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Abstract. Let G be a planar 3-graph (i.e., a planar graph with vertex
degree at most three) with n vertices. We present the first O(n2)-time
algorithm that computes a planar orthogonal drawing of G with the
minimum number of bends in the variable embedding setting. If either a
distinguished edge or a distinguished vertex of G is constrained to be on
the external face, a bend-minimum orthogonal drawing of G that respects
this constraint can be computed in O(n) time. Different from previous
approaches, our algorithm does not use minimum cost flow models and
computes drawings where every edge has at most two bends.

1 Introduction

A pioneering paper by Storer [22] asks whether a crossing-free orthogonal draw-
ing with the minimum number of bends can be computed in polynomial time.
The question posed by Storer is in the fixed embedding setting, i.e., the input
is a plane 4-graph (an embedded planar graph with vertex degree at most four)
and the wanted output is an embedding-preserving orthogonal drawing with
the minimum number of bends. Tamassia [23] answers Storer’s question in the
affirmative by describing an O(n2 log n)-time algorithm. The key idea of Tamas-
sia’s result is the equivalence between the bend minimization problem and the
problem of computing a min-cost flow on a suitable network. To date, the most
efficient known solution of the bend-minimization problem for orthogonal draw-
ings in the fixed embedding setting is due to Cornelsen and Karrenbauer [6], who
show a novel technique to compute a min-cost flow on an uncapacitated network
and apply this technique to Tamassia’s model achieving O(n

3
2 )-time complexity.

A different level of complexity for the bend minimization problem is encoun-
tered in the variable embedding setting, that is when the algorithm is asked
to find a bend-minimum solution over all planar embeddings of the graph. For
example, the orthogonal drawing of Fig. 1(c) has a different planar embedding
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Fig. 1. (a) A planar embedded 3-graph G. (b) An embedding-preserving bend-
minimum orthogonal drawing of G. (c) A bend-minimum orthogonal drawing of G.

than the graph of Fig. 1(a) and it has no bends, while the drawing of Fig. 1(b)
preserves the embedding but it is suboptimal in terms of bends.

Garg and Tamassia [13] prove that the bend-minimization problem for
orthogonal drawings is NP-complete for planar 4-graphs, while Di Battista et
al. [8] show that it can be solved in O(n5 log n) time for planar 3-graphs. Gen-
eralizations of the problem in the variable embedding setting where edges have
some flexibility (i.e., they can bend a few times without cost for the optimization
function) have also been the subject of recent studies by Bläsius et al. [2].

Improving the O(n5 log n) time complexity of the algorithm by Di Battista
et al. [8] has been an elusive open problem for more than a decade (see, e.g., [3]),
until a paper by Chang and Yen [4] has shown how to compute a bend-minimum
orthogonal drawing of a planar 3-graph in the variable embedding setting in
Õ(n

17
7 ) time, which can be read as O(n

17
7 logk n) time for a positive constant k.

Similar to [8], the approach in [4] uses an SPQR-tree to explore all planar
embeddings of a planar 3-graph and combines partial solutions associated with
the nodes of this tree to compute a bend-minimum drawing. Both in [8] and in [4],
the computationally most expensive task is computing min-cost flows on suitable
variants of Tamassia’s network. However, Chang and Yen elegantly prove that
a simplified flow network where all edges have unit capacity can be adopted to
execute this task. This, combined with a recent result [5] about min-cost flows
on unit-capacity networks, yields the improved time complexity.

Contribution and Outline. This paper provides new algorithms to compute
bend-minimum orthogonal drawings of planar 3-graphs, which improve the time
complexity of the state-of-the-art solution. We prove the following.

Theorem 1. Let G be an n-vertex planar 3-graph. A bend-minimum orthog-
onal drawing of G can be computed in O(n2) time. If either a distinguished
edge or a distinguished vertex of G is constrained to be on the external face, a
bend-minimum orthogonal drawing of G that respects the given constraint can be
computed in O(n) time. Furthermore, the computed drawings have at most two
bends per edge, which is worst-case optimal.

