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Abstract. We study straight-line drawings of planar graphs with pre-
scribed face areas. A plane graph is area-universal if for every area assign-
ment on the inner faces, there exists a straight-line drawing realizing the
prescribed areas.

For triangulations with a special vertex order, we present a sufficient
criterion for area-universality that only requires the investigation of one
area assignment. Moreover, if the sufficient criterion applies to one plane
triangulation, then all embeddings of the underlying planar graph are
also area-universal. To date, it is open whether area-universality is a
property of a plane or planar graph.

We use the developed machinery to present area-universal families of
triangulations. Among them we characterize area-universality of accor-
dion graphs showing that area-universal and non-area-universal graphs
may be structural very similar.
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Face area

1 Introduction

By Fary’s theorem [11,20,22], every plane graph has a straight-line drawing. We
are interested in straight-line drawings with the additional property that the
face areas correspond to prescribed values. Particularly, we study area-universal
graphs for which all prescribed face areas can be realized by a straight-line
drawing. Usually, in a planar drawing, no two edges intersect except in common
vertices. It is worthwhile to be slightly more generous and allow crossing-free
drawings, i.e., drawings that can be obtained as the limit of a sequence of planar
straight-line drawings. Note that a crossing-free drawing of a triangulation is not
planar (degenerate) if and only if the area of at least one face vanishes. Moreover,
we consider two crossing-free drawings of a plane graph as equivalent if the cyclic
order of the incident edges at each vertex and the outer face coincide.

For a plane graph G, we denote the set of faces by F , and the set of inner
faces by F ′. An area assignment is a function A : F ′ → R≥0. We say G is area-
universal if for every area assignment A there exists an equivalent crossing-free
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drawing where every inner face f ∈ F ′ has area A(f). We call such a drawing
A-realizing and the area assignment A realizable.

Related Work. Biedl and Ruiz Velázquez [6] showed that planar partial 3-trees,
also known as subgraphs of stacked triangulations or Apollonian networks, are
area-universal. In fact, every subgraph of a plane area-universal graph is area-
universal. Ringel [19] gave two examples of graphs that have drawings where all
face areas are of equal size, namely the octahedron graph and the icosahedron
graph. Thomassen [21] proved that plane 3-regular graphs are area-universal.
Moreover, Ringel [19] showed that the octahedron graph is not area-universal.
Kleist [15] generalized this result by introducing a simple counting argument
which shows that no Eulerian triangulation, different from K3, is area-universal.
Moreover, it is shown in [15] that every 1-subdivision of a plane graphs is area-
universal; that is, every area assignment of a plane graph has a realizing polyline
drawing where each edge has at most one bend. Evans et al. [10,17] present
classes of area-universal plane quadrangulations. In particular, they verify the
conjecture that plane bipartite graphs are area-universal for quadrangulations
with up to 13 vertices. Particular graphs have also been studied: It is known
that the square grid [9] and the unique triangulation on seven vertices [4] are
area-universal. Moreover, non-area-universal triangulations on up to ten vertices
have been investigated in [13].

The computational complexity of the decision problem of area-universality
for a given graph was studied by Dobbins et al. [7]. The authors show that
this decision problem belongs to Universal Existential Theory of the
Reals (∀∃R), a natural generalization of the class Existential Theory of
the Reals (∃R), and conjecture that this problem is also ∀∃R-complete. They
show hardness of several variants, e.g., the analogue problem of volume univer-
sality of simplicial complexes in three dimensions.

In a broader sense, drawings of planar graphs with prescribed face areas can
be understood as cartograms. Cartograms have been intensely studied for duals
of triangulations [1,3,5,14] and in the context of rectangular layouts, dissections
of a rectangle into rectangles [8,12,23]. For a detailed survey of the cartogram
literature, we refer to [18].

Our Contribution. In this work we present three characterizations of area-univer-
sal triangulations. We use these characterizations for proving area-universality
of certain triangulations. Specifically, we consider triangulations with a vertex
order, where (most) vertices have at least three neighbors with smaller index,
called predecessors. We call such an order a p-order. For triangulations with a
p-order, the realizability of an area assignment reduces to finding a real root of
a univariate polynomial. If the polynomial is surjective, we can guarantee area-
universality. In fact, this is the only known method to prove the area-universality
of a triangulation besides the simple argument for plane 3-trees relying on K4.

