
Topology-Hiding Computation Beyond
Semi-Honest Adversaries

Rio LaVigne1(B), Chen-Da Liu-Zhang2, Ueli Maurer2, Tal Moran3,
Marta Mularczyk2, and Daniel Tschudi4

1 MIT, Cambridge, USA
rio@mit.edu

2 ETH Zurich, Zürich, Switzerland
{lichen,maurer,mumarta}@inf.ethz.ch

3 IDC Herzliya, Herzliya, Israel
talm@idc.ac.il

4 Aarhus University, Aarhus, Denmark
tschudi@cs.au.dk

Abstract. Topology-hiding communication protocols allow a set of par-
ties, connected by an incomplete network with unknown communication
graph, where each party only knows its neighbors, to construct a com-
plete communication network such that the network topology remains
hidden even from a powerful adversary who can corrupt parties. This
communication network can then be used to perform arbitrary tasks, for
example secure multi-party computation, in a topology-hiding manner.
Previously proposed protocols could only tolerate passive corruption.
This paper proposes protocols that can also tolerate fail-corruption (i.e.,
the adversary can crash any party at any point in time) and so-called
semi-malicious corruption (i.e., the adversary can control a corrupted
party’s randomness), without leaking more than an arbitrarily small frac-
tion of a bit of information about the topology. A small-leakage protocol
was recently proposed by Ball et al. [Eurocrypt’18], but only under the
unrealistic set-up assumption that each party has a trusted hardware
module containing secret correlated pre-set keys, and with the further
two restrictions that only passively corrupted parties can be crashed by
the adversary, and semi-malicious corruption is not tolerated. Since leak-
ing a small amount of information is unavoidable, as is the need to abort

R. Lavigne—This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. 1122374. Any opinion,
findings, and conclusions or recommendations expressed in this material are those of the
authors(s) and do not necessarily reflect the views of the National Science Foundation.
Research also supported in part by NSF Grants CNS-1350619 and CNS-1414119, and
by the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army
Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-0236.
T. Moran—Supported in part by ISF grant no. 1790/13 and by the Bar-Ilan Cyber-
center.
M. Mularczyk—Research was supported by the Zurich Information Security and Pri-
vacy Center (ZISC).
D. Tschudi—Work partly done while author was at ETH Zurich. Author was supported
by advanced ERC grant MPCPRO.

c© International Association for Cryptologic Research 2018
A. Beimel and S. Dziembowski (Eds.): TCC 2018, LNCS 11240, pp. 3–35, 2018.
https://doi.org/10.1007/978-3-030-03810-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03810-6_1&domain=pdf
http://orcid.org/0000-0001-6188-1049
https://doi.org/10.1007/978-3-030-03810-6_1

4 R. LaVigne et al.

the protocol in case of failures, our protocols seem to achieve the best
possible goal in a model with fail-corruption.

Further contributions of the paper are applications of the protocol
to obtain secure MPC protocols, which requires a way to bound the
aggregated leakage when multiple small-leakage protocols are executed
in parallel or sequentially. Moreover, while previous protocols are based
on the DDH assumption, a new so-called PKCR public-key encryption
scheme based on the LWE assumption is proposed, allowing to base
topology-hiding computation on LWE. Furthermore, a protocol using
fully-homomorphic encryption achieving very low round complexity is
proposed.

1 Introduction

1.1 Topology-Hiding Computation

Secure communication over an insecure network is one of the fundamental goals of
cryptography. The security goal can be to hide different aspects of the communica-
tion, ranging from the content (secrecy), the participants’ identity (anonymity),
the existence of communication (steganography), to hiding the topology of the
underlying network in case it is not complete.

Incomplete networks arise in many contexts, such as the Internet of Things
(IoT) or ad-hoc vehicular networks. Hiding the topology can, for example, be
important because the position of a node within the network depends on the
node’s location. This could in information about the node’s identity or other con-
fidential parameters. The goal is that parties, and even colluding sets of parties,
can not learn anything about the network, except their immediate neighbors.

Incomplete networks have been studied in the context of communication
security, referred to as secure message transmission (see, e.g. [DDWY90]), where
the goal is to enable communication between any pair of entities, despite an
incomplete communication graph. Also, anonymous communication has been
studied extensively (see, e.g. [Cha81,RC88,SGR97]). Here, the goal is to hide
the identity of the sender and receiver in a message transmission. A classical
technique to achieve anonymity is the so-called mix-net technique, introduced
by Chaum [Cha81]. Here, mix servers are used as proxies which shuffle mes-
sages sent between peers to disable an eavesdropper from following a message’s
path. The onion routing technique [SGR97,RC88] is perhaps the most known
instantiation of the mix-technique. Another anonymity technique known as Din-
ing Cryptographers networks, in short DC-nets, was introduced in [Cha88] (see
also [Bd90,GJ04]). However, none of these approaches can be used to hide the
network topology. In fact, message transmission protocols assume (for their exe-
cution) that the network graph is public knowledge.

The problem of topology-hiding communication was introduced by Moran
et al. [MOR15]. The authors propose a broadcast protocol in the cryptographic
setting, which does not reveal any additional information about the network
topology to an adversary who can access the internal state of any number of

Topology-Hiding Computation Beyond Semi-Honest Adversaries 5

passively corrupted parties (that is, they consider the semi-honest setting). This
allows to achieve topology-hiding MPC using standard techniques to transform
broadcast channels into secure point-to-point channels. At a very high level,
[MOR15] uses a series of nested multi-party computations, in which each node
is emulated by a secure computation of its neighbor. This emulation then extends
to the entire graph recursively. In [HMTZ16], the authors improve this result and
provide a construction that makes only black-box use of encryption and where
the security is based on the DDH assumption. However, both results are feasible
only for graphs with logarithmic diameter. Topology hiding communication for
certain classes of graphs with large diameter was described in [AM17]. This result
was finally extended to allow for arbitrary (connected) graphs in [ALM17a].

A natural next step is to extend these results to settings with more powerful
adversaries. Unfortunately, even a protocol in the setting with fail-corruptions
(in addition to passive corruptions) turns out to be difficult to achieve. In fact,
as shown already in [MOR15], some leakage in the fail-stop setting is inherent.
It is therefore no surprise that all previous protocols (secure against passive
corruptions) leak information about the network topology if the adversary can
crash parties. The core problem is that crashes can interrupt the communication
flow of the protocol at any point and at any time. If not properly dealt with
by the protocol, those outages cause shock waves of miscommunication, which
allows the adversary to probe the network topology.

A first step in this direction was recently achieved in [BBMM18] where a
protocol for topology-hiding communication secure against a fail-stop adversary
is given. However, the resilience against crashes comes at a hefty price; the
protocol requires that parties have access to secure hardware modules which
are initialized with correlated, pre-shared keys. Their protocol provides security
with abort and the leakage is arbitrarily small.

In the information-theoretic setting, the main result is negative [HJ07]: any
MPC protocol in the information-theoretic setting inherently leaks information
about the network graph. They also show that if the routing table is leaked, one
can construct an MPC protocol which leaks no additional information.

1.2 Comparison to Previous Work

In [ALM17a] the authors present a broadcast protocol for the semi-honest setting
based on random walks. This broadcast protocol is then compiled into a full
topology-hiding computation protocol. However, the random walk protocol fails
spectacularly in the presence of fail-stop adversaries, leaking a lot of information
about the structure of the graph. Every time a node aborts, any number of walks
get cut, meaning that they no longer carry any information. When this happens,
adversarial nodes get to see which walks fail along which edges, and can get a
good idea of where the aborting nodes are in the graph.

We also note that, while we use ideas from [BBMM18], which achieves the
desired result in a trusted-hardware model, we cannot simply use their protocol
and substitute the secure hardware box for a standard primitive. In particular,
they use the fact that each node can maintain an encrypted “image” of the entire

6 R. LaVigne et al.

graph by combining information from all neighbors, and use that information to
decide whether to give output or abort. This appears to require both some form
of obfuscation and a trusted setup, whereas our protocol uses neither.

1.3 Contributions

In this paper we propose the first topology-hiding MPC protocol secure against
passive and fail-stop adversaries (with arbitrarily small leakage) that is based
on standard assumptions. Our protocol does not require setup, and its security
can be based on either the DDH, QR or LWE assumptions. A comparison of our
results to previous works in topology-hiding communication is found in Table 1.

Theorem 1 (informal). If DDH, QR or LWE is hard, then for any MPC func-
tionality F, there exists a topology-hiding protocol realizing F for any network
graph G leaking at most an arbitrarily small fraction p of a bit, which is secure
against an adversary that does any number of static passive corruptions and
adaptive crashes. The round and communication complexity is polynomial in the
security parameter κ and 1/p.

Table 1. Adversarial model and security assumptions of existing topology-hiding
broadcast protocols. The table also shows the class of graphs for which the proto-
cols have polynomial communication complexity in the security parameter and the
number of parties.

Adversary Graph Hardness Asm. Model Reference

Semi-honest log diam. Trapdoor Perm. Standard [MOR15]

log diam. DDH Standard [HMTZ16]

cycles, trees, log
circum.

DDH Standard [AM17]

arbitrary DDH or QR Standard [ALM17a]

Fail-stop arbitrary OWF Trusted Hardware [BBMM18]

Semi-malicious
& fail-stop

arbitrary DDH or QR or LWE Standard [This work]

Our topology-hiding MPC protocol is obtained by compiling a MPC protocol
from a topology-hiding broadcast protocol leaking at most a fraction p of a bit.
We note that although it is well known that without leakage any functionality
can be implemented on top of secure communication, this statement cannot
be directly lifted to the setting with leakage. In essence, if a communication
protocol is used multiple times, it leaks multiple bits. However, we show that
our broadcast protocol, leaking at most a fraction p of a bit, can be executed
sequentially and in parallel, such that the result leaks also at most the same
fraction p. As a consequence, any protocol can be compiled into one that hides
topology and known results on implementing any multiparty computation can
be lifted to the topology hiding setting. However, this incurs a multiplicative
overhead in the round complexity.

Topology-Hiding Computation Beyond Semi-Honest Adversaries 7

We then present a topology hiding protocol to evaluate any poly-time func-
tion using FHE whose round complexity will amount to that of a single broadcast
execution. To do that, we first define an enhanced encryption scheme, which we
call Deeply Fully-Homomorphic Public-Key Encryption (DFH-PKE), with simi-
lar properties as the PKCR scheme presented in [AM17,ALM17a] and provide an
instantiation of DFH-PKE under FHE. Next, we show how to obtain a protocol
using DFH-PKE to evaluate any poly-time function in a topology hiding manner.