As in [8] and in [4], the algorithmic approach of Theorem 1 computes a
bend-minimum orthogonal drawing by visiting an SPQR-tree of the input graph.
However, it does not need to compute min-cost flows at any steps of the visit,
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which is the fundamental difference with the previous techniques. This makes it
possible to design the first quadratic-time algorithm to compute bend-minimum
orthogonal drawings of planar 3-graphs in the variable embedding setting.

The second part of the statement of Theorem 1 extends previous studies by
Nishizeki and Zhou [26], who give a first example of a linear-time algorithm in
the variable embedding setting for planar 3-graphs that are partial two-trees.
The bend-minimum drawings of Theorem 1 have at most two bends per edge,
which is a desirable property for an orthogonal representation. We recall that
every planar 4-graph (except the octahedron) has an orthogonal drawing with at
most two bends per edge [1,17], but minimizing the number of bends may require
some edges with a Ω(n) bends [8,24]. It is also proven that every planar 3-graph
(except K4) has an orthogonal drawing with at most one bend per edge [16], but
the drawings of the algorithm in [16] are not bend-minimum. Finally, a non-flow
based algorithm having some similarities with ours is given in [12]; it neither
computes bend-minimum drawings nor guarantees at most two bends per edge.

The paper is organized as follows. Preliminary definitions and results are in
Sect. 2. In Sect. 3 we prove key properties of bend-minimum orthogonal draw-
ings of planar 3-graphs used in our approach. Sect. 4 describes our drawing algo-
rithms. Open problems are in Sect. 5. All full proofs and more figures can be
found in [11].

2 Preliminaries

We assume familiarity with basic definitions on graph connectivity and planarity
(see Appendix A of [11]). If G is a graph, V (G) and E(G) denote the sets of
vertices and edges of G. We consider simple graphs, i.e., graphs with neither self-
loops nor multiple edges. The degree of a vertex v ∈ V (G), denoted as deg(v),
is the number of its neighbors. Δ(G) denotes the maximum degree of a vertex
of G; if Δ(G) ≤ h (h ≥ 1), G is an h-graph. A graph G is rectilinear planar if
it admits a planar drawing where each edge is either a horizontal or a vertical
segment (i.e., it has no bend). Rectilinear planarity testing is NP-complete for
planar 4-graphs [13], but it is polynomially solvable for planar 3-graphs [4,8] and
linear-time solvable for subdivisions of planar triconnected cubic graphs [18]. By
extending a result of Thomassen [25] on those 3-graphs that have a rectilinear
drawing with all rectangular faces, Rahman et al. [21] characterize rectilinear
plane 3-graphs. For a plane graph G, let Co(G) be its external cycle (Co(G) is
simple if G is biconnected). Also, if C is a simple cycle of G, G(C) is the plane
subgraph of G that consists of C and of the vertices and edges inside C. An
edge e = (u, v) /∈ E(G(C)) is a leg of C if exactly one of the vertices u and v
belongs to C; such a vertex is a leg-vertex of C. If C has exactly k legs and no
edge embedded outside C joins two of its vertices, C is a k-legged cycle of G.

Theorem 2. [21] Let G be a biconnected plane 3-graph. G admits an orthogonal
drawing without bends if and only if: (i) Co(G) contains at least four vertices of
degree 2; (ii) each 2-legged cycle contains at least two vertices of degree 2; (iii)
each 3-legged cycle contains at least one vertex of degree 2.
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Fig. 2. (a) A plane 3-graph G. (b) The SPQR-tree of G with respect to e; the skeletons
of a P-node ν and of an R-node μ are shown. (c) A different embedding of G obtained
by changing the embedding of skel(ν) and of skel(μ).

As in [21], we call bad any 2-legged and any 3-legged cycle that does not
satisfy Condition (ii) and (iii) of Theorem 2, respectively.