We discover several interesting facts. First, to guarantee area-universality
it is enough to investigate one area assignment. Second, if the polynomial is
surjective for one plane graph, then it is for every embedding of the underlying
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planar graph. Consequently, the properties of one area assignment can imply the
area-universality of all embeddings of a planar graph. This may indicate that
area-universality is a property of planar graphs.

We use the method to prove area-universality for several graph families
including accordion graphs. To obtain an accordion graph from the plane octa-
hedron graph, we introduce new vertices of degree 4 by subdividing an edge of
the central triangle. Figure 1 presents four examples of accordion graphs. Sur-
prisingly, the insertion of an even number of vertices yields a non-area-universal
graph while the insertion of an odd number of vertices yields an area-universal
graph. Accordions with an even number of vertices are Eulerian and thus not
area-universal [15]. Consequently, area-universal and non-area-universal graphs
may have a very similar structure. (In [17], we use the method to classify small
triangulations with p-orders on up to ten vertices.)

Fig. 1. Examples of accordion graphs. A checkmark indicates area-universality and a
cross non-area-universality.

Organization. We start by presenting three characterizations of area-universality
of triangulations in Sect. 2. In Sect. 3, we turn our attention to triangulations
with p-orders and show how the analysis of one area assignment can be sufficient
to prove area-universality of all embeddings of the given triangulation. Then, in
Sect. 4, we apply the developed method to prove area-universality for certain
graph families; among them we characterize the area-universality of accordion
graphs. We end with a discussion and a list of open problems in Sect. 5. For
omitted proofs consider the appendices of the full version [16].

2 Characterizations of Area-Universal Triangulations

Throughout this section, let T be a plane triangulation on n vertices. A straight-
line drawing of T can be encoded by the 2n vertex coordinates, and hence, by a
point in the Euclidean space R

2n. We call such a vector of coordinates a vertex
placement and denote the set of all vertex placements encoding crossing-free
drawings by D(T ); we also write D if T is clear from the context.

It is easy to see that an A-realizing drawing of a triangulation can be trans-
formed by an affine linear map into an A-realizing drawing where the outer
face corresponds to any given triangle of correct total area ΣA :=

∑
f∈F ′ A(f),

where F ′ denotes the set of inner faces as before.
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Lemma 1. [15, Obs. 2] A plane triangulation T with a realizable area assign-
ment A, has an A-realizing drawing within every given outer face of area ΣA.

Likewise, affine linear maps can be used to scale realizing drawings by any factor.
For any positive real number α ∈ R and area assignment A, let αA denote the
scaled area assignment of A where αA(f) := α · A(f) for all f ∈ F ′.

Lemma 2. Let A be an area assignment of a plane graph and α > 0. The scaled
area assignment αA is realizable if and only if A is realizable.

For a plane graph and c > 0, let A
c denote the set of area assignments with a

total area of c. Lemma 2 directly implies the following property.

Lemma 3. Let c > 0. A plane graph is area universal if all area assignments
in A

c are realizable.

2.1 Closedness of Realizable Area Assignments

In [15, Lemma 4], it is shown for triangulations that A ∈ A
c is realizable if

and only if in every open neighborhood of A in A
c there exists a realizable area

assignment. For our purposes, we need a stronger version. Let A
≤c denote the

set of area assignments of T with a total area of at most c. For a fixed face f
of T , A≤c|f→a denotes the subset of A≤c where f is assigned to a fixed a > 0.

Proposition 1. Let T be a plane triangulation and c > 0. Then A ∈ A
c is

realizable if and only if for some face f with A(f) > 0 every open neighborhood
of A in A

≤2c|f→A(f) contains a realizable area assignment.

Intuitively, Proposition 1 enables us not to worry about area assignments with
bad but unlikely properties. In particular, area-universality is guaranteed by the
realizability of a dense subset of Ac. Moreover, this stronger version allows to
certify the realizability of an area assignment by realizable area assignments with
slightly different total areas. The proof of Proposition 1 goes along the same lines
as in [15, Lemma 4]; it is based on the fact that the set of drawings of T with a
fixed face f and a total area of at most 2c is compact.