We also explore another natural extension of semi-honest corruption, the so-
called semi-malicious setting. As for passive corruption, the adversary selects a
set of parties and gets access to their internal state. But in addition, the adver-
sary can also set their randomness during the protocol execution. This mod-
els the setting where a party uses an untrusted source of randomness which
could be under the control of the adversary. This scenario is of interest as
tampered randomness sources have caused many security breaches in the past
[HDWH12,CNE+14]. In this paper, we propose a general compiler that enhances
the security of protocols that tolerate passive corruption with crashes to semi-
malicious corruption with crashes.

2 Preliminaries

2.1 Notation

For a public-key pk and a message m, we denote the encryption of m under pk
by [m]pk. Furthermore, for k messages m1, . . . ,mk, we denote by [m1, . . . ,mk]pk
a vector, containing the k encryptions of messages mi under the same key pk.

For an algorithm A(·), we write A(· ;U∗) whenever the randomness used in
A(·) should be made explicit and comes from a uniform distribution. By ≈c we
denote that two distribution ensembles are computationally indistinguishable.

2.2 Model of Topology-Hiding Communication

Adversary. Most of our results concern an adversary, who can statically pas-
sively corrupt an arbitrary set of parties Zp, with

∣
∣Zp

∣
∣ < n. Passively corrupted

parties follow the protocol instructions (this includes the generation of random-
ness), but the adversary can access their internal state during the protocol.

A semi-malicious corruption (see, e.g., [AJL+12]) is a stronger variant of a
passive corruption. Again, we assume that the adversary selects any set of semi-
malicious parties Zs with

∣
∣Zs

∣
∣ < n before the protocol execution. These parties

follow the protocol instructions, but the adversary can access their internal state
and can additionally choose their randomness.

A fail-stop adversary can adaptively crash parties. After being crashed, a
party stops sending messages. Note that crashed parties are not necessarily cor-
rupted. In particular, the adversary has no access to the internal state of a
crashed party unless it is in the set of corrupted parties. This type of fail-stop
adversary is stronger and more general than the one used in [BBMM18], where

8 R. LaVigne et al.

only passively corrupted parties can be crashed. In particular, in our model the
adversary does not necessarily learn the neighbors of crashed parties, whereas
in [BBMM18] they are revealed to it by definition.

Communication Model. We state our results in the UC framework. We
consider a synchronous communication network. Following the approach in
[MOR15], to model the restricted communication network we define the Fnet-
hybrid model. The Fnet functionality takes as input a description of the graph
network from a special “graph party” Pgraph and then returns to each party Pi

a description of its neighborhood. After that, the functionality acts as an “ideal
channel” that allows parties to communicate with their neighbors according to
the graph network.

Similarly to [BBMM18], we change the Fnet functionality from [MOR15] to
deal with a fail-stop adversary.

The functionality keeps the following variables: the set of crashed parties C and the
graph G. Initially, C = ∅ and G = (∅, ∅).

Initialization Step:

1: The party Pgraph sends graph G′ to Fnet. Fnet sets G = G′.
2: Fnet sends to each party Pi its neighborhood NG(Pi).
Communication Step:

1: If the adversary crashes party Pi, then Fnet sets C = C ∪ {Pi}.
2: If a party Pi sends the command (Send, j, m), where Pj ∈ NG(Pi) and m is the

message to Pj , to Fnet and Pi /∈ C, then Fnet outputs (i, m) to party Pj .

Functionality Fnet

Observe that since Fnet gives local information about the network graph to
all corrupted parties, any ideal-world adversary should also have access to this
information. For this reason, similar to [MOR15], we use in the ideal-world the
functionality Finfo, which contains only the Initialization Step of Fnet.

To model leakage we extend Finfo by a leakage phase, where the adversary
can query a (possibly probabilistic) leakage function L once. The inputs to L
include the network graph, the set of crashed parties and arbitrary input from
the adversary.

We say that a protocol leaks one bit of information if the leakage function L
outputs one bit. We also consider the notion of leaking a fraction p of a bit. This is
modeled by having L output the bit only with probability p (otherwise, L outputs
a special symbol ⊥). Here our model differs from the one in [BBMM18], where
in case of the fractional leakage, L always gives the output, but the simulator is
restricted to query its oracle with probability p over its randomness. As noted
there, the formulation we use is stronger. We denote by FL

info the information
functionality with leakage function L.

Topology-Hiding Computation Beyond Semi-Honest Adversaries 9

The functionality keeps the following variables: the set of crashed parties C and the
graph G. Initially, C = ∅ and G = (∅, ∅).

Initialization Step:

1: The party Pgraph sends graph G′ = (V, E) to FL
info. FL

info sets G = G′.
2: FL

info sends to each party Pi its neighborhood NG(Pi).
Leakage Step:

1: If the adversary crashes party Pi, then FL
info sets C = C ∪ {Pi}.

2: If the adversary sends the command (Leak, q) to FL
info for the first time, then

FL
info outputs L(q, C, G) to the adversary.

Functionality FL
info

Security Model. Our protocols provide security with abort. In particular, the
adversary can choose some parties, who do not receive the output (while the
others still do). That is, no guaranteed output delivery and no fairness is pro-
vided. Moreover, the adversary sees the output before the honest parties and
can later decide which of them should receive it.

Technically, we model such ability in the UC framework as follows: First,
the ideal world adversary receives from the ideal functionality the outputs of the
corrupted parties. Then, it inputs to the functionality an abort vector containing
a list of parties who do not receive the output.

Definition 1. We say that a protocol Π topology-hidingly realizes a functional-
ity F with L-leakage, in the presence of an adversary who can statically passive
corrupt and adaptively crash any number of parties, if it UC-realizes (FL

info ‖ F)
in the Fnet-hybrid model.

2.3 Background

Graphs and Random Walks. In an undirected graph G = (V,E) we denote
by NG(Pi) the neighborhood of Pi ∈ V . The k-neighborhood of a party Pi ∈ V
is the set of all parties in V within distance k to Pi.

In our work we use the following lemma from [ALM17a]. It states that in
an undirected connected graph G, the probability that a random walk of length
8|V |3τ covers G is at least 1 − 1

2τ .

Lemma 1 ([ALM17a]). Let G = (V,E) be an undirected connected graph. Fur-
ther let W(u, τ) be a random variable whose value is the set of nodes covered by
a random walk starting from u and taking 8|V |3τ steps. We have

Pr
W

[W(u, τ) = V] ≥ 1 − 1
2τ

.

PKCR Encryption. As in [ALM17a], our protocols require a public key encryp-
tion scheme with additional properties, called Privately Key Commutative and
Rerandomizable encryption. We assume that the message space is bits. Then,

10 R. LaVigne et al.

a PKCR encryption scheme should be: privately key commutative and homo-
morphic with respect to the OR operation1. We formally define these properties
below.

Let PK, SK and C denote the public key, secret key and ciphertext spaces.
As any public key encryption scheme, a PKCR scheme contains the algorithms
KeyGen : {0, 1}∗ → PK×SK, Encrypt : {0, 1}×PK → C and Decrypt : C×SK →
{0, 1} for key generation, encryption and decryption respectively (where KeyGen
takes as input the security parameter).

Privately Key-Commutative. We require PK to form a commutative group
under the operation �. So, given any pk1, pk2 ∈ PK, we can efficiently compute
pk3 = pk1 � pk2 ∈ PK and for every pk, there exists an inverse denoted pk−1.

This group must interact well with ciphertexts; there exists a pair of efficiently
computable algorithms AddLayer : C × SK → C and DelLayer : C × SK → C such
that

– For every public key pair pk1, pk2 ∈ PK with corresponding secret keys sk1
and sk2, message m ∈ M, and ciphertext c = [m]pk1 ,

AddLayer(c, sk2) = [m]pk1�pk2
.

– For every public key pair pk1, pk2 ∈ PK with corresponding secret keys sk1
and sk2, message m ∈ M, and ciphertext c = [m]pk1 ,

DelLayer(c, sk2) = [m]pk1�pk−1
2

.

Notice that we need the secret key to perform these operations, hence the prop-
erty is called privately key-commutative.

OR-Homomorphic. We also require the encryption scheme to be OR-homo-
morphic, but in such a way that parties cannot tell how many 1’s or 0’s were
OR’d (or who OR’d them). We need an efficiently-evaluatable homomorphic-OR
algorithm, HomOR : C × C → C, to satisfy the following: for every two messages
m,m′ ∈ {0, 1} and every two ciphertexts c, c′ ∈ C such that Decrypt(c, sk) = m
and Decrypt(c, sk) = m′,

{(m,m′, c, c′, pk,Encrypt(m ∨ m′, pk;U∗))}
≈c

{(m,m′, c, c′, pk,HomOR(c, c′, pk;U∗))}
Note that this is a stronger definition for homomorphism than usual; usually we
only require correctness, not computational indistinguishability.

In [HMTZ16], [AM17] and [ALM17a], the authors discuss how to get this kind
of homomorphic OR under the DDH assumption, and later [ALM17b] show how

1 PKCR encryption was introduced in [AM17,ALM17a], where it had three addi-
tional properties: key commutativity, homomorphism and rerandomization, hence,
it was called Privately Key Commutative and Rerandomizable encryption. However,
rerandomization is actually implied by the strengthened notion of homomorphism.
Therefore, we decided to not include the property, but keep the name.

Topology-Hiding Computation Beyond Semi-Honest Adversaries 11

to get it with the QR assumption. For more details on other kinds of homomor-
phic cryptosystems that can be compiled into OR-homomorphic cryptosystems,
see [ALM17b].

Random Walk Approach [ALM17a]. Our protocol builds upon the protocol
from [ALM17a]. We give a high level overview. To achieve broadcast, the protocol
computes the OR. Every party has an input bit: the sender inputs the broadcast
bit and all other parties use 0 as input bit. Computing the OR of all those bits
is thus equivalent to broadcasting the sender’s message.

First, let us explain a simplified version of the protocol that is unfortunately
not sound, but gets the basic principal across. Each node encrypts its bit under
a public key and forwards it to a random neighbor. The neighbor OR’s its own
bit, adds a fresh public key layer, and it forwards the ciphertext to a randomly
chosen neighbor. Eventually, after about O(κn3) steps, the random walk of every
message visits every node in the graph, and therefore, every message will contain
the OR of all bits in the network. Now we start the backwards phase, reversing
the walk and peeling off layers of encryption.