SPQR-Trees of Planar 3-Graphs. Let G be a biconnected graph. An SPQR-
tree T of G represents the decomposition of G into its triconnected components
and can be computed in linear time [7,14,15]. Each triconnected component
corresponds to a node μ of T ; the triconnected component itself is called the
skeleton of μ and denoted as skel(μ). A node μ of T can be of one of the following
types: (i) R-node, if skel(μ) is a triconnected graph; (ii) S-node, if skel(μ) is a
simple cycle of length at least three; (iii) P-node, if skel(μ) is a bundle of at
least three parallel edges; (iv) Q-nodes, if it is a leaf of T ; in this case the node
represents a single edge of the graph and its skeleton consists of two parallel
edges. Note that, neither two S- nor two P -nodes are adjacent in T . A virtual
edge in skel(μ) corresponds to a tree node ν adjacent to μ in T . If T is rooted at
one of its Q-nodes ρ, every skeleton (except the one of ρ) contains exactly one
virtual edge that has a counterpart in the skeleton of its parent: This virtual edge
is the reference edge of skel(μ) and of μ, and its endpoints are the poles of skel(μ)
and of μ. The edge of G corresponding to the root ρ of T is the reference edge of
G, and T is the SPQR-tree of G with respect to e. For every node μ �= ρ of T , the
subtree Tμ rooted at μ induces a subgraph Gμ of G called the pertinent graph of
μ, which is described by Tμ in the decomposition: The edges of Gμ correspond
to the Q-nodes (leaves) of Tμ. Graph Gμ is also called a component of G with
respect to the reference edge e, namely Gμ is a P-, an R-, or an S-component
depending on whether μ is a P-, an R-, or an S-component, respectively.

The SPQR-tree T rooted at a Q-node ρ implicitly describes all planar embed-
dings of G with the reference edge of G on the external face. All such embeddings
are obtained by combining the different planar embeddings of the skeletons of
P- and R-nodes: For a P-node μ, the different embeddings of skel(μ) are the
different permutations of its non-reference edges. If μ is an R-node, skel(μ) has
two possible planar embeddings, obtained by flipping skel(μ) minus its reference
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edge at its poles. See Fig. 2 for an illustration. The child node of ρ and its per-
tinent graph are called the root child of T and the root child component of G,
respectively. An inner node of T is neither the root nor the root child of T . The
pertinent graph of an inner node is an inner component of G. The next lemma
gives basic properties of T when Δ(G) ≤ 3.

Lemma 1. Let G be a biconnected planar 3-graph and let T be the SPQR-tree
of G with respect to a reference edge e. The following properties hold:
T1 Each P-node μ has exactly two children, one being an S-node and the other
being an S- or a Q-node; if μ is the root child, both its children are S-nodes.
T2 Each child of an R-node is either an S-node or a Q-node.
T3 For each inner S-node μ, the edges of skel(μ) incident to the poles of μ are
(real) edges of G. Also, there cannot be two incident virtual edges in skel(μ).

3 Properties of Bend-Minimum Orthogonal
Representations of Planar 3-Graphs

We prove relevant properties of bend-minimum orthogonal drawings of planar 3-
graphs that are independent of vertex and bend coordinates, but only depend on
the vertex angles and edge bends. To this aim, we recall the concept of orthogonal
representation [23] and define some types of “shapes” that we use to construct
bend-minimum orthogonal representations.

Orthogonal Representations. Let G be a plane 3-graph. If v ∈ V (G) and if
e1 and e2 are two (possibly coincident) edges incident to v that are consecutive
in the clockwise order around v, we say that a = 〈e1, v, e2〉 is an angle at v of G
or simply an angle of G. Let Γ and Γ ′ be two embedding-preserving orthogonal
drawings of G. We say that Γ and Γ ′ are equivalent if: (i) For any angle a of G,
the geometric angle corresponding to a is the same in Γ and Γ ′, and (ii) for any
edge e = (u, v) of G, the sequence of left and right bends along e moving from u
to v is the same in Γ and in Γ ′. An orthogonal representation H of G is a class
of equivalent orthogonal drawings of G; H can be described by the embedding
of G together with the geometric value of each angle of G (90, 180, 270◦)1 and
with the sequence of left and right bends along each edge. Figure 3(a) shows a
bend-minimum orthogonal representation of the graph in Fig. 2(a).

