter arc starting
at the corresponding endpoint. Arcs at the two endpoints will be connected by a
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vertical segment. The correctness follows from the fact that the regions stretched
to make space for drawing arcs were empty in the initial drawing.

The area of the resulting drawing is O(n) × O(n2) as the input drawing had
O(n) × O(n) area and for every vertex the stretching operation increases the
height by at most the length of the longest horizontal segment (i.e. O(n)). ��

4.2 Smooth Orthogonal Drawings for Outer-1-Plane Graphs

We focus on smooth layouts of outer-1-plane graphs. We demonstrate that curve
complexity one is not always possible, but curve complexity two can be achieved
for biconnected outer-1-plane graphs. We start with the following observation.
The complete graph on four vertices with free ports towards its outer face has
a unique SC1-layout, shown in Fig. 9a. Removing one edge and restricting all
ports towards its outer face, there exist two SC1-layouts, see Figs. 9b and c.

(a) (b) (c) (d) (e) (f) (g)

Fig. 9. (a) SC1-layouts for K4 and (b)–(c) for K4 − e with restricted ports. (d) A
biconnected outer-1-plane graph that does not have an SC1-layout. (e)-(g) SC1-layouts
of a subgraph of (d).

Theorem 6. Not every biconnected outer-1-plane graph of maximum degree 4
has an SC1-layout.

Proof. Take the graph in Fig. 9d. It has two subgraphs isomorphic to K4 − e
(with restricted ports) that share a vertex. Combining two drawings for both
copies gives rise to the three drawings in Figs. 9e–g in which the edge between
the two highlighted vertices cannot be added with curve complexity one. ��

To achieve SC2-layouts for biconnected outer-1-plane graphs (see Fig. 11 for
an example), we modify the algorithm of Alam et al. [1] for outerplane graphs;
see the full version [3] for details.

Theorem 7. Every biconnected outer-1-plane graph of maximum degree 4 has
an SC2-layout. The drawing area may be super-polynomial.

Proof (sketch). The algorithm of Alam et al. [1] processes the faces of the graph
along the weak-dual, i.e., the dual graph omitting the outer face and rooted at
some inner face. For the next face, one of its edges (the reference edge) is already
drawn and imposes the drawing of the face. Figures 10a–f show the different
cases.
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We define an auxiliary graph G′: Let G be a biconnected outer-1-plane graph,
and let Gp be the planarized graph of G, where crossing points are replaced
with dummy vertices. Three types of dummy vertices exist in Gp: dummy-cuts
(cut vertices), in-dummies (only incident to inner faces), and out-dummies. G′

contains all in-dummy and out-dummy vertices of Gp, while dummy-cuts are
replaced by a caging cycle. The face inside a caging cycle is called a cut-face. All
other faces are called normal. Faces are processed along a traversal of the weak
dual of G′. As G′ may not be outerplanar, its weak dual does not have to be
acyclic. It contains cycles of length four around in-dummies (see Fig. 10m). The
auxiliary graph G′ also contains virtual edges that are red. These are edges added
for caging dummy-cuts and edges added to complete the process of faces around
an in-dummy. Figures 10g–j show how to process normal faces not appearing in
Alam et al. [1]. When processing a cut-face, we draw the crossing edges instead
of the caging cycles; see Figs. 10k–l for two out of ten cases. Finally, in order
to draw the fourth face around an in-dummy, we ensure that the edge-segments
incident to the dummy vertex have the same length; see Fig. 10n for an example.
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Fig. 10. Constructing an SC2-drawing of biconnected outer 1-planar graphs (Color
figure online).
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Fig. 11. SC2-layout of an outer-1-plane graph produced by our algorithm, which is
based on the algorithm of Alam et al. [1]. The largest 3/4-arc is only partially drawn.

5 A List of Open Problems

– Can we improve our curve complexity bounds if we restrict ourselves to more
strongly connected classes of graphs (of maximum degree 4)?

– Candidate subclasses of outer-1-plane graphs for SC1-layouts are for example
outer-IC-plane graphs where crossings are independent. A possible variant
would be to allow degenerate layouts where pairs of edges can touch but not
cross.

– Is there a 1-plane graph that does not admit an SC2-layout?
– Do biconnected outer-1-plane graphs admit an SC2-layout with polynomial

drawing area?
– Do similar results also hold for 2-planar graphs and more generally beyond-

planar graphs?
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