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Abstract. The modeling of trapdoor permutations has evolved over the
years. Indeed, finding an appropriate abstraction that bridges between
the existing candidate constructions and the needs of applications has
proved to be challenging. In particular, the notions of certifying permu-
tations (Bellare and Yung, 96), enhanced and doubly enhanced trapdoor
permutations (Goldreich, 04, 08, 11, Goldreich and Rothblum, 13) were
added to bridge the gap between the modeling of trapdoor permuta-
tions and needs of applications. We identify an additional gap in the
current abstraction of trapdoor permutations: Previous works implicitly
assumed that it is easy to recognize elements in the domain, as well
as uniformly sample from it, even for illegitimate function indices. We
demonstrate this gap by using the (Bitansky-Paneth-Wichs, 16) doubly-
enhanced trapdoor permutation family to instantiate the Feige-Lapidot-
Shamir (FLS) paradigm for constructing non-interactive zero-knowledge
(NIZK) protocols, and show that the resulting proof system is unsound.
To close the gap, we propose a general notion of certifiably injective dou-
bly enhanced trapdoor functions (DECITDFs), which provides a way of
certifying that a given key defines an injective function over the domain
defined by it, even when that domain is not efficiently recognizable and
sampleable. We show that DECITDFs suffice for instantiating the FLS
paradigm; more generally, we argue that certifiable injectivity is needed
whenever the generation process of the function is not trusted. We then
show two very different ways to construct DECITDFs: One is via the tra-
ditional method of RSA/Rabin with the Bellare-Yung certification mech-
anism, and the other using indistinguishability obfuscation and injective
pseudorandom generators. In particular the latter is the first candidate
injective trapdoor function, from assumptions other than factoring, that
suffices for the FLS paradigm. Finally we observe that a similar gap
appears also in other paths proposed in the literature for instantiating
the FLS paradigm, specifically via verifiable pseudorandom generators
and verifiable pseudorandom functions. Closing the gap there can be
done in similar ways to the ones proposed here.
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1 Introduction

In the late-1970s, Rivest, Shamir and Adelman [RSA78] and Rabin [Rab79] sug-
gested functions which are easy to evaluate, easy to invert when given a suitable
secret trapdoor key, but are presumably hard to invert when only given the
function description without the trapdoor. Both of these constructions use the
same source of computational hardness: the hardness of factoring. These con-
structions were later abstracted to a formal notion of trapdoor functions [Yao82],
which became one of the pillars of modern cryptography. In particular, trapdoor
permutations (TDPs) were used as building blocks for public key encryption
[Yao82,GM84,BG84], oblivious transfer [EGL85] and zero-knowledge protocols
[FLS90].

One of the quintesential uses of the TDP astraction is in constructing Non-
interactive zero knowledge (NIZK) protocols, introduced by Blum Feldman and
Micali [BFM88,BSMP91]: While the first constructions were based on the hard-
ness of factoring, Feige et al. [FLS90] demonstrated a more general construction
based on any trapdoor permutation. Specifically, this proof system (henceforth
the FLS protocol) treats the common reference string as a sequence of blocks,
where each block represents an image of a trapdoor permutation selected by the
prover. The prover then inverts a subset of these using the secret trapdoor. The
verifier can validate that the pre-images it was given are correct by forward-
evaluating the trapdoor function, but is unable to invert any other image due to
the hardness of inverting the function without the secret trapdoor. By treating
the common string as a series of sealed off boxes (aka the hidden-bit-model), the
prover is able to provide a NIZK proof for an NP-Hard language. Soundness is
based on the fact that, for any given permutation, each block in the reference
string defines a unique pre-image. This construction assumes that the trapdoor
permutation in use is ideal, namely its domain is {0, 1}n for some n, hardness
holds with respect to uniformly chosen n-bit strings, and any key (index) in an
efficiently recognizable set describes a permutation.