Let p be a path between two vertices u and v in H. The turn number of p is
the absolute value of the difference between the number of right and the number
of left turns encountered along p moving from u to v (or vice versa). The turn
number of p is denoted by t(p). A turn along p is caused either by a bend on an
edge of p or by an angle of 90/270 degrees at a vertex of p. For example, t(p) = 2
for the path p = 〈3, 4, 5, 6, 7〉 in the orthogonal representation of Fig. 3(a). We
remark that if H is a bend-minimum orthogonal representation, the bends along
an edge, going from an end-vertex to the other, are all left or all right turns [23].

1 Angles of 360 degrees only occur at 1-degree vertices; we can avoid to specify them.
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Fig. 3. (a) A bend-minimum orthogonal representation H with four bends of the graph
in Fig. 2(a). (b) The component Hν , which is L-shaped; the two poles of the component
are the white vertices. (c) The component Hμ, which is D-shaped.eps

Shapes of Orthogonal Representations. Let G be a biconnected planar 3-
graph, T be the SPQR-tree of G with respect to a reference edge e ∈ E(G), and
H be an orthogonal representation of G with e on the external face. For a node
μ of T , denote by Hμ the restriction of H to a component Gμ. We also call Hμ a
component of H. In particular, Hμ is a P-, an R-, or an S-component depending
on whether μ is a P-, an R-, or an S-component, respectively. If μ is the root
child of T , then Hμ is the root child component of H. Denote by u and v the
two poles of μ and let pl and pr be the two paths from u to v on the external
boundary of Hμ, one walking clockwise and the other walking counterclockwise.
These paths are the contour paths of Hμ. If μ is an S-node, pl and pr share some
edges (they coincide if Hμ is just a sequence of edges). If μ is either a P- or an
R-node, pl and pr are edge disjoint; in this case, we define the following shapes
for Hμ, depending on t(pl) and t(pr) and where the poles are external corners:

− Hμ is C-shaped, or -shaped, if t(pl) = 4 and t(pr) = 2, or vice versa;
− Hμ is D-shaped, or -shaped, if t(pl) = 0 and t(pr) = 2, or vice versa;
− Hμ is L-shaped, or -shaped, if t(pl) = 3 and t(pr) = 1, or vice versa;
− Hμ is X-shaped, or -shaped, if t(pl) = t(pr) = 1.

For example, Hν in Fig. 3(b) is -shaped, while Hμ in Fig. 3(c) is -shaped.
Concerning S-components, the following lemma rephrases a result in [8, Lemma
4.1], and it is also an easy consequence of Property T3 in Lemma 1.

Lemma 2. Let Hμ be an inner S-component with poles u and v and let p1 and
p2 be any two paths connecting u and v in Hμ. Then t(p1) = t(p2).

Based on Lemma 2, we describe the shape of an inner S-component Hμ in
terms of the turn number of any path p between its two poles: We say that Hμ is
k-spiral and has spirality k if t(p) = k. The notion of spirality of an orthogonal
component was introduced in [8]. Differently from [8], we restrict the definition of
spirality to inner S-components and we always consider absolute values, instead
of both positive and negative values depending on whether the left turns are more
or fewer than the right turns. For instance, in the representation of Fig. 3(a) the
two series with poles {1, 14} (the two filled S-nodes in Fig. 2(b)) have spirality
three and one, respectively; the series with poles {4, 8} (child of the R-node) has
spirality zero, while the series with poles {5, 7} has spirality two.

We now give a key result that claims the existence of a bend-minimum orthog-
onal representation with specific properties for any biconnected planar 3-graph.
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This result will be used to design our drawing algorithm. Given an orthogonal
representation H, we denote by H the orthogonal representation obtained from
H by replacing each bend with a dummy vertex: H is the rectilinear image of
H; a dummy vertex in H is a bend vertex. Also, if w is a degree-2 vertex with
neighbors u and v, smoothing w is the reverse operation of an edge subdivision,
i.e., it replaces the two edges (u,w) and (w, v) with the single edge (u, v).

Lemma 3. A biconnected planar 3-graph G with a distinguished edge e has a
bend-minimum orthogonal representation H with e on the external face such that:
O1 Every edge of H has at most two bends, which is worst-case optimal.
O2 Every inner P-component or R-component of H is either - or -shaped.
O3 Every inner S-component of H has spirality at most four.

