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Abstract. We prove that the following problem is complete for the exis-
tential theory of the reals: Given a planar graph and a polygonal region,
with some vertices of the graph assigned to points on the boundary of
the region, place the remaining vertices to create a planar straight-line
drawing of the graph inside the region. A special case is the problem of
extending a partial planar graph drawing, which was proved NP-hard
by Patrignani. Our result is one of the first showing that a problem of
drawing planar graphs with straight-line edges is hard for the existential
theory of the reals. The complexity of the problem is open for a simply
connected region.

We also show that, even for integer input coordinates, it is possible
that drawing a graph in a polygonal region requires some vertices to be
placed at irrational coordinates. By contrast, the coordinates are known
to be bounded in the special case of a convex region, or for drawing a
path in any polygonal region.

1 Introduction

There are many examples of structural results on graphs leading to beautiful and
efficient geometric representations. Two highlights are: Tutte’s polynomial-time
algorithm [31] to draw any 3-connected planar graph with convex faces inside
any fixed convex drawing of its outer face; and Schnyder’s tree realizer result [28]
that provides a drawing of any n-vertex planar graph on an n × n grid.

On the other hand, there are geometric representations that are intractable,
either in terms of the required coordinates or in terms of computation time.
As an example of the former, a representation of a planar graph as touching
disks (Koebe’s theorem) is not always possible with rational numbers, nor even
with roots of low-degree polynomials [5]. As an example of the latter, Patrignani
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considered a generalization of Tutte’s theorem and proved that it is NP-hard
to decide whether a graph has a straight-line planar drawing when part of the
drawing is fixed [25]. He was unable to show that the problem lies in NP because
of coordinate issues.

This, and many other geometric problems, most naturally lie not in NP, but
in a larger class, ∃R, defined by formulas in existentially quantified real (rather
than Boolean) variables. Showing that a geometric representation problem is
complete for ∃R is a stronger intractability result, often implying lower bounds on
coordinate sizes. For example, McDiarmid and Müller [20] showed that deciding
if a graph can be represented as intersecting disks is ∃R-complete. The relaxation
from touching disks (Koebe’s theorem) to intersecting disks implies that disk
centers and radii can be restricted to integers, but McDiarmid and Müller show
that an exponential number of bits may be required.

In this paper we prove that an extension of Tutte’s problem is ∃R-complete.
We call it the “Graph in Polygon” problem. See Fig. 1. The input is a graph
G and a closed polygonal region R (not necessarily simply connected), with
some vertices of G assigned fixed positions on the boundary of R. The question
is whether G has a straight-line planar drawing inside R respecting the fixed
vertices. We regard the region R as a closed region which means that boundary
points of R may be used in the drawing. A straight-line planar drawing (see
Fig. 2(a, b)) means that vertices are represented as distinct points, and every
edge is represented as a straight-line segment joining its endpoints, and no two
of the closed line segments intersect except at a common vertex. (In particular,
no vertex point may lie inside an edge segment, and no two segments may cross.)

Fig. 1. The Graph in Polygon problem. Left: a polygonal region with one hole and a
graph to be embedded inside the region. The three vertices on the boundary are fixed;
the others are free. Right: a straight-line embedding of the graph in the region. Note
that we allow an edge of the drawing (in red) to include points of the region boundary.
(Color figure online)

Furthermore, we give a simple instance of Graph in Polygon with integer
coordinates where a vertex of G may need irrational coordinates in any solution,
thus defeating the naive approach to placing the problem in NP.

The Graph in Polygon problem is a very natural one that arises in prac-
tical applications such as dynamic and incremental graph drawing. Questions
of the coordinates (or grid size) required for straight-line planar drawings of
graphs are fundamental and well-studied [33]. It is surprising that a problem as
simple and natural as Graph in Polygon is so hard and requires irrational
coordinates.
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We state our results below, but first we give some background on existential
theory of the reals and on relevant graph drawing results. In particular, we
explain that our problem is a generalization of the problem of extending a partial
drawing of a planar graph to a straight-line drawing of the whole graph, called
Partial Drawing Extensibility. See Fig. 2(c, d).

(a) (b) (c) (d) (e)

s
t

Fig. 2. (a) A planar graph G. (b) a straight-line drawing of G. (c) a partial drawing Γ
of G. (d) extension of Γ to a straight-line drawing of G. (e) A minimum-link s-t path
in a polygonal region.