This scheme is not sound because seeing where the random walks are coming
from reveals information about the graph! So, we need to disguise that infor-
mation. We will do so by using correlated random walks, and will have a walk
running down each direction of each edge at each step (so 2× number of edges
number of walks total). The walks are correlated, but still random. This way, at
each step, each node just sees encrypted messages all under new and different
keys from each of its neighbors. So, intuitively, there is no way for a node to tell
anything about where a walk came from.

3 Topology-Hiding Broadcast

In this section we present a protocol, which securely realizes the broadcast func-
tionality FBC (with abort) in the Fnet-hybrid world and leaks at most an arbi-
trarily small (but not negligible) fraction of a bit. If no crashes occur, the protocol
does not leak any information. The protocol is secure against an adversary that
(a) controls an arbitrary static set of passively corrupted parties and (b) adap-
tively crashes any number of parties. Security can be based either on the DDH,
the QR or the LWE assumption. To build intuition we first present the simple
protocol variant which leaks at most one bit.

When a party Pi sends a bit b ∈ {0, 1} to the functionality FBC, then FBC sends b
to each party Pj ∈ P.

Functionality FBC

12 R. LaVigne et al.

3.1 Protocol Leaking One Bit

We first introduce the broadcast protocol variant BC-OB which leaks at most
one-bit. The protocol is divided into n consecutive phases, where, in each phase,
the parties execute a modification of the random-walk protocol from [ALM17a].
More specifically, we introduce the following modifications:

Single Output Party: There will be n phases. In each phase only one party,
Po, gets the output. Moreover, it learns the output from exactly one of the
random walks it starts.
To implement this, in the respective phase all parties except Po start their
random walks with encryptions of 1 instead of their input bits. This ensures
that the outputs they get from the random walks will always be 1. We call
these walks dummy since the contain no information. Party Po, on the other
hand, starts exactly one random walk with its actual input bit (the other
walks it starts with encryptions of 1). This ensures (in case no party crashes)
that Po actually learns the broadcast bit.

Happiness Indicator: Every party Pi holds an unhappy-bit ui. Initially, every
Pi is happy, i.e., ui = 0. If a neighbor of Pi crashes, then in the next phase Pi

becomes unhappy and sets ui = 1. The idea is that an unhappy party makes
all phases following the crash become dummy.
This is implemented by having the parties send along the random walk,
instead of a single bit, an encrypted tuple [b, u]pk. The bit u is the OR of
the unhappy-bits of the parties in the walk, while b is the OR of their input
bits and their unhappy-bits. In other words, a party Pi on the walk homo-
morphically ORs bi ∨ ui to b and ui to u.
Intuitively, if all parties on the walk were happy at the time of adding their
bits, b will actually contain the OR of their input bits and u will be set to 0.
On the other hand, if any party was unhappy, b will always be set to 1, and
u = 1 will indicate an abort.

Intuitively, the adversary learns a bit of information only if it manages to
break the one random walk which Po started with its input bit (all other walks
contain the tuple [1, 1]). Moreover, if it crashes a party, then all phases following
the one with the crash abort, hence, they do not leak any information.

More formally, parties execute, in each phase, protocol RandomWalkPhase.
This protocol takes as global inputs the length T of the random walk and the Po

which should get output. Additionally, each party Pi has input (di, bi, ui) where
di is its number of neighbors, ui is its unhappy-bit, and bi is its input bit.

Initialization Stage:

1: Each party Pi generates T · di keypairs (pk
(r)
i→j , sk

(r)
i→j) � KeyGen(1κ) where

r ∈ {1, . . . , T} and j ∈ {1, . . . , di}.

Protocol RandomWalkPhase(T, Po, (di, bi, ui)Pi∈P)

Topology-Hiding Computation Beyond Semi-Honest Adversaries 13

2: Each party Pi generates T − 1 random permutations on di elements{
π
(2)
i , . . . , π

(T)
i

}

3: For each party Pi, if any of Pi’s neighbors crashed in any phase before the
current one, then Pi becomes unhappy, i.e., sets ui = 1.

Aggregate Stage: Each party Pi does the following:

1: if Pi is the recipient Po then
2: Party Pi sends to the first neighbor the ciphertext [bi ∨ ui, ui]

pk
(1)
i→1

and

the public key pk
(1)
i→1, and to any other neighbor Pj it sends ciphertext

[1, 1]
pk

(1)
i→j

and the public key pk
(1)
i→j .

3: else
4: Party Pi sends to each neighbor Pj ciphertext [1, 1]

pk
(1)
i→j

and the key pk
(1)
i→j .

5: end if
6: // Add layer while ORing own input bit
7: for any round r from 2 to T do
8: For each neighbor Pj of Pi, do the following (let k = π

(r)
i (j)):

9: if Pi did not receive a message from Pj then

10: Party Pi sends ciphertext [1, 1]
pk

(r)
i→k

and key pk
(r)
i→k to neighbor Pk.

11: else // AddLayer and HomOR are applied component-wise

12: Let c
(r−1)
j→i and pk

(r−1)
j→i be the ciphertext and the public key Pi received

from Pj . Party Pi computes pk
(r)
i→k = pk

(r−1)
j→i � pk

(r)
i→k and

ĉ
(r)
i→k ← AddLayer

(
c
(r−1)
j→i , sk

(r)
i→k

)
.

13: Pi computes [bi ∨ ui, ui]
pk

(r)
i→k

and

c
(r)
i→k = HomOR

(
[bi ∨ ui, ui]

pk
(r)
i→k

, ĉ
(r)
i→k, pk

(r)
i→k

)
.

14: Party Pi sends ciphertext c
(r)
i→k and public key pk

(r)
i→k to neighbor Pk.

15: end if
16: end for

Decrypt Stage: Each party Pi does the following:

1: For each neighbor Pj of Pi, if Pi did not receive a message from Pj at round

T of the Aggregate Stage, then it sends ciphertext e
(T)
i→j = [1, 1]

pk
(T)
j→i

to Pj .

Otherwise, Pi sends to Pj e
(T)
i→j = HomOR

(
[bi ∨ ui, ui]

pk
(T)
j→i

, c
(T)
j→i, pk

(T)
j→i

)
.

2: for any round r from T to 2 do
3: For each neighbor Pk of Pi:
4: if Pi did not receive a message from Pk then
5: Party Pi sends e

(r−1)
i→j = [1, 1]

pk
(r−1)
j→i

to neighbor Pj , where k = π
(r)
i (j).

6: else
7: Denote by e

(r)
k→i the ciphertext Pi received from Pk, where k = π

(r)
i (j).

Party Pi sends e
(r−1)
i→j = DelLayer

(
e
(r)
k→i, sk

(r)
i→k

)
to neighbor Pj .

8: end if
9: end for

14 R. LaVigne et al.

10: If Pi is the recipient Po, then it computes (b, u) = Decrypt(e
(1)
1→i, sk

(1)
i→1) and

outputs (b, u, ui). Otherwise, it outputs (1, 0, ui).

The actual protocol BC-OB consists of n consecutive runs of the random walk
phase protocol RandomWalkPhase.

Each party Pi keeps bits bout
i , uout

i and ui, and sets ui = 0.
for o from 1 to n do

Parties jointly execute(
(btmp

i , vtmp
i , utmp

i)Pi∈P
)

= RandomWalkPhase(T, Po, (di, bi, ui)Pi∈P).

Each party Pi sets ui = utmp
i .

Party Po sets bout
o = btmp

o , uout
o = vtmp

o .
end for
For each party Pi, if uout

i = 0 then party Pi outputs bout
i .

Protocol BC-OB(T, (di, bi)Pi∈P)

The protocol BC-OB leaks information about the topology of the graph
during the execution of RandomWalkPhase, in which the first crash occurs.
(Every execution before the first crash proceeds almost exactly as the proto-
col in [ALM17a] and in every execution afterwards all values are blinded by the
unhappy-bit u.) We model the leaked information by a query to the leakage func-
tion LOB . The function outputs only one bit and, since the functionality FL

info

allows for only one query to the leakage function, the protocol leaks overall one
bit of information.

The inputs passed to LOB are: the graph G and the set C of crashed parties,
passed to the function by FL

info, and a triple (F, Ps, T′), passed by the simulator.
The idea is that the simulator needs to know whether the walk carrying the
output succeeded or not, and this depends on the graph G. More precisely, the
set F contains a list of pairs (Pf , r), where r is the number of rounds in the
execution of RandomWalkPhase, at which Pf crashed. LOB tells the simulator
whether any of the crashes in F disconnected a freshly generated random walk
of length T′, starting at given party Ps.

if for any (Pf , r) ∈ F , Pf �∈ C then Return 0.
else

Generate in G a random walk of length T′ starting at Ps.
Return 1 if for any (Pf , r) ∈ F removing party Pf after r rounds disconnects
the walk and 0 otherwise.

end if

Function LOB((F, Ps, T
′), C, G)

We prove the following theorem in Sect.A.1.

Theorem 2. Let κ be the security parameter. For T = 8n3(log(n) + κ) the pro-
tocol BC-OB(T, (di, bi)Pi∈P)) topology-hidingly realizes FLOB

info ||FBC (with abort)

Topology-Hiding Computation Beyond Semi-Honest Adversaries 15

in the Fnet hybrid-world, where the leakage function LOB is the one defined as
above. If no crashes occur, then there is no abort and there is no leakage.

3.2 Protocol Leaking a Fraction of a Bit

We now show how to go from BC-OB to the actual broadcast protocol BC-FBp

which leaks only a fraction p of a bit. The leakage parameter p can be arbitrarily
small. However, the complexity of the protocol is proportional to 1/p. As a
consequence, 1/p must be polynomial and p cannot be negligible.

The idea is to leverage the fact that the adversary can gain information
in only one execution of RandomWalkPhase. Imagine that RandomWalkPhase
succeeds only with a small probability p, and otherwise the output bit b is 1.
Moreover, assume that during RandomWalkPhase the adversary does not learn
whether it will fail until it can decrypt the output.

We can now, for each phase, repeat RandomWalkPhase ρ times, so that with
overwhelming probability one of the repetitions does not fail. A party Po can
then compute its output as the AND of outputs from all repetitions (or abort
if any repetition aborted). On the other hand, the adversary can choose only
one execution of RandomWalkPhase, in which it learns one bit of information
(all subsequent repetitions will abort). Moreover, it must choose it before it
knows whether the execution succeeds. Hence, the adversary learns one bit of
information only with probability p.