Proof (sketch). We prove in three steps the existence of a bend-minimum orthog-
onal representation H that satisfies O1-O3. We start by a bend-minimum orthog-
onal representation of G with e on the external face, and in the first step we
prove that it either satisfies O1 or it can be locally modified, without chang-
ing its planar embedding, so to satisfy O1. In the second step, we prove that
from the orthogonal representation obtained in the first step we can derive a
new orthogonal representation (still with same embedding) that satisfies O2 in
addition to O1. Finally, we prove that this last representation also satisfies O3.

Step 1: Property O1. Suppose that H is a bend-minimum orthogonal repre-
sentation of G with e on the external face and having an edge g (possibly g = e)
with at least three bends. Let H be the rectilinear image of H, and let G be the
plane graph underlying H. Since H has no bend, G satisfies Conditions (i)−(iii)
of Theorem 2. Let v1, v2, v3 be three bend vertices in H that correspond to three
bends of g in H. Assume first that g is an internal edge of G and let G′ be the
plane graph obtained from G by smoothing v1. We claim that G′ still satisfies
Conditions (i) − (iii) of Theorem 2. Indeed, if this is not the case, there must
be a bad cycle in G′ that contains both v2 and v3. This is a contradiction,
because no bad cycle can contain two vertices of degree two. Hence, there exists
an (embedding-preserving) representation H ′ of G′ without bends, which is the
rectilinear image of an orthogonal representation of G with fewer bends than
H, a contradiction. Assume now that g is on the external cycle Co(G) of G. If
Co(G) contains more than four vertices of degree two, we can smooth v1 and
apply the same argument as above to contradict the optimality of H (note that,
such a smoothing does not violate Condition (i) of Theorem 2). Suppose vice
versa that Co(G) contains exactly four vertices of degree two (three of them
being v1, v2, and v3). In this case, just smoothing v1 violates Condition (i) of
Theorem 2. However, we can smooth v1 and subdivide an edge of Co(G)∩Co(G)
(such an edge exists since Co(G) has at least three edges and, by hypothesis and
a simple counting argument, at least one of its edges has no bend in H). The
resulting plane graph G′′ still satisfies the three conditions of Theorem 2 and
admits a representation H ′′ without bends; the representation of which H ′′ is
the rectilinear image is a bend-minimum orthogonal representation of G with at
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most two bends per edge. To see that two bends per edge is worst-case optimal,
just consider a bend-minimum representation of the complete graph K4.

Step 2: Property O2. Let H be a bend-minimum orthogonal representation
of G that satisfies O1 and let H be its rectilinear image. The plane underlying
graph G of H satisfies the three conditions of Theorem 2. Rhaman, Nishizeki, and
Naznin [21, Lemma 3] prove that, in this case, G has an embedding-preserving
orthogonal representation H ′ without bends in which every 2-legged cycle C is
either -shaped or -shaped, where the two poles of the shape are the two
leg-vertices of C. On the other hand, if Gμ is an inner P- or R-component, the
external cycle Co(Gμ) is a 2-legged cycle of G, where the two leg-vertices of
Co(Gμ) are the poles of Gμ. Hence, the representation H ′ of G whose rectilinear
image is H ′ satisfies O2, as H ′

μ is either -shaped or -shaped. Also, the bends
of H ′ are the same as in H, because the bend vertices of H coincide with those
of H ′. Hence, H ′ still satisfies O1 and has the minimum number of bends.

Step 3: Property O3. Suppose now that H is a bend-minimum orthogonal
representation of G (with e on the external face) that satisfies both O1 and O2.
More precisely, assume that H = H ′ is the orthogonal representation obtained
in the previous step, where its rectilinear image H is computed by the algorithm
of Rhaman et al. [21]. By a careful analysis of how this algorithm works, we
prove that each series gets spirality at most four in H (see Appendix B of [11]).

4 Drawing Algorithm

Let G be a biconnected 3-planar graph with a distinguished edge e and let T be
the SPQR-tree of G with respect to e. Section 4.1 gives a linear-time algorithm to
compute bend-minimum orthogonal representations of the inner components of
T . Section 4.2 handles the root child of T to complete a bend-minimum represen-
tation with e on the external face and it proves Theorem 1. Lemma 3 allows us to
restrict our algorithm to search for a representation satisfying Properties O1-O3.