Existential Theory of the Reals. In the study of geometric problems, the com-
plexity class ∃R plays a crucial role, connecting purely geometric problems and
real algebra. Whereas NP is defined in terms of Boolean formulas in existentially
quantified Boolean variables, ∃R deals with first-order formulas in existentially
quantified real variables.

Consider a first-order formula over the reals that contains only existen-
tial quantifiers, ∃x1, x2, . . . , xn : Φ(x1, x2, . . . , xn), where x1, x2, . . . , xn are real-
valued variables and Φ is a quantifier-free formula involving equalities and
inequalities of real polynomials. The Existential Theory of the Reals
(ETR) problem takes such a formula as an input and asks whether it is satisfi-
able. The complexity class ∃R consists of all problems that reduce in polynomial
time to ETR. Many problems in combinatorial geometry and geometric graph
representation naturally lie in this class, and furthermore, many have been shown
to be ∃R-complete, e.g., stretchability of a pseudoline arrangement [19,23,27],
recognition of segment intersection graphs [17] and disk intersection graphs [20],
computing the rectilinear crossing number of a graph [6], etc. For surveys on
∃R, see [8,19,26]. A recent proof that the Art Gallery Problem is ∃R-
complete [2] provides the framework we follow in our proof.

Planar Graph Drawing. The field of Graph Drawing investigates many ways
of representing graphs geometrically [24], but we focus on the most basic repre-
sentation of planar graphs, with points for vertices and straight-line segments
for edges, such that segments intersect only at a common endpoint. By Fáry’s
theorem [12], every planar graph admits such a straight-line planar drawing.

In Tutte’s famous paper, “How to Draw a Graph,” he gave a polynomial time
algorithm to find a straight-line planar drawing of a graph by first augmenting
to a 3-connected graph. Given a combinatorial planar embedding (a specification
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of the faces) of a 3-connected graph and given a convex polygon drawing of the
outer face of the graph, his algorithm produces a planar straight-line drawing
respecting both by reducing the problem to solving a linear system involving
barycentric coordinates for each internal vertex. Tutte proved that the linear
system has a unique solution and that the solution yields a drawing with convex
faces. The linear system can be solved in polynomial time. For a discussion of
coordinate bit complexity see Sect. 4.

There is a rich literature on implications and variations of Tutte’s result. We
concentrate on the aspects of drawing a planar graph in a constrained region,
or when part of the drawing is fixed. (We leave aside, for example, the issue of
drawing graphs with convex faces, which also has an extensive literature.)

Our focus will be on straight-line planar graph drawings, but it is worth
mentioning that without the restriction to straight-line drawings, the problem
of finding a planar drawing of a graph (with polygonal curves for edges) in a con-
strained region is equivalent to the problem of extending a partial planar drawing
(with polygonal curves for edges), and there is a polynomial time algorithm for
the decision version of the problem [3]. Furthermore, there is an algorithm to
construct such a drawing in which each edge is represented by a polygonal curve
with linearly many segments [10].

For the rest of this paper we assume straight-line planar drawings, which
makes the problems harder. The problem of drawing a graph in a con-
strained region is formalized as Graph in Polygon, defined above, and
more precisely in Subsect. 1.1. The problem of finding a planar straight-
line drawing of a graph after part of the drawing has been fixed is called
Partial Drawing Extensibility in the literature—its complexity was for-
mulated as an open question in [7].

The relationship between the two problems is that Graph in Polygon gen-
eralizes Partial Drawing Extensibility, as we now argue. Given an instance
of partial drawing extensibility, for graph G with fixed subgraph H, we construct
an instance of Graph in Polygon by making a point hole for each vertex
of H and assigning the vertex to the point. Then an edge of H can only be
drawn as a line segment joining its endpoints, so we have effectively fixed H.
To complete the bounded region R, we enclose the point holes in a large box.
Clearly, we now have an instance of Graph in Polygon, and that instance
has a solution if and only if G has a planar straight-line drawing that extends
the drawing of H. There is no easy reduction in the other direction because
Graph in Polygon involves a closed polygonal region, so an edge may be
drawn as a segment that touches, or lies on, the boundary of the region, and
it is not clear how to model this as Partial Drawing Extensibility. How-
ever, the version of Graph in Polygon for an open region is equivalent to
Partial Drawing Extensibility.