2.2 Characterization by 4-Connected Components

For a plane triangulation T , a 4-connected component is a maximal 4-connected
subgraph of T . Moreover, we call a triangle t of T separating if at least one
vertex of T lies inside t and at least one vertex lies outside t; in other words, t is
not a face of T .

Proposition 2. A plane triangulation T is area-universal if and only if every
4-connected component of T is area-universal.

Proof (Sketch). The proof is based on the fact that a plane graph G with a sep-
arating triangle t is area-universal if and only if Ge, the induced graph by t and
its exterior, and Gi, the induced graph by t and its interior, are area-universal.
In particular, Lemma 1 allows us to combine realizing drawings of Ge and Gi to
a drawing of G.
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Remark. Note that a plane 3-tree has no 4-connected component. (Recall that
K4 is 3-connected and a graph on n > 4 vertices is 4-connected if and only if it
has no separating triangle.) This is another way to see their area-universality.

2.3 Characterization by Polynomial Equation System

Dobbins et al. [7, Proposition 1] show a close connection of area-universality and
equation systems: For every plane graph G with area assignment A there exists
a polynomial equation system E such that A is realizable if and only if E has
a real solution. Here we strengthen the statement for triangulations, namely it
suffices to guarantee the face areas; these imply all further properties such as
planarity and the equivalent embedding. To do so, we introduce some notation.

A plane graph G induces an orientation of the vertices of each face. For a
face f given by the vertices v1, . . . , vk, we say f is counter clockwise (ccw) if
the vertices v1, . . . , vk appear in ccw direction on a walk on the boundary of f ;
otherwise f is clockwise (cw). Moreover, the function area(f,D) measures the
area of a face f in a drawing D. For a ccw triangle t with vertices v1, v2, v3, we
denote the coordinates of vi by (xi, yi). Its area in D is given by the determinant

Det(v1, v2, v3) := det
(
c(v1), c(v2), c(v3)

)
= 2 · area(t,D), (1)

where c(vi) := (xi, yi, 1). Since the (complement of the) outer face fo has area
ΣA in an A-realizing drawing, we define A(fo) := ΣA. For a set of faces F̃ ⊂ F ,
we define the area equation system of F̃ as

aeq(T,A, F̃ ) := {Det(vi, vj , vk) = A(f) | f ∈ F̃ , f =: (vi, vj , vk) ccw}.

For convenience, we omit the factor of 2 in each area equation. Therefore, without
mentioning it any further, we usually certify the realizability of A by a 1/2A-
realizing drawing. That is, if we say a triangle has area a, it may have area 1/2a.
Recall that, by Lemma 2, consistent scaling has no further implications.

Proposition 3. Let T be a triangulation, A an area assignment, and f a face
of T . Then A is realizable if and only if aeq(T,A, F \ {f}) has a real solution.

The key idea is that a (scaled) vertex placement of an A-realizing drawing is a
real solution of aeq(T,A, F \{f}) and vice versa. The main task is to guarantee
crossing-freeness of the induced drawing; it follows from the following neat fact.

Lemma 4. Let D be a vertex placement of a triangulation T where the ori-
entation of each inner face in D coincides with the orientation in T . Then D
represents a crossing-free straight-line drawing of T .

A proof of Lemma 4 can be found in [2, in the end of the proof of Lemma 4.2].
An alternative proof relies on the properties of the determinant, in particular,
on the fact that for any vertex placement D the area of the triangle formed by
its outer vertices evaluates to

area(fo,D) =
∑

f∈F ′
area(f,D). (2)



338 L. Kleist

Equation (2) shows that for every face f ∈ F ′, the equation systems
aeq(T,A, F ′) and aeq(T,A, F \ {f}) are equivalent. This fact is also used for
Proposition 3.

Remark 1. In fact, Lemma 4 and Proposition 3 generalize to inner triangula-
tions, i.e., 2-connected plane graphs where every inner face is a triangle.