4.1 Computing Orthogonal Representations for Inner Components

Let T be the SPQR-tree of G with respect to reference edge e and let μ be
an inner node of T . A key ingredient of our algorithm is the concept of ‘equiv-
alent’ orthogonal representations of Gμ. Intuitively, two representations of Gμ

are equivalent if one can replace the other in any orthogonal representation of
G. Similar equivalence concepts have been used for orthogonal drawings [8,10].
As we shall prove (see Theorem 3), for planar 3-graphs a simpler definition of
equivalent representations suffices. If μ is a P- or an R-node, two representations
Hμ and H ′

μ are equivalent if they are both -shaped or both -shaped. If μ is
an inner S-node, Hμ and H ′

μ are equivalent if they have the same spirality.

Lemma 4. If Hμ and H ′
μ are two equivalent orthogonal representations of Gμ,

the two contour paths of Hμ have the same turn number as those of H ′
μ.
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Fig. 4. (a) An orthogonal representation H; a D-shaped R-component with poles {w, z}
and an equivalent representation of it are in the blue frames. (b) A representation
obtained from H by replacing the R-component with the equivalent one; a 1-spiral
S-component with poles {u, v} and an equivalent one are shown in the red frames. (c)
The representation obtained by replacing the S-component with the equivalent one.

Suppose that Hμ is an inner component of H with poles u and v, and let
pl and pr be the contour paths of Hμ. Replacing Hμ in H with an equivalent
representation H ′

μ means to insert H ′
μ in H in place of Hμ, in such a way that:

(i) if Hμ and H ′
μ are -shaped, the contour path p′ of H ′

μ for which t(p′) = t(pl)
is traversed clockwise from u to v on the external boundary of H ′

μ (as for pl

on the external boundary of Hμ); (ii) in all cases, the external angles of H ′
μ at

u and v are the same as in Hμ. This operation may require to mirror H ′
μ (see

Fig. 4). The next theorem uses arguments similar to [8].

Theorem 3. Let H be an orthogonal representation of a planar 3-graph G and
Hμ be the restriction of H to Gμ, where μ is an inner component of the SPQR-
tree T of G with respect to a reference edge e. Replacing Hμ in H with an
equivalent representation H ′

μ yields a planar orthogonal representation H ′ of G.

We are now ready to describe our drawing algorithm. It is based on a dynamic
programming technique that visits bottom-up the SPQR-tree T with respect to
the reference edge e of G. Based on Lemma 3 and Theorem 3, the algorithm
stores for each visited node μ of T a set of candidate orthogonal representations
of Gμ, together with their cost in terms of bends. For a Q-node, the set of
candidate orthogonal representations consists of three representations, with 0,
1, and 2 bends, respectively. This suffices by Property O1. For a P- or an R-
node, the set of candidate representations consists of a bend-minimum -shaped
and a bend-minimum -shaped representation. This suffices by Property O2.
For an S-node, the set of candidate representations consists of a bend-minimum
representation for each value of spirality 0 ≤ k ≤ 4. This suffices by Property O3.
In the following we explain how to compute the set of candidate representations
for a node μ that is a P-, an S-, or an R-node (computing the set of a Q-node is
trivial). To achieve overall linear-time complexity, the candidate representations
stored at μ are described incrementally, linking the desired representation in the
set of the children of μ for each virtual edge of skel(μ).

Candidate Representations for a P-node. By property T1 of Lemma 1, μ
has two children μ1 and μ2, where μ1 is an S-node and μ2 is an S-node or a
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Q-node. The cost of the -shaped representation of μ is the sum of the costs of
μ1 and μ2 both with spirality one. The cost of the -shaped representation of
μ is the minimum between the cost of μ1 with spirality two and the cost of μ2

with spirality two. This immediately implies the following.

Lemma 5. Let μ be an inner P-node. There exists an O(1)-time algorithm that
computes a set of candidate orthogonal representations of Gμ, each having at
most two bends per edge.