We now summarize results on Partial Drawing Extensibility, begin-
ning with positive results. Besides Tutte’s result that a convex drawing of the
outer face can always be extended, there is a similar result for a star-shaped
drawing of the outer face [14]. There is also a polynomial-time algorithm to
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decide the case when a convex drawing of a subgraph is fixed [21]. Urhausen [32]
examined the case when a star-shaped drawing of one cycle in the graph is given,
and proved that there always exists an extension with at most one bend per edge.
Gortler et al. [13] gave an algorithm, extending Tutte’s algorithm, that succeeds
in some (not well-characterized) cases for a simple non-convex drawing of the
outer face. The Partial Drawing Extensibility problem was shown to be
NP-hard by Patrignani [25]. This implies that Graph in Polygon is NP-hard.
However, there are two natural questions about partial drawing extensibility that
remain open: (a) does the problem belong to the class NP (discussed in detail by
Patrignani [25]), and (b) does the problem remain NP-hard when a combinato-
rial embedding of the graph is given and must be respected in the drawing. Our
results shed light on these questions for the more general Graph in Polygon
problem: the problem cannot be shown to lie in NP by means of giving the vertex
coordinates, and the problem is still ∃R-hard when a combinatorial embedding
of the graph is given.

Besides Tutte’s result, there is another special case of Graph in Polygon
that is well-solved, namely when the graph is just a path with its two endpoints
s and t fixed on the boundary of the region. See Fig. 2(e). This problem is
equivalent to the Minimum Link Path problem—to find a path from s to t
inside the region with a minimum number of segments. This is because a path of
k edges can be drawn inside the region if and only if the minimum link distance
between s and t is less than or equal to k. Minimum link paths in a polygonal
region can be found in polynomial time [22], and in linear time for a simple
polygon [29]. The complexity of the coordinates is well-understood (see Sect. 4).

1.1 Our Contributions

Our problem is defined as follows.

Graph in Polygon
Input: A planar graph G and a polygonal region R with some vertices of G
assigned to fixed positions on the boundary of R.
Question: Does G admit a planar straight-line drawing inside R respecting
the fixed vertices?

The graph may be given abstractly, or via a combinatorial embedding which
specifies the cyclic order of edges around each vertex, thus determining the faces
of the embedding. When a combinatorial embedding is specified then the final
drawing must respect that embedding.

Note that we regard R as a closed region. Thus, points on the boundary of
R may be used in the drawing of G. In particular, an edge of G may be drawn
as a segment that touches, or lies on, the boundary of R. See Fig. 1. Note that
we still require the drawing of G to be “simple” in the conventional sense that
no two edge segments may intersect except at a common endpoint.
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Our first result is that solutions to Graph in Polygon may involve irra-
tional points. This will in fact follow from the proof of our main hardness result,
but it is worth seeing a simple example.

Theorem 1. There is an instance of Graph in Polygon with all coordinates
given by integers, in which some vertices need irrational coordinates.

Note that the theorem does not rule out membership of the problem in NP,
since it may be possible to demonstrate that a graph can be drawn in a region
without giving explicit vertex coordinates. We prove Theorem 1 by adapting an
example from Abrahamsen, Adamaszek and Miltzow [1] that proves a similar
irrationality result for the Art Gallery Problem. Further discussion of bit
complexity for special cases of the problem can be found in Sect. 4.

Our main result is the following, which holds whether the graph is given
abstractly or via a combinatorial embedding.

Theorem 2. Graph in Polygon is ∃R-complete.

We prove Theorem 2 using a reduction from a problem called ETR-INV
which was introduced and proved ∃R-complete by Abrahamsen, Adamaszek and
Miltzow [2].

Definition 1 (ETR-INV). In the problem ETR-INV, we are given a set of
real variables {x1, . . . , xn}, and a set of equations of the form x = 1, x + y =
z, x ·y = 1, for x, y, z ∈ {x1, . . . , xn}. The goal is to decide whether the system
of equations has a solution when each variable is restricted to the range [1/2, 2].

Reducing from ETR-INV, rather than from ETR, has several crucial advan-
tages. First, we can assume that all variables are in the range [1/2, 2]. Second,
we do not have to implement a gadget that simulates multiplication, but only
inversion, i.e., x ·y = 1. For our purpose of reducing to Graph in Polygon, we
will find it useful to further modify ETR-INV to avoid equality and to ensure
planarity of the variable-constraint incidence graph, as follows:

Definition 2 (Planar-ETR-INV*). In the problem Planar-ETR-INV∗, we
are given a set of real variables {x1, . . . , xn}, and a set of equations and inequal-
ities of the form x = 1, x + y ≤ z, x + y ≥ z, x · y ≤ 1, x · y ≥ 1, for x, y, z ∈
{x1, . . . , xn}. Furthermore, we require planarity of the variable-constraint inci-
dence graph, which is the bipartite graph that has a vertex for every variable and
every constraint and an edge when a variable appears in a constraint. The goal
is to decide whether the system of equations has a solution when each variable
is restricted to lie in [1/2, 4].