3 Area-Universality of Triangulations with p-orders

We consider planar triangulations with the following property: An order of the
vertices (v1, v2, . . . , vn), together with a set of predecessors pred(vi) ⊂ N(vi) for
each vertex vi, is a p-order if the following conditions are satisfied:

– pred(vi) ⊆ {v1, v2, . . . , vi−1}, i.e., the predecessors of vi have an index < i,
– pred(v1) = ∅, pred(v2) = {v1}, pred(v3) = pred(v4) = {v1, v2}, and
– for all i > 4: |pred(vi)| = 3, i.e., vi has exactly three predecessors.

Note that pred(vi) specifies a subset of preceding neighbors. Moreover, a p-order
is defined for a planar graph independent of a drawing. We usually denote a
p-order by P and state the order of the vertices; the predecessors are then implic-
itly given by pred(vi). Figure 2 illustrates a p-order.

i pred(vi)
5 {v1, v3, v4}
6 {v3, v4, v5}
7 {v3, v4, v6}
8 {v2, v4, v7}
9 {v2, v7, v8}

v3

v2v1

v4

v5
v6 v7

v9
v8

eP

Fig. 2. A plane 4-connected triangulation with a p-order P. In an almost realizing
vertex placement constructed with P, all face areas are realized except for the two
faces incident to the unoriented (dashed) edge eP of OP (Lemma 8).

We pursue the following one-degree-of-freedom mechanism to construct real-
izing drawings for a plane triangulation T with a p-order (v1, v2, . . . , vn) and an
area assignment A:

– Place the vertices v1, v2, v3 at positions realizing the area equation of the
face v1v2v3. Without loss of generality, we set v1 = (0, 0) and v2 = (1, 0).

– Insert v4 such that the area equation of face v1v2v4 is realized; this is fulfilled
if y4 equals A(v1v2v4) while x4 ∈ R is arbitrary. The value x4 is our variable.
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– Place each remaining vertex vi with respect to its predecessors pred(vi) such
that the area equations of the two incident face areas are respected; the
coordinates of vi are rational functions of x4.

– Finally, all area equations are realized except for two special faces fa and fb.
Moreover, the face area of fa is a rational function f of x4.

– If f is almost surjective, then there is a vertex placement D respecting all face
areas and orientations, i.e., D is a real solution of aeq(T,A, F ).

– By Proposition 3, D guarantees the realizability of A.
– If this holds for enough area assignments, then T is area-universal.

3.1 Properties of p-orders

A p-order P of a plane triangulation T induces an orientation OP of the edges:
For w ∈ pred(vi), we orient the edge from vi to w, see also Fig. 2. By Proposition
2, we may restrict our attention to 4-connected triangulations. We note that
4-connectedness is not essential for our method but yields a cleaner picture.

Lemma 5. Let T be a planar 4-connected triangulation with a p-order P. Then
OP is acyclic, OP has a unique unoriented edge eP , and eP is incident to vn.

It follows that the p-order encodes all but one edge which is easy to recover.
Therefore, the p-order of a planar triangulation T encodes T . In fact, T has a
p-order if and only if there exists an edge e such that T − e is 3-degenerate.

Convention. Recall that a drawing induces an orientation of each face. We follow
the convention of stating the vertices of inner faces ccw and of the outer face
in cw direction. This convention enables us to switch between different plane
graphs of the same planar graph without changing the order of the vertices. To
account for our convention, we redefine A(fo) := −ΣA for the outer face fo.
Then, for different embeddings, only the right sides of the aeqs change.

The next properties can be proved by induction and are shown in Fig. 3.

Lemma 6. Let T be a plane 4-connected triangulation with a p-order P specified
by (v1, v2, . . . , vn) and let Ti denote the subgraph of T induced by {v1, v2, . . . , vi}.
For i ≥ 4,

– Ti has one 4-face and otherwise only triangles,
– Ti+1 can be constructed from Ti by inserting vi+1 in the 4-face of Ti, and
– the three predecessors of vi can be named (pf, pm, pl) such that pfpmvi and

pmplvi are (ccw inner and cw outer) faces of Ti.

Remark 2. For every (non-equivalent) plane graph T ′ of T , the three predeces-
sors (pf, pm, pl) of vi in T ′ and T coincide.