Candidate Representations for an S-node. By property T3 of Lemma 1,
skel(μ) without its reference edge is a sequence of edges such that the first edge
and the last edge are real (they correspond to Q-nodes) and at most one virtual
edge, corresponding to either a P- or an R-node, appears between two real edges.
Let c0 be the sum of the costs of the cheapest (in terms of bends) orthogonal
representations of all P-nodes and R-nodes corresponding to the virtual edges of
skel(μ). By Property O2, each of these representations is either - or -shaped.
Let nQ be the number of edges of skel(μ) that correspond to Q-nodes and let
nD be the number of edges of skel(μ) that correspond to P- and R-nodes whose
cheapest representation is -shaped. Obviously, any bend-minimum orthogonal
representation of Gμ satisfying O2 has cost at least c0. We have the following.

Lemma 6. An inner S-component admits a bend-minimum orthogonal repre-
sentation respecting Properties O1-O3 and with cost c0 if its spirality k ≤
nQ + nD − 1 and with cost c0 + k − nQ − nD + 1 if k > nQ + nD − 1.

Note that the possible presence in skel(μ) of virtual edges corresponding to
P- and R-nodes whose cheapest representation is -shaped does not increase
the spirality reachable at cost c0 by the S-node. Lemma 6 also provides an
alternative proof of a known result ([8, Lemma 5.2]), stating that for a planar
3-graph the number of bends of a bend-minimum k-spiral representation of an
inner S-component does not decrease when k increases. Moreover, since for an
inner S-component nQ ≥ 2, a consequence of Lemma 6 is Corollary 1. It implies
that every bend-minimum k-spiral representation of an inner S-component does
not require additional bends with respect to the bend-minimum representations
of their subcomponents when k ∈ {0, 1}.

Corollary 1. For each k ∈ {0, 1}, every inner S-component admits a bend-
minimum orthogonal representation of cost c0 with spirality k.

Lemma 7. Let μ be an inner S-node and nμ be the number of vertices of skel(μ).
There exists an O(nμ)-time algorithm that computes a set of candidate orthogo-
nal representations of Gμ, each having at most two bends per edge.

Candidate Representations for an R-node. If μ is an R-node, its children
are S- or Q-nodes (Property T2 of Lemma 1). To compute a bend-minimum
orthogonal representation of Gμ that satisfies Properties O1-O3, we devise a
variant of the linear-time algorithm by Rahman, Nakano, and Nishizeki [19]
that exploits the properties of inner S-components.
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Lemma 8. Let μ be an inner R-node and nμ be the number of vertices of skel(μ).
There exists an O(nμ)-time algorithm that computes a set of candidate orthogo-
nal representations of Gμ, each having at most two bends per edge.

Proof (sketch). Let {u, v} be the poles of μ. Our algorithm works in two steps.
First, it computes an -shaped orthogonal representation and a -shaped
orthogonal representation of G̃μ = skel(μ) \ (u, v), with a variant of the
recursive algorithm in [19]. Then, it computes a bend-minimum -shaped rep-
resentation and a bend-minimum -shaped representation of Gμ, by
replacing each virtual edge eS in each of and with the representation in
the set of the corresponding S-node whose spirality equals the number of bends
of eS . Every time the algorithm needs to insert a degree-2 vertex along an edge of
a bad cycle, it adds this vertex on a virtual edge, if such an edge exists. By Corol-
lary 1, this vertex does not cause an additional bend in the final representation
when the virtual edge is replaced by the corresponding S-component.

4.2 Handling the Root Child Component

Let T be the SPQR-tree of G with respect to edge e = (u, v) and let μ be
the root child of T . Assuming to have already computed the set of candidate
representations for the children of μ, we compute an orthogonal representation
Hμ of Gμ and a bend-minimum orthogonal representation H of G (with e on
the external face) depending on the type of μ.