Bellare and Yung [BY96] consider the case where it is not known how to
recognize whether a given index defines a permutation, but the domain is still
{0, 1}n. This relaxation is indeed essential, as even the first TDP candidates
suggested by [RSA78,Rab79] do not have efficiently recognizable keys. They
observe that in this case a malicious prover may be able to choose a key which
evaluates to a many-to-one function, breaking the soundness of the protocol, and
suggest a mechanism for certifying that a given index describes a permutation.
Their mechanism, which is specific to the case of NIZK, is based on the prover
providing the verifier with pre-images of a set of random images, which are taken
from the common reference string. We refer to this mechanism as the Bellare-
Yung protocol. We note however that this mechanism crucially needs the verifier
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to be able to detect whether an element is in the domain of the permutation
(which is not an issue in their case of full domain).

Goldreich and Rothblum [Gol04,Gol08,Gol11,GR13] point out that when
the domain of the permutation is not just {0, 1}n, additional mechanisms are
required in order to base the Zero-Knowledge property of the FLS protocol on
the one-wayness of the underlying TDP. Specifically, they define the notions
of enhanced and doubly-enhanced trapdoor permutations, which require the
existence of a domain sampling algorithm such that finding the pre-image of
a sampled element is hard, even given the random coins used by the sampler.
Furthermore, it should be possible to sample pairs of pre-image and random coins
for the domain sampler, which both map to the same image (one under the for-
ward evaluation and one via the domain sampler). They then show that the FLS
protocol is zero-knowledge when using doubly-enhanced trapdoor permutations.
For soundness, they rely on the Bellare-Yung protocol, and thus inherit the lim-
itation that the domain of the permutation must be publicly recognizable; yet,
they do not explicitly require that the domain be efficiently recognizable.

A number of other methods for implementing the hidden-bit model by way
of cryptographic primitives have been proposed over the years, e.g. invariant
signatures [BG90], verifiable random generators [DN00], (weak) verifiable random
functions [BGRV09], or publicly-verifiable trapdoor predicates [CHK03]. However,
in all of these methods (with the exception of invariant signatures, discussed
below), soundness of the NIZK protocol crucially relies on the verifier’s ability
to recognize when an element is in the domain of a function chosen by the prover.

A natural question is then whether this gap in modeling TDPs is significant,
and furthermore whether public verifiability is an essential property for realizing
the hidden bit model. In particular, do doubly-enhanced TDPs where the domain
is not publicly recognizable suffice for the FLS protocol?

This question is underlined by the recent doubly enhanced TDP of Bitan-
sky et. al. [BPW16], where the domain is not efficiently recognizable given the
public index. Interestingly, this is also the first TDP based on general assump-
tions which are not known to imply the hardness of factoring (specifically, sub-
exponentially secure indistinguishability obfuscation and one-way functions).

1.1 Our Contributions

We start by demonstrating that the above gap is significant: We show that,
when instantiated with the [BPW16] doubly enhanced trapdoor permutation
family, the FLS protocol is unsound, even when combined with the [BY96] cer-
tification protocol. Indeed, this loss of soundness stems from the fact that the
existing notion of doubly enhanced trapdoor permutations does not make suffi-
cient requirements on indices that were not legitimately generated.

We then formulate a general property for trapdoor permutations, called cer-
tifiable injectivity. We show that this requirement suffices for the FLS paradigm
even when the TDF is not necessarily a permutation, and does not have publicly
recognizable domain. We then construct a doubly enhanced certifiably injective
trapdoor function assuming indistinguishability obfuscation (iO) and injective
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pseudorandom generators. Interestingly, this is the first candidate trapdoor func-
tion that suffices for the FLS paradigm, and is based on assumptions other
than factoring. Also, crucially, the co-domain of the function is not publicly
recognizable.

In the rest of this subsection we present our contributions in more detail.