Remark 3. Lemma 6 can be used to show that the number of 4-connected planar
triangulations on n vertices with a p-order is Ω(2n/n).
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pF

pL

vipM

viv3

v2v1

v4

pM

pL

pF

Fig. 3. Illustration of Lemma 6: (a) T4, (b) vi is inserted in
an inner 4-face, (c) vi is inserted in outer 4-face.

qL

va

b

�b

�a
qF

qM

Fig. 4. Illustration
of Lemma 7.

3.2 Constructing Almost Realizing Vertex Placements

Let T be a plane triangulation with an area assignment A. We call a vertex
placement D of T almost A-realizing if there exist two faces fa and fb such that D
is a real solution of the equation system aeq(T,A, F̃ ) with F̃ := F \ {fa, fb}. In
particular, we insist that the orientation and area of each face, except for fa and
fb be correct, i.e., the area equations are fulfilled. Note that an almost realizing
vertex placement does not necessarily correspond to a crossing-free drawing.

Observation. An almost A-realizing vertex placement D fulfilling the area
equations of all faces except for fa and fb, certifies the realizability of A if
additionally the area equation of fa is satisfied.

We construct almost realizing vertex placements with the following lemma.

Lemma 7. Let a, b ≥ 0 and let qf, qm, ql be three vertices with a non-collinear
placement in the plane. Then there exists a unique placement for vertex v such the
ccw triangles qfqmv and qmqlv fulfill the area equations for a and b, respectively.

Proof. Consider Fig. 4. To realize the areas, v must be placed on a specific line
�a and �b, respectively. Note that �a is parallel to the segment qf, qm and �b is
parallel to the segment qm, ql. Consequently, �a and �b are not parallel and their
intersection point yields the unique position for vertex v. The coordinates of v

are specified by the two equations Det(qf, qm, v) != a and Det(qm, ql, v) != b.

Note that if �a and �b are parallel and do not coincide, then there is no
position for v realizing the area equations of the two triangles. Based on Lemma
7, we obtain our key lemma.

Lemma 8. Let T be a plane 4-connected triangulation with a p-order P specified
by (v1, v2, . . . , vn). Let fa, fb be the faces incident to eP and f0 := v1v2v3. Then
there exists a constant c > 0 such that for a dense subset AD of Ac, every A ∈ AD

has a finite set B(A) ⊂ R, rational functions xi(·,A), yi(·,A), f(·,A) and a
triangle 
, such that for all x4 ∈ R \ B(A), there exists a vertex placement
D(x4) with the following properties:

(i) f0 coincides with the triangle 
,
(ii) D(x4) is almost realizing, i.e., a real solution of aeq(T,A, F \ {fa, fb}),
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(iii) every vertex vi is placed at the point
(
xi(x4,A), yi(x4,A)

)
, and

(iv) the area of face fa in D(x4) is given by f(x4,A).

The idea of the proof is to use Lemma 7 in order to construct D(x4) induc-
tively. Therefore, given a vertex placement v1, . . . , vi−1, we have to ensure that
the vertices of pred(vi) are not collinear. To do so, we consider algebraically
independent area assignments. We say an area assignment A of T is algebraically
independent if the set {A(f)|f ∈ F ′} is algebraically independent over Q. In fact,
the subset of algebraically independent area assignments AI of Ac is dense when
c is transcendental.

We call the function f, constructed in the proof of Lemma 8, the last face
function of T and interpret it as a function in x4 whose coefficients depend on A.

3.3 Almost Surjectivity and Area-Universality

In the following, we show that almost surjectivity of the last face function implies
area-universality. Let A and B be sets. A function f : A → B is almost surjective
if f attains all but finitely many values of B, i.e., B \ f(A) is finite.

Theorem 1. Let T be a 4-connected plane triangulation with a p-order P and let
AD,Ac, f be obtained by Lemma 8. If the last face function f is almost surjective
for all area assignments in AD, then T is area-universal.