AlgorithmP-root-child. Let μ be a P-node with children μ1 and μ2. By Prop-
erty T1 of Lemma 1, both μ1 and μ2 are S-nodes. Let k1 (k2) be the maximum
spirality of a representation Hμ1 (Hμ2) at the same cost c0,1 (c0,2) as a 0-spiral
representation. W.l.o.g., let k1 ≥ k2. We have three cases:
Case 1: k1 ≥ 4. Compute a -shaped Hμ by merging a 4-spiral and a 2-spiral
representation of μ1 and μ2, respectively; add e with 0 bends to get H. Case
2: k1 = 3. Compute an -shaped Hμ by merging a 3-spiral and a 1-spiral
representation of μ1 and μ2, respectively; add e with 1 bend to get H. Case 3:
k1 = 2 or k2 = k1 = 1. Compute a -shaped Hμ by merging a 2-spiral and a
0-spiral representation of μ1 and μ2, respectively; add e with 2 bends to get H.

Lemma 9. P-root-child computes a bend-minimum orthogonal representation of
G with e on the external face and at most two bends per edge in O(1) time.

AlgorithmS-root-child. Let μ be an S-node. if Gμ starts and ends with one
edge, we compute the candidate orthogonal representations of Gμ as if it were
an inner S-node, and we obtain H by adding e with zero bends to the 2-spiral
representation of Gμ. Else, if Gμ only starts or ends with one edge, we add
e to the other end of Gμ, compute the candidate representations of Gμ ∪ {e}
as if it were an inner S-node, and obtain G by adopting the representation of
Gμ ∪ {e} with spirality 3 and by identifying the first and last vertex. Finally, if
skel(μ)\{e} starts and ends with an R- or a P-node, we add two copies e′, e′′ of e
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at the beginning and at the end of Gμ, compute the candidate representations of
Gμ ∪{e′, e′′} as if it were an inner S-node, and obtain H from the representation
of Gμ ∪ {e′, e′′} with spirality 4, by identifying the first and last vertex of Gμ ∪
{e′, e′′} and by smoothing the resulting vertex.

Lemma 10. S-root-child computes a bend-minimum orthogonal representation
of G with e on the external face and at most two bends per edge in O(nμ) time,
where nμ is the number of vertices of skel(μ).

AlgorithmR-root-child. Let μ be an R-node and let φ1 and φ2 be the two
planar embeddings of skel(μ) obtained by choosing as external face one of those
incident to e. For each φi, compute an orthogonal representation Hi of G by: (i)
finding a representation H̃i of skel(μ) (included e) with the variant of [19] given
in the proof of Lemma 8, but this time assuming that all the four designated
corners of the external face in the initial step must be found; (ii) replacing
each virtual edge that bends k ≥ 0 times in H̃i with a minimum-bend k-spiral
representation of its corresponding S-component. H is the cheapest of H1 and
H2. Since the variant of [19] applied to skel(μ) still causes at most two bends
per edge, with the same arguments as in Lemma 8 we have:

Lemma 11. R-root-child computes a bend-minimum orthogonal representation
of G with e on the external face and at most two bends per edge in O(nμ) time,
where nμ be the number of vertices of skel(μ).

Proof of Theorem 1. If G is biconnected, Lemmas 5, 7, 8, 9−11 yield an O(n)-
time algorithm that computes a bend-minimum orthogonal representation of G
with a distinguished edges e on the external face and at most two bends per
edge. Call BendMin-RefEdge this algorithm. An extension of BendMin-RefEdge
to a simply-connected graph G, which still runs in O(n) time, is easily derivable
by exploiting the block-cut-vertex tree of G (see Appendix C of [11]). Running
BendMin-RefEdge for every possible reference edge, we find in O(n2) time a bend-
minimum orthogonal representation of G over all its planar embeddings. If v is
a distinguished vertex of G, running BendMin-RefEdge for every edge incident to
v, we find in O(n) time a bend-minimum orthogonal representation of G with v
on the external face (recall that deg(v) ≤ 3). Finally, an orthogonal drawing of
G is computed in O(n) time from an orthogonal representation of G [7].

5 Open Problems

We suggest two research directions related to our results: (i) Is there an
O(n)-time algorithm to compute a bend-minimum orthogonal drawing of a 3-
connected planar cubic graph, for every possible choice of the external face? (ii)
It is still unknown whether an O(n)-time algorithm for the bend-minimization
problem in the fixed embedding setting exists [9]. This problem could be tackled
with non-flow based approaches. A positive result in this direction is given in [20]
for plane 3-graphs.
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