As a technical contribution, we prove the following.

Theorem 3. Planar-ETR-INV∗ is ∃R-complete.

The proof, which is in the long version [18], builds on the work of Dobbins,
Kleist, Miltzow and Rz ↪ażewski [11] who showed that ETR-INV is ∃R-complete
even when the variable-constraint incidence graph is planar. We cannot use their
result directly, but follow similar steps in our proof.
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2 Irrational Coordinates

Theorem 1. There is an instance of Graph in Polygon with all coordinates
given by integers, in which some vertices need irrational coordinates.

In fact, the result follows from our proof of Theorem 2, but it is interesting
to have a simple explicit example, which is given in Fig. 4. This example is
adapted from a result of Abrahamsen et al. [1]. Details can be found in the
long version [18], but we outline the idea here. Abrahamsen et al. studied the
Art Gallery Problem, where given a polygon P and a number k, and we
want to find a set of at most k guards (points) that together see the entire
polygon. We say a guard g sees a point p if the entire line-segment gp is contained
inside the polygon P . Abrahamsen et al. gave a simple polygon with integer
coordinates such that there exists only one way to guard it optimally, with
three guards. Those guards have irrational coordinates. See Fig. 3 for a sketch of
their polygon. A key ingredient of their construction is to create notches in the
polygon boundary that force there to be a guard on each of the three so-called
guard segments. The coordinates of the polygon then force the guards to be at
irrational points.

a

x

y
z

Fig. 3. A sketch of the polygon from Abrahamsen et al. the three guards (black dots)
must lie on the guard segments (dashed lines).

We adapt their example by using variable segments (shown in green) instead
of guard segments, and vertices instead of guards. By placing notches in the poly-
gon boundary with fixed vertices of the graph in the notches, we can force there
to be a vertex on each variable segment. We create two cycles that replicate the
guarding constraints, and use a hole in order to keep our graph drawing planar.
From their proof we show that x′, y′ and z′ must be at irrational coordinates.

3 ∃R-completeness

Theorem 2. Graph in Polygon is ∃R-complete.
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Proof. First note that Graph in Polygon lies in ∃R since we can express it
as an ETR formula. To prove that the problem is ∃R-hard we give a reduction
from Planar-ETR-INV∗. Let I be an instance of Planar-ETR-INV∗. We will
build an instance J of Graph in Polygon such that J admits an affirmative
answer if and only if I is satisfiable. The idea is to construct gadgets to rep-
resent variables, and gadgets to enforce the addition and inversion inequalities,
x+y ≤ z, x+y ≥ z, x·y ≤ 1, x·y ≥ 1. We also need gadgets to copy and replicate
variables—“wires” and “splitters” as conventionally used in reductions. There-
after, we have to describe how to combine those gadgets to obtain an instance
J of Planar-ETR-INV∗.

Encoding Variables. We will encode the value of a variable in [1/2, 4] as the
position of a vertex that is constrained to lie on a line segment of length 3.5,
which we call a variable-segment. One end of a variable-segment encodes the
value 1

2 , the other end encodes the value 4, and linear interpolation fills in the
values between. Figure 5 shows one side of the construction that forces a vertex
to lie on a variable-segment. The other side is similar.

a′

x′
y′

z′
x′ y′ z′

a′

Fig. 4. Left: an instance of Graph in Polygon based on Fig. 3 that requires vertices
at irrational coordinates. Right: the graph, with small dots indicating the fixed vertices.

1
2

a

b

p v s

Fig. 5. Variable v is represented as a point on variable-segment s (shown in green).
The construction of one end of s is illustrated. In the graph, vertex v is adjacent to
fixed vertices a and b on the boundary of a hole of the region (shaded). Adjacency with
a forces v to lie on the line of s. Adjacency with b forces v to lie at, or to the right
of, point p which is associated with the value 1/2. Note that p is not a vertex. (Color
figure online)
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By slight abuse of notation, we will identify a variable and the vertex repre-
senting it, if there is no ambiguity. For the description of the remaining gadgets,
our figures will show variable-segments (in green) without showing the polygonal
holes that determine them.

x y

z1

z2

4

4

4

4

1
2

1
2

1
2

1
2

x

x

1
2

1
24

4

Fig. 6. Copying. Left: a gadget to enforce x ≤ x′. Right: the full gadget enforcing x = y.