Proof. By Lemma 3, it suffices to show that every A ∈ AD is realizable. Let f0
be the triangle formed by v1, v2, v3 and A

+ := A
≤2c|f0→A(f0). By Proposition

1, A is realizable if every open neighborhood of A in A
+ contains a realizable

area assignment. Let fa and fb denote the faces incident to eP and a := A(fa).
Lemma 8 guarantees the existence of a finite set B such that for all x4 ∈ R \ B,
there exists an almost A-realizing vertex placement D(x4). Since B is finite and
f is almost surjective, for every ε with 0 < ε < c, there exists x̃ ∈ R \ B such
that a ≤ f(x̃) ≤ a+ ε, i.e., the area of face fa in D(x̃) is between a and a+ ε. (If
fa and fb are both inner faces, then the face fb has an area between b − ε and
b, where b := A(fb). Otherwise, if fa or fb is the outer face, then the total area
changes and face fb has area between b and b + ε.) Consequently, for some A′ in
the ε-neighborhood of A in A

+, D(x̃) is a real solution of aeq(T,A′, F \ {fb})
and Proposition 3 ensures that A′ is realizable. By Proposition 1, A is realizable.
Thus, T is area-universal.

To prove area-universality, we use the following sufficient condition for almost
surjectivity. We say two real polynomials p and q are crr-free if they do not have
common real roots. For a rational function f := p

q , we define the max-degree of f

as max{|p|, |q|}, where |p| denotes the degree of p. Moreover, we say f is crr-free
if p and q are. The following property follows from the fact that polynomials of
odd degree are surjective.

Lemma 9. Let p, q : R → R be polynomials and let Q be the set of the real roots
of q. If the polynomials p and q are crr-free and have odd max-degree, then the
function f : R\Q → R, f(x) = p(x)

q(x) is almost surjective.
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For the final result, we make use of several convenient properties of alge-
braically independent area assignments. For A, let fA denote the last face func-
tion and d1(fA) and d2(fA) the degree of the numerator and denominator poly-
nomial of fA in x4, respectively. Since fA is a function in x4 whose coefficients
depend on A, algebraic independence directly yields the following property.

Claim 1. For two algebraically independent area assignments A,A′ ∈ AI of a
4-connected triangulation with a p−order P, the degrees of the last face functions
fA and fA′ with respect to P coincide, i.e., di(fA) = di(fA′) for i ∈ [2].

In fact, the degrees do not only coincide for all algebraically independent area
assignments, but also for different embeddings of the plane graph. For a plane
triangulation T , let T ∗ denote the corresponding planar graph and [T ] the set
(of equivalence classes) of all plane graphs of T ∗.

Claim 2. Let T be a plane 4-connected triangulation with a p-order P. Then
for every plane graph T ′ ∈ [T ], and algebraically independent area assignments
A of T and A′ of T ′, the last face functions fA and f′A′ with respect to P have
the same degrees, i.e., di(fA) = di(f′A′) for i ∈ [2].

This implies our final result:

Corollary 1. Let T be a plane triangulation with a p-order P. If the last face
function f of T is crr-free and has odd max-degree for one algebraically indepen-
dent area assignment, then every plane graph in [T ] is area-universal.

4 Applications

We now use Theorem 1 and Corollary 1 to prove area-universality of some classes
of triangulations. The considered graphs rely on an operation that we call dia-
mond addition. Consider the left image of Fig. 5. Let G be a plane graph and
let e be an inner edge incident to two triangular faces that consist of e and the
vertices u1 and u2, respectively. Applying a diamond addition of order k on e
results in the graph G′ which is obtained from G by subdividing edge e with k
vertices, v1, . . . , vk, and inserting the edges viuj for all pairs i ∈ [k] and j ∈ [2].
Figure 5 illustrates a diamond addition on e of order 3.

u1

e

u2

G

v1 v2 v3

G′ u1

u2

Fig. 5. Obtaining G′ from G by a diamond addition of order 3 on edge e.
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4.1 Accordion Graphs

An accordion graph can be obtained from the plane octahedron graph G by a
diamond addition: Choose one edge of the central triangle of G as the special
edge. The accordion graph K� is the plane graph obtained by a diamond addition
of order � on the special edge of G. Consequently, K� has �+6 vertices. We speak
of an even accordion if � is even and of an odd accordion if � is odd. Figure 1
illustrates the accordion graphs Ki for i ≤ 3. Note that K0 is G itself and K1 is the
unique 4-connected plane triangulation on seven vertices. Due to its symmetry,
it holds that [K�] = {K�}.

Theorem 2. The accordion graph K� is area-universal if and only if � is odd.