Unsoundness of FLS+BY with the [BPW16] Trapdoor Permutations: We instan-
tiate the FLS+BY protocols using the [BPW16] iO-based doubly enhanced trap-
door function family, whose domain is not efficiently recognizable. We demon-
strate how a malicious prover could choose an index α which describes a many-to-
one function, wrongly certify it as a permutation by having the sampler sample
elements only out of a restricted domain Dα which is completely invertible, but
then invert any image in Dα into two pre-images - one in Dα and another outside
of it. The verifier cannot detect the lie since Dα is not efficiently recognizable.

Certifiable Injective Trapdoor Functions: We formulate a new notion of Certifi-
able Injectivity, which captures a general abstraction of certifiability for doubly-
enhanced injective trapdoor functions. This notion requires the function family
to be accompanied by algorithms for generation and verification of certificates
for indices, along with an algorithm for certification of individual points from
the domain. It is guaranteed that if the index certificate is verified then, except
for negligible probability, randomly sampled range points have only a single pre-
image that passes the pointwise certification. We show that certifiable injectivity
suffices for the FLS paradigm.

We show that the FLS+BY combination regains its soundness when instanti-
ated with a specific class of trapdoor permutations, whose domain is recognizable
using a poly-time algorithm, and is additionally almost-uniformly sampleable
using a poly-time algorithm. We call such TDPs public-domain. We show that
any public-domain TDP is certifiably injective. We note that the RSA and Rabin
candidates are indeed public-domain, while the [BPW16] permutation is not.

We additionally suggest a strengthened notion of Perfectly Certifiable Injec-
tivity, which guarantees that no point generated by the range sampler has two
pre-images that pass the pointwise certification. We show that by implement-
ing FLS using this notion, the resulting error in soundness is optimal, in that
it is equal to the error incurred by implementing the FLS protocol with ideal
trapdoor permutations.

Doubly Enhanced Perfectly Certifiable Trapdoor Functions from iO+: We con-
struct a doubly-enhanced family of trapdoor functions which is perfectly certi-
fiable injective. Our construction, inspired by the work of [SW14], is based on
indistinguishability obfuscation and pseudorandom generators, and is perfectly
certifiable injective under the additional assumption that the underlying pseu-
dorandom generator is (a) injective and (b) its domain is either full, or efficiently
sampleable and recognizable.

To provide an enhanced range sampler and a correlated pre-image sampler,
we use a re-randomization technique by having the range-sampler be given as
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an obfuscated circle, which applies a length-preserving pseudorandom function
on the random coins given to it, before inputting it to the forward evaluator.
Using another round of re-randomization we augment our construction into a
doubly-enhanced TDF. Our re-randomization technique can be applied to any
trapdoor function with an efficiently sampleable domain to obtain a doubly-
enhanced domain sampler, at the cost of using iO.

Finally, we show how using the assumption that the pseudorandom generator
g is injective and that its domain is efficiently recognizable, we are able to provide
a perfect pointwise certification algorithm for our trapdoor functions, proving it
is perfectly certifiable injective. We then show how to construct such generators
from standard assumptions (such as, e.g., hardness of discrete log). This makes
our construction sufficient for NIZK.

1.2 On Alternative Methods for NIZK

We briefly present a number of alternative avenues proposed in the literature for
obtaining NIZK, and specifically for instantiation the FLS protocol. We observe
that the need for functions whose domain is publicly recognizable, even for mali-
ciously generated indices, is common to all with the exception of one recent
construction.

[DN00] suggest a different path for realizing the hidden-bit model, by using
the notion of verifiable random generators. This notion provide the guarantee
that every pre-image has only one (verified) image, in the sense that one can-
not invert two different images into the same pre-image. They then suggest a
construction of verifiable random generators from a particular type of trapdoor
permutations, specifically from families of certified trapdoor permutations where
all the functions in a given family share a common, efficiently recognizable and
efficiently (publicly) sampleable domain. The latter assumption is crucial for this
construction to work, or else the same attack we describe in our work would work
in that case too. As we show in our work, assuming an efficiently recognizable
and sampleable domain is indeed sufficient to soundly certify the permutation,
however this assumption adds some limitation to the generalized abstraction of
trapdoor permutations.