What is left is to modify RandomWalkPhase, so that it succeeds only with
probability p, and so that the adversary does not know whether it will succeed.
We only change the Aggregate Stage. Instead of an encrypted tuple [b, u], the
parties send along the walk 	1/p
 + 1 encrypted bits [b1, . . . , b�1/p�, u], where
u again is the OR of the unhappy-bits, and every bk is a copy the bit b in
RandomWalkPhase, with some caveats. For each phase o, and for every party
Pi �= Po, all bk are copies of b in the walk and they all contain 1. For Po, only
one of the bits, bk, contains the OR, while the rest is initially set to 1.

During the Aggregate Stage, the parties process every ciphertext corre-
sponding to a bit bk the same way they processed the encryption of b in the
RandomWalkPhase. Then, before sending the ciphertexts to the next party on
the walk, the encryptions of the bits bk are randomly shuffled. (This way, as long
as the walk traverses an honest party, the adversary does not know which of the
ciphertexts contain dummy values.) At the end of the Aggregate Stage (after T
rounds), the last party chooses uniformly at random one of the 	1/p
 cipher-
texts and uses it, together with the encryption of the unhappy-bit, to execute
the Decrypt Stage as in RandomWalkPhase.

The information leaked by BC-FBp is modeled by the following func-
tion LFBp

.

16 R. LaVigne et al.

Let p′ = 1/�1/p�. With probability p′, return LOB((F, Ps, T
′), C, G) and with

probability 1 − p′ return ⊥.

Function LFBp((F, Ps, T
′), C, G)

A formal description of the modified protocol ProbabilisticRandomWalkPhasep

and a proof of the following theorem can be found in Sect.A.2.

Theorem 3. Let κ be the security parameter. For τ = log(n) + κ, T = 8n3τ ,
and ρ = τ/(p′ − 2−τ), where p′ = 1/	1/p
, protocol BC-FBp(T, ρ, (di, bi)Pi∈P))
topology-hidingly realizes FLF Bp

info ||FBC (with abort) in the Fnet hybrid-world,
where the leakage function LFBp

is the one defined as above. If no crashes occur,
then there is no abort and there is no leakage.

4 From Broadcast to Topology-Hiding Computation

We showed how to get topology-hiding broadcasts. To get additional function-
ality (e.g. for compiling MPC protocols), we have to be able to compose these
broadcasts. When there is no leakage, this is straightforward: we can run as
many broadcasts in parallel or in sequence as we want and they will not affect
each other. However, if we consider a broadcast secure in the fail-stop model
that leaks at most 1 bit, composing t of these broadcasts could lead to leaking
t bits.

The first step towards implementing any functionality in a topology-hiding
way is to modify our broadcast protocol to a topology-hiding all-to-all multi-
bit broadcast, without aggregating leakage. Then, we show how to sequentially
compose such broadcasts, again without adding leakage. Finally, one can use
standard techniques to compile MPC protocols from broadcast. In the follow-
ing, we give a high level overview of each step. A detailed description of the
transformations can be found in the full version [LLM+18].

All-to-all Multibit Broadcast. The first observation is that a modification
of BC-FBp allows one party to broadcast multiple bits. Instead of sending a
single bit b during the random-walk protocol, each party sends a vector �b of bits
encrypted separately under the same key. That is, in each round of the Aggregate
Phase, each party sends a vector [�b1, . . . , �b�, u].

We can extend this protocol to all-to-all multibit broadcast, where each
party Pi broadcasts a message (b1, . . . , bk), as follows. Each of the vectors �bi

in [�b1, . . . , �b�, u] contains nk bits, and Pi uses the bits from n(i−1) to ni to com-
municate its message. That is, in the Aggregate Stage, every Pi homomorphically
OR’s �bi = (0, . . . , 0, b1, . . . , bk, 0, . . . , 0) with the received encrypted vectors.

Sequential Execution. All-to-all broadcasts can be composed sequentially by
preserving the state of unhappy bits between sequential executions. That is, once
some party sees a crash, it will cause all subsequent executions to abort.

Topology-Hiding Computation. With the above statements, we conclude
that any MPC protocol can be compiled into one that leaks only a fraction p of

Topology-Hiding Computation Beyond Semi-Honest Adversaries 17

a bit in total. This is achieved using a public key infrastructure, where in the
first round the parties use the topology hiding all-to-all broadcast to send each
public key to every other party, and then each round of the MPC protocol is
simulated with an all-to-all multibit topology-hiding broadcast. As a corollary,
any functionality F can be implemented by a topology-hiding protocol leaking
any fraction p of a bit.

5 Efficient Topology-Hiding Computation with FHE

One thing to note is that compiling MPC from broadcast is rather expensive,
especially in the fail-stop model; we need a broadcast for every round. How-
ever, we will show that an FHE scheme with additive overhead can be used to
evaluate any polynomial-time function f in a topology-hiding manner. Additive
overhead applies to ciphertext versus plaintext sizes and to error with respect to
all homomorphic operations if necessary. We will employ an altered random walk
protocol, and the total number of rounds in this protocol will amount to that of
a single broadcast. We remark that FHE with additive overhead can be obtained
from subexponential iO and subexponentially secure OWFs (probabilistic iO),
as shown in [CLTV15].

5.1 Deeply-Fully-Homomorphic Public-Key Encryption

In the altered random walk protocol, the PKCR scheme is replaced by a deeply-
fully-homomorphic PKE scheme (DFH-PKE). Similarly to PKCR, a DFH-PKE
scheme is a public-key encryption scheme enhanced by algorithms for adding
and deleting layers. However, we do not require that public keys form a group,
and we allow the ciphertexts and public keys on different levels (that is, for
which a layer has been added a different number of times) to be distinguishable.
Moreover, DFH-PKE offers full homomorphism.

This is captured by three additional algorithms: AddLayerr, DelLayerr, and
HomOpr, operating on ciphertexts with r layers of encryption (we will call such
ciphertexts level-r ciphertexts). A level-r ciphertext is encrypted under a level-r
public key (each level can have different key space).

Adding a layer requires a new secret key sk. The algorithm AddLayerr takes
as input a vector of level-r ciphertexts ��m�pk encrypted under a level-r public
key, the corresponding level-r public key pk, and a new secret key sk. It outputs
a vector of level-(r +1) ciphertexts and the level-(r +1) public key, under which
it is encrypted. Deleting a layer is the opposite of adding a layer.

With HomOpr, one can compute any function on a vector of encrypted mes-
sages. It takes a vector of level-r ciphertexts encrypted under a level-r public
key, the corresponding level-r public key pk and a function from a permitted set
F of functions. It outputs a level-r ciphertext that contains the output of the
function applied to the encrypted messages.

Intuitively, a DFH-PKE scheme is secure if one can simulate any level-r
ciphertext without knowing the history of adding and deleting layers. This is

18 R. LaVigne et al.

captured by the existence of an algorithm Leveled-Encryptr, which takes as input
a plain message and a level-r public key, and outputs a level-r ciphertext. We
require that for any level-r encryption of a message �m, the output of AddLayerr
on that ciphertext is indistinguishable from the output of Leveled-Encryptr+1

on �m and a (possibly different) level-(r + 1) public key. An analogous property
is required for DelLayerr. We will also require that the output of HomOpr is
indistinguishable from a level-r encryption of the output of the functions applied
to the messages. We refer to the full version [LLM+18] for a formal definition of
a DFH-PKE scheme and an instantiation from FHE.

Remark. If we relax DFH-PKE and only require homomorphic evaluation of
OR, then this relaxation is implied by any OR-homomorphic PKCR scheme (in
PKCR, additionally, all levels of key and ciphertext spaces are the same, and the
public key space forms a group). Such OR-homomorphic DFH-PKE would be
sufficient to prove the security of the protocols BC-OB and BC-FBp. However, for
simplicity and clarity, we decided to describe our protocols BC-OB and BC-FBp

from a OR-homomorphic PKCR scheme.

5.2 Topology-Hiding Computation from DFH-PKE

To evaluate any function f , we modify the topology-hiding broadcast protocol
(with PKCR replaced by DFH-PKE) in the following way. During the Aggregate
Stage, instead of one bit for the OR of all inputs, the parties send a vector of
encrypted inputs. At each round, each party homomorphically adds its input
together with its id to the vector. The last party on the walk homomorphically
evaluates f on the encrypted inputs, and (homomorphically) selects the output
of the party who receives it in the current phase. The Decrypt Stage is started
with this encrypted result.

Note that we still need a way to make a random walk dummy (this was
achieved in BC-OB and BC-FBp by starting it with a 1). Here, we will have
an additional input bit for the party who starts a walk. In case this bit is set,
when homomorphically evaluating f , we (homomorphically) replace the output
of f by a special symbol. We refer to the full version [LLM+18] for a detailed
description of the protocol and a proof of the following theorem.

Theorem 4. For security parameter κ, τ = log(n) + κ, T = 8n3τ , and ρ =
τ/(p′ − 2−τ), where p′ = 1/	1/p
, the protocol DFH-THC(T, ρ, (di, inputi)Pi∈P))
topology-hidingly evaluates any poly-time function f , FLF Bp

info ||f in the Fnet hy-
brid-world.

6 Security Against Semi-malicious Adversaries

In this section, we show how to generically compile our protocols to provide in
addition security against a semi-malicious adversary. The transformed protocol
proceeds in two phases: Randomness Generation and Deterministic Execution.
In the first phase, we generate the random tapes for all parties and in the second

Topology-Hiding Computation Beyond Semi-Honest Adversaries 19

phase we execute the given protocol with parties using the pre-generated random
tapes. The tapes are generated in such a way that the tape of each party Pi is
the sum of random values generated from each party. Hence, as long as one party
is honest, the generated tape is random.

Randomness Generation. The goal of the first phase is to generate for each
party Pi a uniform random value ri, which can then be used as randomness tape
of Pi in the phase of Deterministic Execution.2

1: Each party Pi generates n+1 uniform random values s
(0)
i , s

(1)
i , . . . , s

(n)
i and sets

r
(0)
i := s

(0)
i .

2: for any round r from 1 to n do
3: Each party Pi sends r

(r−1)
i to all its neighbors.

4: Each party Pi computes r
(r)
i as the sum of all values received from its (non-

crashed) neighbors in the current round and the value s
(k)
i .

5: end for
6: Each party Pi outputs ri := r

(n)
i .

Protocol GenerateRandomness

Lemma 2. Let G′ be the network graph without the parties which crashed dur-
ing the execution of GenerateRandomness. Any party Pi whose connected com-
ponent in G′ contains at least one honest party will output a uniform value
ri. The output of any honest party is not known to the adversary. The proto-
col GenerateRandomness does not leak any information about the network-graph
(even if crashes occur).

Proof. First observe that all randomness is chosen at the beginning of the first
round. The rest of the protocol is completely deterministic. This implies that
the adversary has to choose the randomness of corrupted parties independently
of the randomness chosen by honest parties.