Proof (Sketch). Performing a diamond addition of order � on some plane graph
changes the degree of exactly two vertices by � while all other vertex degrees
remain the same. Consequently, if � is even, all vertices of K� have even degree,
and hence, K� as an Eulerian triangulation is not area-universal as shown by the
author in [15, Theorem 1].

It remains to prove the area-universality of odd accordion graphs with the
help of Theorem 1. Consider an arbitrary but fixed algebraically independent
area assignment A. We use the p-order depicted in Fig. 6 to construct an almost
realizing vertex placement. We place the vertices v1 at (0, 0), v2 at (1, 0), v3 at
(1, ΣA), and v4 at (x4, a) with a := A(v1v2v4). Consider also Fig. 6.

Fig. 6. A p-order of an accordion graph (left) and an almost realizing vertex placement
(right), where the shaded faces are realized.

We use Lemma 8 to construct an almost realizing vertex placement. Note
that for all vertices vi with i > 5, the three predecessors of vi are pf = v3,
pm = vi−1 and pl = v4. One can show that the vertex coordinates of vi can
be expressed as xi = Nx

i /Di and yi = Ny
i /Di, where N x

i ,N y
i ,Di are polynomials

in x4. Moreover, the polynomials fulfill the following crucial properties.

Lemma 10. For all i ≥ 5, it holds that |D5| = 1 and

|N x
i+1| = |Di+1| = |N y

i+1| + 1 = |Di| + 1.
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Consequently, |N x
i | = |Di| is odd if and only if i is odd. In particular, for

odd �, |N x
n | = |Dn| is odd since the number of vertices n = � + 6 is odd.

Lemma 11. For all i ≥ 5 and ◦ ∈ {x, y}, it holds that N ◦
i and Di are crr-free.

Consequently, the area of the ccw triangle v2v3vn in D(x4) is given by the
crr-free last face function

f(x) := Det(v2, v3, vn) = ΣA(1 − xn) = ΣA
(

1 − N x
n

Dn

)

.

Since |N x
n | and |Dn| are odd, the max-degree of f is odd. Thus, Lemma 9 ensures

that f is almost surjective. By Theorem 1, K� is area-universal for odd �.
This result can be generalized to double stacking graphs.

4.2 Double Stacking Graphs

Denote the vertices of the plane octahedron G by ABC and uvw as depicted
in Fig. 7. The double stacking graph H�,k is the plane graph obtained from G
by applying a diamond addition of order � − 1 on Au and a diamond addition
of order k − 1 on vw. Note that H�,k has (� + k + 4) vertices. Moreover, H�,1

is isomorphic to K�−1; in particular, H1,1 equals G. Note that [H�,k] usually
contains several (equivalence classes of) plane graphs.

v

1 ... �

1

...

k

C

A B

C

A B

u w

v

Fig. 7. A double stacking graph H�,k.

Theorem 3. A plane graph in [H�,k] is area-universal if and only if � ·k is even.

If � · k is odd, every plane graph in [H�,k] is Eulerian and hence not area-
universal by [15, Theorem 1]. If � · k is even, we consider an algebraically inde-
pendent area assignment of H�,k, show that its last face function is crr-free and
has odd max-degree. Then we apply Corollary 1.

Theorem 3 implies that

Corollary 2. For every n ≥ 7, there exists a 4-connected triangulation on n
vertices that is area-universal.
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5 Discussion and Open Problems

For triangulations with p-orders, we introduced a sufficient criterion to prove
area-universality of all embeddings of a planar graph which relies on checking
properties of one area assignments of one plane graph. We used the criterion
to present two families of area-universal triangulations. Since area-universality
is maintained by taking subgraphs, area-universal triangulations are of spe-
cial interest. For instance, the area-universal double stacking graphs are used
in [10,17] to show that all plane quadrangulations with at most 13 vertices are
area-universal. The analysis of accordion graphs showns that area-universal and
non-area-universal graphs can be structural very similar. The class of accordion
graphs gives a hint why understanding area-universality seems to be a difficult
problem. In conclusion, we pose the following open questions:

– Is area-universality a property of plane or planar graphs?
– What is the complexity of deciding the area-universality of triangulations?
– Can area-universal graphs be characterized by local properties?

Acknowledgements. I thank Udo Hoffmann and Sven Jäger for helpful comments.
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