Copy Gadget. Given a variable-segment for a variable x, we will need to
transmit its value along a “wire” to other locations in the plane. We do this
using a copy gadget in which we construct a variable-segment for a new vari-
able y and enforce x = y. We show how to construct a gadget that ensures
x ≤ x′ for a new variable x′, and then combine four such gadgets, enforcing
x ≤ z1, z1 ≤ y, x ≥ z2, z2 ≥ y. This implies x = y.

The gadget enforcing x ≤ x′ is shown at the left of Fig. 6. It consists of two
parallel variable-segments. In general, these two segments need not be horizon-
tally aligned. In the graph we connect the corresponding vertices by an edge.
The left and the right variables are encoded in opposite ways, i.e., x increases
as the vertex moves up and x′ increases as the corresponding vertex goes down.
We place a hole of the polygonal region (shaded in the figure) with a vertex at
the intersection point of the lines joining the top of one variable-segment to the
bottom of the other. The hole must be large enough that the edge from x to x′

can only be drawn to one side of the hole. An argument about similar triangles,
or the “intercept theorem”, also known as Thales’ theorem, implies x ≤ x′.

We combine four of these gadgets to construct our copy gadget, as illustrated
on the right of Fig. 6.

Splitter Gadget. Since a single variable may appear in several constraints, we
may need to split a wire into two wires, each holding the correct value of the
same variable. Figure 7 shows a gadget to split the variable x to variables y1 and
y2. The gadget consists of two copy gadgets sharing the variable-segment for x.
We can construct the two copy gadgets to avoid any intersections between them.
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x

y1 y2

Fig. 7. Splitting. The variables y1, y2 have both the same value as x.

Turn Gadget. We need to encode a variable both as a vertical and as a hori-
zontal variable-segment. To transform one into the other we use a turn gadget.

x

y

z1

z2

1
2 4

1
2

4

x

z1
2

4

y

z

1
2 4

Fig. 8. Turning. Left: gadget to encode x ≤ f(z). Middle: symmetric gadget to encode
y ≥ f(z). Right: four gadgets of the previous type combined to enforce x = y, for x
and y on a vertical and horizontal variable-segment, respectively.

The key idea is to construct two diagonal variable-segments for variables
z1 and z2, and then transfer the value of the vertical variable-segment to the
horizontal variable-segment using z1, z2. This is in fact very similar to the copy
gadget, except that the intermediate variable-segments are placed on a line of
slope 1. We do not know if it is possible to enforce the constraint x ≤ z directly.
However, it is sufficient to enforce x ≤ f(z) for some function f . See the left side
of Fig. 8. Interestingly, we don’t even know the function f . However, we do know
that f is monotone and we can construct another gadget enforcing y ≥ f(z),
for the same function f , by making another copy of the first gadget reflected
through the line of the variable-segment for z.

Combining four such gadgets, as on the right of Fig. 8, yields the following
inequalities: x ≤ f1(z1), f1(z1) ≤ y, y ≤ f2(z2), f2(z2) ≤ x. This implies x = y.

Addition Gadget. The gadget to enforce x + y ≥ z is depicted in Fig. 9.
Important for correctness is that the gaps between the dotted auxiliary lines have
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x y

z

4 4

u

a

1
2

1
2

1
2

4

Fig. 9. Addition. The three vertices x, y, z can only be connected to u if x + y ≥ z
holds.

equal lengths. This is essentially the same gadget that was used by Abrahamsen
et al. [2, Lemma 31]. An alternative proof can be found in the long version [18].

Lemma 1 ([2]). The gadget in Fig. 9 enforces x + y ≥ z.

The gadget that enforces x + y ≤ z is just a mirror copy of the previous gadget.

Inversion Gadget. The inversion gadgets to enforce x · y ≤ 1 and x · y ≥ 1 are
depicted in Fig. 10. We use a horizontal variable-segment for x and a vertical
variable-segment for y and align them as shown in the figure, 1.5 units apart
both horizontally and vertically. We make a triangular hole with its apex at
point q as shown in the figure. The graph has an edge between x and y.

x 1

0

y

23 x

Δ1

Δ2

1
2

1
1
2

4

y
1
1
2

123 1
2

4

qq 3/2

3/2

Fig. 10. Inversion. Left: gadget enforcing x · y ≥ 1. Right: gadget enforcing x · y ≤ 1.