If party Pi at the end of the protocol execution is in a connected component
with honest party Pj , the output ri is a sum which contains at least one of the
values s

(r)
j from Pj . That summand is independent of the rest of the summands

and uniform random. Thus, ri is uniform random as well.
Any honest party will (in the last round) compute its output as a sum which

contains a locally generated truly random value, which is not known to the
adversary. Thus, the output is also not known to the adversary.

Finally, observe that the message pattern seen by a party is determined by
its neighborhood. Moreover, the messages received by corrupted parties from
honest parties are uniform random values. This implies, that the view of the
adversary in this protocol can be easily simulated given the neighborhood of

2 To improve overall communication complexity of the protocol the values generated
in the first phase could be used as local seeds for a PRG which is then used to
generate the actual random tapes.

20 R. LaVigne et al.

corrupted parties. Thus, the protocol does not leak any information about the
network topology. �
Transformation to Semi-malicious Security. In the second phase of Deter-
ministic Execution, the parties execute the protocol secure against passive and
fail-stop corruptions, but instead of generating fresh randomness during the pro-
tocol execution, they use the random tape generated in the first phase.

1: The parties execute GenerateRandomness to generate random tapes.
2: If a party witnessed a crash in GenerateRandomness, it pretends that it wit-

nessed this crash in the first round of the protocol Π.

3: The parties execute Π, using the generated randomness tapes, instead of gen-
erating randomness on the fly.

Protocol EnhanceProtocol(Π)

Theorem 5. Let F be an MPC functionality and let Π be a protocol that topol-
ogy-hidingly realizes F in the presence of static passive corruptions and adaptive
crashes. Then, the protocol EnhanceProtocol(Π) topology-hidingly realizes F in
the presence of static semi-malicious corruption and adaptive crashes. The leak-
age stays the same.

Proof. (sketch) The randomness generation protocol GenerateRandomness used
in the first phase is secure against a semi-malicious fail-stopping adversary.
Lemma 2 implies that the random tape of any semi-malicious party that can
interact with honest parties is truly uniform random. Moreover, the adver-
sary has no information on the random tapes of honest parties. This implies
that the capability of the adversary in the execution of the actual protocol in
the second phase (which for fixed random tapes is deterministic) is the same
as for an semi-honest fail-stopping adversary. This implies that the leakage of
EnhanceProtocol(Π) is the same as for Π as the randomness generation protocol
does not leak information (even if crashes occur). �

As a corollary of Theorems 3 and 5, we obtain that any MPC functionality can
be realized in a topology-hiding manner secure against an adversary that does
any number of static semi-malicious corruptions and adaptive crashes, leaking
at most an arbitrary small fraction of information about the topology.

7 LWE Based OR-Homomorphic PKCR Encryption

In this section, we show how to get PKCR encryption from the LWE. The basis
of our PKCR scheme is the public-key crypto-system proposed in [Reg09].
LWE PKE scheme [Reg09] Let κ be the security parameter of the cryptosys-
tem. The cryptosystem is parameterized by two integers m, q and a probability
distribution χ on Zq. To guarantee security and correctness of the encryption
scheme, one can choose q ≥ 2 to be some prime number between κ2 and 2κ2, and

Topology-Hiding Computation Beyond Semi-Honest Adversaries 21

let m = (1 + ε)(κ + 1) log q for some arbitrary constant ε > 0. The distribution
χ is a discrete gaussian distribution with standard deviation α(κ) := 1√

κlog2κ
.

Key Generation: Setup: For i = 1, . . . , m, choose m vectors a1, . . . ,am ∈ Zκ
q

independently from the uniform distribution. Let us denote A ∈ Zm×κ
q the

matrix that contains the vectors ai as rows.
Secret Key : Choose s ∈ Zκ

q uniformly at random. The secret key is sk = s.
Public Key : Choose the error coefficients e1, . . . , em ∈ Zq independently
according to χ. The public key is given by the vectors bi = 〈ai, sk〉 + ei.
In matrix notation, pk = A · sk + e.

Encryption: To encrypt a bit b, we choose uniformly at random x ∈ {0, 1}m.
The ciphertext is c = (xᵀA,xᵀpk + b q

2).
Decryption: Given a ciphertext c = (c1, c2), the decryption of c is 0 if c2−c1 ·sk

is closer to 0 than to 	 q
2
 modulo q. Otherwise, the decryption is 1.

Extension to PKCR. We now extend the above PKE scheme to satisfy the
requirements of a PKCR scheme. For this, we show how to rerandomize cipher-
texts, how add and remove layers of encryption, and finally how to homomorphi-
cally compute XOR. We remark that it is enough to provide XOR-Homomorphic
PKCR encryption scheme to achieve an OR-Homomorphic PKCR encryption
scheme, as was shown in [ALM17a].

Rerandomization: We note that a ciphertext can be rerandomized, which is
done by homomorphically adding an encryption of 0. The algorithm Rand
takes as input a cipertext and the corresponding public key, as well as a
(random) vector x ∈ {0, 1}m.

return (c1 + xᵀA, c2 + xᵀpk).

Algorithm Rand(c = (c1, c2), pk,x)

Adding and Deleting Layers of Encryption: Given an encryption of a bit
b under the public key pk = A·sk+e, and a secret key sk′ with corresponding
public key pk′ = A · sk′ + e′, one can add a layer of encryption, i.e. obtain a
ciphertext under the public key pk · pk′ := A · (sk + sk′) + e + e′. Also, one
can delete a layer of encryption.

return (c1, c1 · sk + c2)

Algorithm AddLayer(c = (c1, c2), sk)

return (c1, c2 − c1 · sk)
Algorithm DelLayer(c = (c1, c2), sk)

22 R. LaVigne et al.

Error Analysis. Every time we add a layer, the error increases. Hence, we
need to ensure that the error does not increase too much. After l steps, the
error in the public key is pk0...l =

∑l
i=0 ei, where ei is the error added in

each step.
The error in the ciphertext is c0...l =

∑l
i=0 xi

∑i
j=0 ej , where the xi is the

chosen randomness in each step. Since xi ∈ {0, 1}m, the error in the ciphertext
can be bounded by m · maxi{

∣
∣ei

∣
∣
∞} · l2, which is quadratic in the number of

steps.
Homomorphic XOR: A PKCR encryption scheme requires a slightly stronger

version of homomorphism. In particular, homomorphic operation includes the
rerandomization of the ciphertexts. Hence, the algorithm hXor also calls Rand.
The inputs to hXor are two ciphertexts encrypted under the same public key
and the corresponding public key.

Set c′′ = (c1 + c′
1, c2 + c′

2).
Choose x ∈ {0, 1}m uniformly at random.
return Rand(c′′, pk,x)

Algorithm hXor(c = (c1, c2), c
′ = (c′

1, c
′
2), pk)

Appendix

A Topology-Hiding Broadcast

This section contains supplementary material for Sect. 3.

A.1 Protocol Leaking One Bit

In this section we prove Theorem 2 from Sect. 3.1.

Theorem 2. Let κ be the security parameter. For T = 8n3(log(n)+κ) the protocol
BC-OB(T, (di, bi)Pi∈P)) topology-hidingly realizes FLOB

info ||FBC (with abort) in the
Fnet hybrid-world, where the leakage function LOB is the one defined as above.
If no crashes occur, then there is no abort and there is no leakage.

Proof. Completeness. We first show that the protocol is complete. To this end,
we need to ensure that the probability that all parties get the correct output is
overwhelming in κ. That is, the probability that all non-dummy random walks
(of length T = 8n3(log(n) + κ)) reach all nodes is overwhelming.

By Lemma 1, a walk of length 8n3τ does not reach all nodes with probability
at most 1

2τ . Then, using the union bound, we obtain that the probability that
there is a party whose walk does not reach all nodes is at most n

2τ . Hence, all n
walks (one for each party) reach all nodes with probability at least 1 − n

2τ . If we
want this value to be overwhelming, e.g. 1 − 1

2κ , we can set τ := κ + log(n).

Topology-Hiding Computation Beyond Semi-Honest Adversaries 23

Soundness. We now need to show that no environment can distinguish between
the real world and the simulated world, when given access to the adversarially-
corrupted parties. We first describe on a high level the simulator SOB and argue
that it simulates the real execution.

In essence, the task of SOB is to simulate the messages sent by honest parties
to passively corrupted parties. Consider a corrupted party Pc and its honest
neighbor Ph. The messages sent from Ph to Pc during the Aggregate Stage are
ciphertexts, to which Ph added a layer, and corresponding public keys. Since
Ph is honest, the adversary does not know the secret keys corresponding to the
sent public keys. Hence, SOB can simply replace them with encryptions of a pair
(1, 1) under a freshly generated public key. The group structure of keys in PKCR
guarantees that a fresh key has the same distribution as the composed key (after
executing AddLayer). Semantic security implies that the encrypted message can
be replaced by (1, 1).

Consider now the Decrypt Stage at round r. Let pk
(r)
c→h be the public key

sent by Pc to Ph in the Aggregate Stage (note that this is not the key discussed
above; there we argued about keys sent in the opposite direction). SOB will send
to Pc a fresh encryption under pk

(r)
c→h. We now specify what it encrypts.

Note that the only interesting case is when the party Po receiving output is
corrupted and when we are in the round r in which the (only one) random walk
carrying the output enters an area of corrupted parties, containing Po (that is,
when the walk with output contains from Ph all the way to Po only corrupted
parties). In this one message in round r the adversary learns the output of Po.
All other messages are simply encryptions of (1, 1).

For this one meaningful message, we consider three cases. If any party crashed
in a phase preceding the current one, SOB sends an encryption of (1, 1) (as in
the real world the walk is made dummy by an unhappy party). If no crashes
occurred up to this point (round r in given phase), SOB encrypts the output
received from FBC. If a crash happened in the given phase, SOB queries the
leakage oracle LOB , which essentially executes the protocol and tells whether
the output or (1, 1) should be sent.

Simulator. Below, we present the pseudocode of the simulator. The essential
part of it is the algorithm PhaseSimulation, which is also illustrated in Fig. 1.

1. SOB corrupts passively Zp.
2. SOB sends inputs for all parties in Zp to FBC and receives the output bit bout.
3. For each Pi ∈ Zp, SOB receives NG(Pi) from FL

info.
4. Throughout the simulation, if A crashes a party Pf , so does SOB .
5. Now SOB has to simulate the view of all parties in Zp.

In every phase in which Po should get the output, first of all the Initialization
Stage is executed among the parties in Zp and the T key pairs are generated for
every Pi ∈ Zp. Moreover, for every Pi ∈ Zp the permutations π

(r)
i are generated,

defining those parts of all random walks, which pass through parties in Zp.

Simulator SOB

24 R. LaVigne et al.

The messages sent by parties in Zp are generated by executing the protocol
RandomWalkPhase. The messages sent by correct parties Pi �∈ Zp are generated
by executing PhaseSimulation(Po, Pi), described below.

6. SOB sends to FBC the abort vector (in particular, the vector contains all parties
Po who should receive their outputs in phases following the first crash and,
depending on the output of LOB , the party who should receive its output in the
phase with first crash).

If Po ∈ Zp, let w denote the random walk generated in the Initialization Stage (at
the beginning of the simulation of this phase), which starts at Po and carries the
output bit. Let � denote the number of parties in Zp on w before the first correct
party. If Po �∈ Zp, w and � are not defined.

For every Pj ∈ Zp ∩ NG(Pi), let pk
(r)
j→i denote the public key generated in the

Initialization Stage by Pj for Pi and for round r.
Initialization Stage

1: For every neighbor Pj ∈ Zp of the correct Pi, SOB generates T key pairs

(pk
(1)
i→j , sk

(1)
i→j), . . . , (pk

(T)
i→j , sk

(T)
i→j).

Aggregate Stage

1: In round r, for every neighbor Pj ∈ NG(Pi)∩Zp, SOB sends ([1, 1]
pk

(r)
i→j

, pk
(r)
i→j)

to Pj .

Decrypt Stage

1: if A crashed any party in any phase before the current one or Po �∈ Zp then
2: In every round r and for every neighbor Pj ∈ NG(Pi) ∩ Zp, SOB sends

[1, 1]
pk

(r)
j→i

to Pj .

3: else
4: In every round r and for every neighbor Pj ∈ NG(Pi) ∩ Zp, SOB sends

[1, 1]
pk

(r)
j→i

to Pj unless the following three conditions hold: (a) Pi is the

first party not in Zp on w, (b) Pj is the last party in Zp on w, and (c)
r = 2T − �.

5: If the three conditions hold (in particular r = 2T − �), SOB does the
following. If A did not crash any party in a previous round, SOB sends
[bout, 0]

pk
(r)
j→i

to party Pj .

6: Otherwise, let F denote the set of pairs (Pf , s − �+1) such that A crashed

Pf in round s. SOB queries FLOB
info for the leakage on input (F, Pi, T − �).

If the returned value is 1, it sends [1, 1]
pk

(r)
j→i

to Pj . Otherwise it sends

[bout, 0]
pk

(r)
j→i

to party Pj .

7: end if

Algorithm PhaseSimulation(Po, Pi)

Topology-Hiding Computation Beyond Semi-Honest Adversaries 25

We prove that no environment can tell whether it is interacting with Fnet

and the adversary in the real world or with FL
info and the simulator in the ideal

world.

Pi

Pj

Po

Fig. 1. An example of the algorithm executed by the simulator SOB . The filled circles
are the corrupted parties. The red line represents the random walk generated by SOB in
Step 5, in this case of length � = 3. SOB simulates the Decrypt Stage by sending fresh
encryptions of (1, 1) at every round from every honest party to each of its corrupted
neighbors, except in round 2T− 3 from Pi to Pj . If no crash occurred up to that point,
SOB sends encryption of (bout, 0). Otherwise, it queries the leakage oracle about the
walk of length T − 3, starting at Pi.

Hybrids and Security Proof.

Hybrid 1. S1 simulates the real world exactly. This means, S has information
on the entire topology of the graph, each party’s input, and can simulate
identically the real world.

Hybrid 2. S2 replaces the real keys with the simulated public keys, but still
knows everything about the graph as in the first hybrid.
More formally, in each random walk phase and for each party Pi ∈ P \
Zp where NG(Pi) ∩ Zp �= ∅, S2 generates T key pairs (pk(1)i→j , sk

(1)
i→j), . . . ,

(pk(T)i→j , sk
(T)
i→j) for every neighbor Pj ∈ NG(Pi) ∩ Zp. In each round r of the

corresponding Aggregate Stage and for every neighbor Pj ∈ NG(Pi)∩Zp, S2

does the following. Pi receives ciphertext [b, u]
pk

(r)
∗→i

and the public key pk
(r)
∗→i

destined for Pj . Instead of adding a layer and homomorphically OR’ing the
bit bi, S2 computes (b′, u′) = (b ∨ bi ∨ ui, u ∨ ui), and sends [b′, u′]

pk
(r)
i→j

to Pj .
In other words, it sends the same message as S1 but encrypted with a fresh
public key. In the corresponding Decrypt Stage, Pi will get back a ciphertext
from Pj encrypted under this exact fresh public key.

26 R. LaVigne et al.

Hybrid 3. S3 now simulates the ideal functionality during the Aggregate Stage.
It does so by sending encryptions of (1, 1) instead of the actual messages and
unhappy bits. More formally, in each round r of the Aggregate Stage and for
all parties Pi ∈ P \ Zp and Pj ∈ NG(Pi) ∩ Zp, S3 sends [1, 1]

pk
(r)
i→j

instead of

the ciphertext [b, u]
pk

(r)
i→j

sent by S2.
Hybrid 4. S4 does the same as SOB during the Decrypt Stage for all steps

except for round 2T−
 of the first random walk phase in which the adversary
crashes a party. This corresponds to the original description of the simulator
except for the ‘Otherwise’ condition of Step 6 in the Decrypt Stage.

Hybrid 5. S5 is the actual simulator SOB .

In order to prove that no environment can distinguish between the real world
and the ideal world, we prove that no environment can distinguish between any
two consecutive hybrids when given access to the adversarially-corrupted nodes.

Claim 1. No efficient distinguisher D can distinguish between Hybrid 1 and
Hybrid 2.

Proof: The two hybrids only differ in the computation of the public keys
that are used to encrypt messages in the Aggregate Stage from any honest party
Pi ∈ P \ Zp to any dishonest neighbor Pj ∈ NG(Pi) ∩ Zp.

In Hybrid 1, party Pi sends to Pj an encryption under a fresh public key
in the first round. In the following rounds, the encryption is sent either under
a product key pk

(r)
i→j = pk

(r−1)
k→i � pk

(r)
i→j or under a fresh public key (if Pi is

unhappy). Note that pk
(r−1)
k→i is the key Pi received from a neighbor Pk in the

previous round.
In Hybrid 2, party Pi sends to Pj an encryption under a fresh public key

pk
(r)
i→j in every round.
The distribution of the product key used in Hybrid 1 is the same as the

distribution of a freshly generated public-key. This is due to the (fresh) pk(r)i→j key
which randomizes the product key. Therefore, no distinguisher can distinguish
between Hybrid 1 and Hybrid 2. �

Claim 2. No efficient distinguisher D can distinguish between Hybrid 2 and
Hybrid 3.

Proof: The two hybrids differ only in the content of the encrypted messages
that are sent in the Aggregate Stage from any honest party Pi ∈ P \ Zp to any
dishonest neighbor Pj ∈ NG(Pi) ∩ Zp.

In Hybrid 2, party Pi sends to Pj in the first round an encryption of (bi ∨
ui, ui). In the following rounds, Pi sends to Pj either an encryption of (b ∨ bi ∨
ui, u ∨ ui), if message (b, u) is received from neighbor π−1

i (j), or an encryption
of (1, 1) if no message is received.

In Hybrid 3, all encryptions that are sent from party Pi to party Pj are
replaced by encryptions of (1, 1).

Topology-Hiding Computation Beyond Semi-Honest Adversaries 27

Since the simulator chooses a key independent of any key chosen by parties
in Zp in each round, the key is unknown to the adversary. Hence, the semantic
security of the encryption scheme guarantees that the distinguisher cannot distin-
guish between both encryptions. �

Claim 3. No efficient distinguisher D can distinguish between Hybrid 3 and
Hybrid 4.

Proof: The only difference between the two hybrids is in the Decrypt Stage.
We differentiate two cases:

– A phase where the adversary did not crash any party in this or any previous
phase. In this case, the simulator S3 sends an encryption of (bW , uW), where
bW =

∨

Pj∈W bj is the OR of all input bits in the walk and uW = 0, since no
crash occurred. S4 sends an encryption of (bout, 0), where bout =

∨

Pi∈P bi.
Since the graph is connected, bout = bW with overwhelming probability, as
proven in Corollary 1. Also, the encryption in Hybrid 4 is done with a fresh
public key which is indistinguishable with the encryption done in Hybrid 3
by OR’ing many times in the graph, as shown in Claim 2.1 in [ALM17a].

– A phase where the adversary crashed a party in a previous phase or any round
different than 2T −
 of the first phase where the adversary crashes a party.
In Hybrid 4 the parties send an encryption of (1, 1). This is also the case
in Hybrid 3, because even if a crashed party disconnected the graph, each
connected component contains a neighbor of a crashed party. Moreover, in
Hybrid 4, the messages are encrypted with a fresh public key, and in Hybrid
3, the encryptions are obtained by the homomorphic OR operation. Both
encryptions are indistinguishable, as shown in Claim 2.1 in [ALM17a]. �

Claim 4. No efficient distinguisher D can distinguish between Hybrid 4 and
Hybrid 5.

Proof: The only difference between the two hybrids is in the Decrypt Stage,
at round 2T −
 of the first phase where the adversary crashes.

Let F be the set of pairs (Pf , r) such that A crashed Pf at round r of the
phase. In Hybrid 4, a walk W of length T is generated from party Po. Let W1 be
the region of W from Po to the first not passively corrupted party and let W2

be the rest of the walk. Then, the adversary’s view at this step is the encryption
of (1, 1) if one of the crashed parties breaks W2, and otherwise an encryption of
(bW , 0). In both cases, the message is encrypted under a public key for which
the adversary knows the secret key.

In Hybrid 5, a walk W ′
1 is generated from Po of length
 ≤ T ending at the

first not passively corrupted party Pi. Then, the simulator queries the leakage
function on input (F, Pi, T−
), which generates a walk W ′

2 of length T−
 from Pi,
and checks whether W ′

2 is broken by any party in F . If W ′
2 is broken, Pi sends an

encryption of (1, 1), and otherwise an encryption of (bW , 0). Since the walk W ′

defined as W ′
1 followed by W ′

2 follows the same distribution as W , bW = bout with
overwhelming probability, and the encryption with a fresh public key which is

28 R. LaVigne et al.

indistinguishable with the encryption done by OR’ing many times in the graph,
then it is impossible to distinguish between Hybrid 4 and Hybrid 5. �

This concludes the proof of soundness. �

A.2 Protocol Leaking a Fraction of a Bit

In this section, we give a formal description of the random-walk phase pro-
tocol ProbabilisticRandomWalkPhasep for the broadcast protocol BC-FBp from
Sect. 3.2. Note that this protocol should be repeated ρ times in the actual
protocol. The boxes indicate the parts where it differs from the random-walk
phase protocol RandomWalkPhase for the broadcast protocol leaking one bit (cf.
Sect. 3.1).