For correctness, observe that if x and y are positioned so that the line segment
joining them goes through point q, then, because triangles Δ1 and Δ2 (as shown
in the figure) are similar, we have x

1 = 1
y , i.e. x · y = 1. If the line segment goes
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above point q (as in the left hand side of Fig. 10) then x · y ≥ 1, and if the line
segment goes below then x · y ≤ 1.

Putting it all Together. It remains to show how to obtain an instance of
Graph in Polygon in polynomial time from an instance of Planar-ETR-INV∗.

Let I be an instance of Planar-ETR-INV∗. As a first step we modify the
planar variable-constraint incidence graph so that a variable vertex of degree d
is replaced by “splitter” vertices of degree at most 3 to create d copies. Then we
compute a plane rectilinear drawing D of the resulting planar graph, which can
be done in polynomial time using rectilinear planar drawing algorithms [24]. The
edges of D act as wires and we replace each horizontal and vertical segment by a
copy gadget, and replace every 90◦ corner, by a turn gadget. Every splitter vertex
and constraint vertex will be replaced by the corresponding gadget, possibly
using turn gadgets. We add a big square to the outside, to ensure that everything
is inside one polygon. See the long version [18] for an illustration.

It is easy to see that this can be done in polynomial time, as every gadget has
a constant size description and can be described with rational numbers, although,
we did not do it explicitly. In order to see that we can also use integers, note that
we can scale everything with the least common multiple of all the denominators
of all numbers appearing. This can also be done in polynomial time. ��

4 Vertex Coordinates

Since we have shown that Graph in Polygon may require irrational coordi-
nates for vertices in general, it is interesting to examine bounds on coordinates
for special cases. In this section we discuss the bit complexity of vertex coordi-
nates needed for two well-solved special cases of Graph in Polygon.

Tutte’s algorithm [30] finds a straight-line planar drawing of a graph inside
a fixed convex drawing of its outer face. Suppose the graph has n vertices and
each coordinate of the convex polygon uses t bits. Tutte’s algorithm runs in
polynomial time, but the number of bits used to express the vertex coordinates
is a polynomial function of t and n. The dependence on n means that the drawing
uses “exponential area.” Chambers et al. [9] gave a different algorithm that uses
polynomial area—the number of bits for the vertex coordinates is bounded by a
polynomial in t and log n.

The other well-solved case of Graph in Polygon is the minimum link path
problem. Here we have a general polygonal region with holes, R, but the graph is
restricted to a path with endpoints s and t fixed on the boundary of R. Based on
a lower bound result of Kahan and Snoeyink [15], Kostitsyna et al. [16] proved
a tight bound of Θ(n log n) bits for the coordinates of the bends on a minimum
link path. Note that the dependence on n means that this bound is exponentially
larger than the bound for drawing a graph inside a convex polygon. Problem 3
below asks about the complexity of drawing a tree in a polygonal region.
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5 Conclusion and Open Questions

Our result that Graph in Polygon is ∃R-complete is one of the first ∃R-
hardness results about drawing planar graphs with straight-line edges—along
with a recent result about drawings with prescribed face areas [11]. We conclude
with some open questions:
1. Our proofs of Theorems 1 and 2 used the fact that the polygonal region may
have holes and may have collinear vertices. Is Graph in Polygon polynomial-
time solvable for a simple polygon (a polygonal region without holes) whose
vertices lie in general position (without collinearities)?
2. Our proofs also used the assumption that the polygonal region is closed. For
an open region, the problem Graph in Polygon is equivalent to the problem
Partial Drawing Extensibility. Is this problem ∃R-hard? There are two
versions, depending on whether the graph is given abstractly or via a combina-
torial embedding. In the first case the problem is known to be NP-hard [25], but
in the second case even that is not known.
3. What is the complexity of Graph in Polygon when the graph is a tree?
Can vertex coordinates still be bounded as for the minimum link path problem?
When the tree is a caterpillar, the problem might be related to the minimum
link watchman tour problem, which is known to be NP-hard [4].

Acknowledgment. We would like to thank Günter Rote, who discussed with the
second author the turn gadget in the context of the Art Gallery Problem.
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