Initialization Stage:

1: Each party Pi generates T · di keypairs (pk
(r)
i→j , sk

(r)
i→j) � KeyGen(1κ) where

r ∈ {1, . . . , T} and j ∈ {1, . . . , di}.
2: Each party Pi generates T − 1 random permutations on di elements{

π
(2)
i , . . . , π

(T)
i

}

3: For each party Pi, if any of Pi’s neighbors crashed in any phase before the
current one, then Pi becomes unhappy, i.e., sets ui = 1.

Aggregate Stage: Each party Pi does the following:

1: if Pi is the recipient Po then
2: Party Pi sends to the first neighbor the public key pk

(1)
i→1 and the ciphertext

[bi ∨ ui, 1, . . . , 1, ui]
pk

(1)
i→1

(�1/p� − 1 ciphertexts contain 1), and to any

other neighbor Pj it sends [1, . . . , 1, 1]
pk

(1)
i→j

and the public key pk
(1)
i→j .

3: else
4: Party Pi sends to each neighbor Pj ciphertext [1, . . . , 1, 1]

pk
(1)
i→j

and the

public key pk
(1)
i→j .

5: end if
6: // Add layer while ORing own input bit
7: for any round r from 2 to T do
8: For each neighbor Pj of Pi, do the following (let k = π

(r)
i (j)):

9: if Pi did not receive a message from Pj then

10: Party Pi sends [1, . . . , 1, 1]
pk

(r)
i→k

and pk
(r)
i→k to neighbor Pk.

11: else
12: Let c

(r−1)
j→i and pk

(r−1)
j→i be the ciphertext and the public key Pi received

from Pj . Party Pi computes pk
(r)
i→k = pk

(r−1)
j→i � pk

(r)
i→k and

ĉ
(r)
i→k ← AddLayer

(
c
(r−1)
j→i , pk

(r)
i→k

)
.

Protocol ProbabilisticRandomWalkPhasep(T, Po, (di, bi, ui)Pi∈P)

Topology-Hiding Computation Beyond Semi-Honest Adversaries 29

13: Party Pi computes [bi ∨ ui, . . . , bi ∨ ui, ui]
pk

(r)
i→k

and

c
(r)
i→k = HomOR

(
[bi ∨ ui, . . . , bi ∨ ui, ui]

pk
(r)
i→k

, ĉ
(r)
i→k

)
.

14: Party Pi sends ciphertext c
(r)
i→k and public key pk

(r)
i→k to neighbor Pk.

15: end if
16: end for

Decrypt Stage: Each party Pi does the following:

1: For each neighbor Pj of Pi:
2: if Pi did not receive a message from Pj at round T of the Aggregate Stage then

3: Party Pi sends ciphertext e
(T)
i→j = [1, 1]

pk
(T)
j→i

to Pj .

4: else

5: Party Pi chooses uniformly at random one of the first �1/p� ciphertexts

in c
(T)
j→i. Let c̄

(T)
j→i denote the tuple containing the chosen ciphertext and

the last element of c
(T)
j→i (the encryption of the unhappy bit). Party Pi

computes and sends e
(T)
i→j = HomOR

(
[bi ∨ ui, ui]

pk
(T)
j→i

, c̄
(T)
j→i

)
to Pj .

6: end if
7: for any round r from T to 2 do
8: For each neighbor Pk of Pi:
9: if Pi did not receive a message from Pk then

10: Party Pi sends e
(r−1)
i→j = [1, 1]

pk
(r−1)
j→i

to neighbor Pj , where k = π
(r)
i (j).

11: else
12: Denote by e

(r)
k→i the ciphertext Pi received from Pk, where k = π

(r)
i (j).

Party Pi sends e
(r−1)
i→j = DelLayer

(
e
(r)
k→i, sk

(r)
i→k

)
to neighbor Pj .

13: end if
14: end for
15: If Pi is the recipient Po, then it computes (b, u) = Decrypt(e

(1)
1→i, sk

(1)
i→1) and

outputs (b, u, ui). Otherwise, it outputs (1, 0, ui).

Security Proof of the Protocol Leaking a Fraction of a Bit.
In this section we prove Theorem 3 from Sect. 3.2.

Theorem 3. Let κ be the security parameter. For τ = log(n) + κ, T = 8n3τ and
ρ = τ/(p′ − 2−τ), where p′ = 1/	1/p
, the protocol BC-FBp (T , ρ, (di, bi)Pi∈P))
topology-hidingly realizes FLF Bp

info ||FBC (with abort) in the Fnet hybrid-world,
where the leakage function LFBp

is the one defined as above. If no crashes occur,
then there is no abort and there is no leakage.

Proof. Completeness. We first show that the protocol is complete. That is, that
if the adversary does not crash any party, then every party gets the correct output
(the OR of all input bits) with overwhelming probability. More specifically, we
show that if no crashes occur, then after ρ repetitions of a phase, the party Po

outputs the correct value with probability at least 1 − 2−(κ+log(n)). The overall
completeness follows from the union bound: the probability that all n parties
output the correct value is at least 1 − 2−κ.

30 R. LaVigne et al.

Notice that if the output of any of the ρ repetitions intended for Po is cor-
rect, then the overall output of Po is correct. A given repetition can only give
an incorrect output when either the random walk does not reach all parties,
which happens with probability at most 2−τ , or when the repetition fails, which
happens with probability 1 − p′. Hence, the probability that a repetition gives
the incorrect result is at most 1 − p′ + 2−τ . The probability that all repetitions
are incorrect is then at most (1 − p′ + 2−τ)ρ ≤ 2−(κ+log(n)) (the inequality holds
for 0 ≤ p′ − 2−τ ≤ 1).

Soundness. We show that no environment can distinguish between the real
world and the simulated world, when given access to the adversarially-corrupted
nodes. The simulator SFB for BC-FBp is a modification of SOB . Here we only
sketch the changes and argue why SFB simulates the real world.

In each of the ρ repetitions of a phase, SFB executes a protocol very similar to
the one for SOB . In the Aggregate Stage, SFB proceeds almost identically to SOB

(except that it sends encryptions of vectors (1, . . . , 1) instead of only two values).
In the Decrypt Stage the only difference between SFB and SOB is in computing
the output for the party Po (as already discussed in the proof of Theorem 2, SFB

does this only when Po is corrupted and the walk carrying the output enters
an area of corrupted parties). In the case when there were no crashes before or
during given repetition of a phase, SOB would simply send the encrypted output.
On the other hand, SFB samples a value from the Bernoulli distribution with
parameter p and sends the encrypted output only with probability p, while with
probability 1 − p it sends the encryption of (1, 0). Otherwise, the simulation is
the same as for SOB .

It can be easily seen that SFB simulates the real world in the Aggregate
Stage and in the Decrypt Stage in every message other than the one encrypting
the output. But even this message comes from the same distribution as the
corresponding message sent in the real world. This is because in the real world,
if the walk was not broken by a crash, this message contains the output with
probability p. The simulator encrypts the output also with probability p in the
two possible cases: when there was no crash (SFB samples from the Bernoulli
distribution) and when there was a crash but the walk was not broken (LFB is
defined in this way).

Simulator. The simulator SFB proceeds almost identically to the simulator SOB

given in the proof of Theorem 2 (cf. Sect. A.1). We only change the algorithm
PhaseSimulation to ProbabilisticPhaseSimulation and execute it ρ times instead of
only once.

If Po ∈ Zp, let w denote the random walk generated in the Initialization Stage (at
the beginning of the simulation of this phase), which starts at Po and carries the
output bit. Let � denote the number of parties in Zp on w before the first correct
party. If Po �∈ Zp, w and � are not defined.

Algorithm ProbabilisticPhaseSimulation(Po, Pi)

Topology-Hiding Computation Beyond Semi-Honest Adversaries 31

For every Pj ∈ Zp ∩ NG(Pi), let pk
(r)
j→i denote the public key generated in the

Initialization Stage by Pj for Pi and for round r.
Initialization Stage

1: For every neighbor Pj ∈ Zp of the correct Pi, SFB generates T key pairs

(pk
(1)
i→j , sk

(1)
i→j), . . . , (pk

(T)
i→j , sk

(T)
i→j).

Aggregate Stage

1: In round r, for every neighbor Pj ∈ NG(Pi) ∩ Zp, SFB sends the tuple

([1, . . . , 1]
pk

(r)
i→j

, pk
(r)
i→j) (with �1/p� + 1 ones) to Pj .

Decrypt Stage

1: if Po �∈ Zp or A crashed any party in any phase before the current one

2: or in any repetition of the current phase then

3: In every round r and for every neighbor Pj ∈ NG(Pi) ∩ Zp, SFB sends
[1, 1]

pk
(r)
j→i

to Pj .

4: else
5: In every round r and for every neighbor Pj ∈ NG(Pi) ∩ Zp, SFB sends

[1, 1]
pk

(r)
j→i

to Pj unless the following three conditions hold: (a) Pi is the

first party not in Zp on w, (b) Pj is the last party in Zp on w, and (c)
r = 2T − �.

6: If the three conditions hold (in particular r = 2T− �), SFB does the follow-
ing. If A did not crash any party in a previous round,

7: SFB samples a value x from the Bernoulli distribution with parameter p′.
If x = 1 (with probability p′), SFB sends to Pj the ciphertext [bout, 0]

pk
(r)
j→i

and otherwise it sends [1, 0]
pk

(r)
j→i

.

8: Otherwise, let F denote the set of pairs (Pf , s− �+1) such that A crashed

Pf in round s. SFB queries FLF Bp
info for the leakage on input (F, Pi, T− �).

If the returned value is 1, it sends [1, 1]
pk

(r)
j→i

to Pj . Otherwise it sends

[bout, 0]
pk

(r)
j→i

to party Pj .

9: end if

Hybrids and Security Proof. We consider similar steps as the hybrids from
Sect. A.1.

Hybrid 1. S1 simulates the real world exactly. This means, S1 has information
on the entire topology of the graph, each party’s input, and can simulate
identically the real world.

Hybrid 2. S2 replaces the real keys with the simulated public keys, but still
knows everything about the graph as in the first hybrid.
More formally, in each subphase of each random walk phase and for each
party Pi ∈ P \ Zp where NG(Pi) ∩ Zp �= ∅, S2 generates T key pairs

32 R. LaVigne et al.

(pk(1)i→j , sk
(1)
i→j), . . . , (pk

(T)
i→j , sk

(T)
i→j) for every neighbor Pj ∈ NG(Pi) ∩ Zp.

Let α := 	 1
p
. In each round r of the corresponding Aggregate Stage and

for every neighbor Pj ∈ NG(Pi) ∩ Zp, S2 does the following: Pi receives
ciphertext [b1, . . . , bα, u]

pk
(r)
∗→i

and the public key pk
(r)
∗→i destined for Pj .

Instead of adding a layer and homomorphically OR’ing the bit bi, S2 com-
putes (b′

1, . . . , b
′
α, u′) = (b1 ∨ bi ∨ ui, · · · , bα ∨ bi ∨ ui, u ∨ ui), and sends

[b′
σ(1), · · · , b′

σ(α), u
′]
pk

(r)
i→j

to Pj , where σ is a random permutation on α ele-
ments. In other words, it sends the same message as S1 but encrypted with
a fresh public key. In the corresponding Decrypt Stage, Pi will get back a
ciphertext from Pj encrypted under this exact fresh public key.

Hybrid 3. S3 now simulates the ideal functionality during the Aggregate Stage.
It does so by sending encryptions of (1, . . . , 1) instead of the actual messages
and unhappy bits. More formally, let α := 	 1

p
. In each round r of a subphase
of a random walk phase and for all parties Pi ∈ P \Zp and Pj ∈ NG(Pi)∩Zp,
S3 sends [1, 1, . . . , 1]

pk
(r)
i→j

instead of the ciphertext [b1, . . . , bα, u]
pk

(r)
i→j

sent by
S2.

Hybrid 4. S4 does the same as SFB during the Decrypt Stage for all phases
and subphases except for the first subphase of a random walk phase in which
the adversary crashes a party.

Hybrid 5. S5 is the actual simulator SFB .

The proofs that no efficient distinguisher D can distinguish between Hybrid 1,
Hybrid 2 and Hybrid 3 are similar to the Claims 1 and 2. Hence, we prove
indistinguishability between Hybrid 3, Hybrid 4 and Hybrid 5.

Claim 5. No efficient distinguisher D can distinguish between Hybrid 3 and
Hybrid 4.

Proof: The only difference between the two hybrids is in the Decrypt Stage.
We differentiate three cases:

– A subphase l of a phase k where the adversary did not crash any party in this
phase, any previous subphase, or any previous phase. In this case, S3 sends
with probability p an encryption of (bW , uW), where bW =

∨

u∈W bu is the
OR of all input bits in the walk and uW = 0 (since no crash occurs), and with
probability 1−p an encryption of (1, 0). On the other hand, S4 samples r from
a Bernoulli distribution with parameter p, and if r = 1, it sends an encryption
of (bout, 0), where bout =

∨

i∈[n] bi, and if r = 0 it sends an encryption of (1, 0).
Since the graph is connected, bout = bW with overwhelming probability, as
proven in Corollary 1. Also, the encryption in Hybrid 4 is done with a fresh
public key which is indistinguishable with the encryption done in Hybrid 3
by OR’ing many times in the graph, as shown in Claim 2.1. in [ALM17a].

– A subphase l of a phase k where the adversary crashed a party in a previous
subphase or a previous phase.
In Hybrid 3 the parties send encryptions of (1, 1). This is also the case in
Hybrid 4, because even if a crashed party disconnected the graph, each con-
nected component contains a neighbor of a crashed party. Moreover, in Hybrid

Topology-Hiding Computation Beyond Semi-Honest Adversaries 33

4, the messages are encrypted with a fresh public key, and in Hybrid 3, the
encryptions are obtained by the homomorphic OR operation. Both encryp-
tions are indistinguishable, as shown in Claim 2.1. in [ALM17a].

�

Claim 6. No efficient distinguisher D can distinguish between Hybrid 4 and
Hybrid 5.

Proof: The only difference between the two hybrids is in the Decrypt Stage
of the first subphase of a phase where the adversary crashes.

Let F be the set of pairs (Pf , r) such that A crashed Pf at round r of the
phase. In Hybrid 4, a walk W of length T is generated from party Po. Let W1 be
the region of W from Po to the first not passively corrupted party and let W2 be
the rest of the walk. Then, the adversary’s view at this step is the encryption of
(1, 1) if one of the crashed parties breaks W2 or if the walk became dummy (which
happens with probability 1−p, since the ciphertexts are permuted randomly and
only one ciphertext out of 1

p contains bW). Otherwise, the adversary’s view is
an encryption of (bW , 0). In both cases, the message is encrypted under a public
key for which the adversary knows the secret key.

In Hybrid 5, a walk W ′
1 is generated from Po of length
 ≤ T ending at the

first not passively corrupted party Pi. Then, the simulator queries the leakage
function on input (F, Pi, T−
). Then, with probability p it generates a walk W ′

2

of length T −
 from Pi, and checks whether W ′
2 is broken by any party in F .

If W ′
2 is broken, Pi sends an encryption of (1, 1), and otherwise an encryption

of (bW , 0). Since the walk W ′ defined as W ′
1 followed by W ′

2 follows the same
distribution as W , bW = bout with overwhelming probability, and the encryption
with a fresh public key which is indistinguishable with the encryption done by
OR’ing many times in the graph, then it is impossible to distinguish between
Hybrid 4 and Hybrid 5. �

This concludes the proof of soundness. �

References

[AJL+12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computa-
tion and interaction via threshold FHE. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 29

[ALM17a] Akavia, A., LaVigne, R., Moran, T.: Topology-hiding computation on all
graphs. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401,
pp. 447–467. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 15

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-319-63688-7_15
https://doi.org/10.1007/978-3-319-63688-7_15

34 R. LaVigne et al.

[ALM17b] Akavia, A., LaVigne, R., Moran, T.: Topology-hiding computation on all
graphs. Cryptology ePrint Archive, Report 2017/296 (2017). http://eprint.
iacr.org/2017/296

[AM17] Akavia, A., Moran, T.: Topology-hiding computation beyond logarithmic
diameter. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 609–637. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 21

[BBMM18] Ball, M., Boyle, E., Malkin, T., Moran, T.: Exploring the boundaries of
topology-hiding computation. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 294–325. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 10

[Bd90] Bos, J., den Boer, B.: Detection of disrupters in the DC protocol. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol.
434, pp. 320–327. Springer, Heidelberg (1990). https://doi.org/10.1007/3-
540-46885-4 33

[Cha81] Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

[Cha88] Chaum, D.: The dining cryptographers problem: unconditional sender and
recipient untraceability. J. Cryptol. 1(1), 65–75 (1988)

[CLTV15] Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of prob-
abilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 19

[CNE+14] Checkoway, S., et al.: On the practical exploitability of dual EC in TLS
implementations. In: USENIX Security Symposium, pp. 319–335 (2014)

[DDWY90] Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message
transmission. In: 31st FOCS, pp. 36–45. IEEE Computer Society Press,
October 1990

[GJ04] Golle, P., Juels, A.: Dining cryptographers revisited. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 456–473.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-
3 27

[HDWH12] Heninger, N., Durumeric, Z., Wustrow, E., Halderman, J.A.: Mining your
PS and QS: detection of widespread weak keys in network devices. In:
USENIX Security Symposium, vol. 8, p. 1 (2012)

[HJ07] Hinkelmann, M., Jakoby, A.: Communications in unknown networks: pre-
serving the secret of topology. Theoret. Comput. Sci. 384(2–3), 184–200
(2007)

[HMTZ16] Hirt, M., Maurer, U., Tschudi, D., Zikas, V.: Network-hiding communica-
tion and applications to multi-party protocols. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 335–365. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 12

[LLM+18] Lavigne, R., Liu-Zhang, C.-D., Maurer, U., Moran, T., Mularczyk, M.,
Tschudi, D.: Topology-hiding computation beyond semi-honest adver-
saries. Cryptology ePrint Archive, Report 2018/255 (2018). https://eprint.
iacr.org/2018/255

[MOR15] Moran, T., Orlov, I., Richelson, S.: Topology-hiding computation. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 159–181.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6 8

http://eprint.iacr.org/2017/296
http://eprint.iacr.org/2017/296
https://doi.org/10.1007/978-3-319-56617-7_21
https://doi.org/10.1007/978-3-319-56617-7_21
https://doi.org/10.1007/978-3-319-78372-7_10
https://doi.org/10.1007/3-540-46885-4_33
https://doi.org/10.1007/3-540-46885-4_33
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-662-46497-7_19
https://doi.org/10.1007/978-3-540-24676-3_27
https://doi.org/10.1007/978-3-540-24676-3_27
https://doi.org/10.1007/978-3-662-53008-5_12
https://eprint.iacr.org/2018/255
https://eprint.iacr.org/2018/255
https://doi.org/10.1007/978-3-662-46494-6_8

Topology-Hiding Computation Beyond Semi-Honest Adversaries 35

[RC88] Reiter, M.K., Crowds, R.A.: Anonymity for web transaction. ACM Trans.
Inf. Syst. Secur. 1(1), 66–92 (1988)

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and
cryptography. J. ACM (JACM) 56(6), 34 (2009)

[SGR97] Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections
and onion routing. In: 1997 Proceedings of IEEE Symposium on Security
and Privacy, pp. 44–54. IEEE (1997)

	Topology-Hiding Computation Beyond Semi-Honest Adversaries
	1 Introduction
	1.1 Topology-Hiding Computation
	1.2 Comparison to Previous Work
	1.3 Contributions

	2 Preliminaries
	2.1 Notation
	2.2 Model of Topology-Hiding Communication
	2.3 Background

	3 Topology-Hiding Broadcast
	3.1 Protocol Leaking One Bit
	3.2 Protocol Leaking a Fraction of a Bit

	4 From Broadcast to Topology-Hiding Computation
	5 Efficient Topology-Hiding Computation with FHE
	5.1 Deeply-Fully-Homomorphic Public-Key Encryption
	5.2 Topology-Hiding Computation from DFH-PKE

	6 Security Against Semi-malicious Adversaries
	7 LWE Based OR-Homomorphic PKCR Encryption
	A Topology-Hiding Broadcast
	A.1 Protocol Leaking One Bit
	A.2 Protocol Leaking a Fraction of a Bit

	References