[BGRV09] use the notion of (weak) verifiable random functions to obtain
NIZK using a very similar technique to that of [DN00]. Here too, they construct
verifiable random functions from trapdoor permutations, but in this case the
only assumption is that the trapdoor permutations are doubly enhanced.1 Their
construction assumes that the trapdoor permutation is efficiently certifiable,
and that this construction can be made to work with any (doubly enhanced)
trapdoor permutation, using the certification procedure of Bellare and Yung.
However, as we show in out current work, the latter is not true, in that certifying

1 In their original work, [BGRV09] only required that the trapdoor permutations be
enhanced. Regardless of the findings in our work, in light of [GR13], this requirement
should have been strengthened into doubly-enhanced to support the Bellare-Yung
certification.
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that an enhanced trapdoor permutation is indeed injective requires additional
assumptions.

[CHK03] provides yet another alternative path for realizing the hidden-bit
model. They suggest the notion of publicly-verifiable trapdoor predicates, which
they construct based on the decisional bilinear Diffie-Hellman assumption. Not
to confuse with our notion of certifiability, here the “verifiability” concerns the
ability to check, given a pair (x, y), that x is indeed a pre-image of y (not neces-
sarily the sole pre-image). This notion is suggested as a relaxation of the notion
of trapdoor permutations, which suffices for NIZK. Still, it has the same weak-
ness as the one pointed out here re DETDPs, namely it implicitly assumes that
the trapdoor index is generated honestly (or that the domain of the predicate is
efficiently recognizable and sampleable), thus it does not suffice in of itself for
realizing the hidden-bit model.

Recently, [BP15] showed how to construct invariant signatures [BG90] from
indistinguishability obfuscation and one-way functions. This, together with the
technique of [GO92], gives yet another path for realizing the hidden-bit model
from assumptions other than factoring. (Previously, the only known construction
of invariant signatures was from NIZK.) Their construction not only gives an
arguably more natural realization of the hidden-bit model then that obtained
by trapdoor permutation, but also avoids the certification problems altogether
(as invariant signatures handle the certification problem by definition). Still, the
trapdoor-permutations-based paradigm of [FLS90] remains the textbook method
for realizing non-interactive zero-knowledge proofs.

Over the years, additional approaches were suggested to obtaining non-
interactive zero-knowledge proofs which are not based on the hidden-bit model.
[GOS06] constructed non-interactive zero-knowledge proofs for circuit satisfiabil-
ity with a short reference string, and non-interactive zero-knowledge arguments
for any NP language. [GS08] constructed non-interactive zero-knowledge proofs
from assumptions on bilinear groups. [GOS12] and [SW14] constructed non-
interactive zero-knowledge arguments with a short reference string for any NP
language. All of these protocols either use a structured CRS whose generation
requires additional randomness that’s trusted to never be revealed, or achieve
zero-knowledge arguments, where the soundness holds only with respect to com-
putationally bounded adversaries. This leaves the hidden-bit paradigm (along
with the original protocols of [BFM88,BSMP91]) as the only known general way
to achieve zero-knowledge proofs for NP in the uniform reference string model.

1.3 Alternative Notions of Certifiability for TDPs

[Abu13] define and discuss two notions of verifiability for doubly-enhanced trap-
door permutations, which indeed allow verifying, or certifying, that a given trap-
door index indeed describes an injective function: a strong (errorless) one, in
which the verification is not allowed to accept any function which is not injec-
tive, and a weaker variant, with negligible error. The strong notion indeed suffices
for realizing the hidden-bit model, but is overly strong - in particular the existing
constructions from RSA and BY do not satisfy it. On the other hand, the weak
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notion suffers from the same weakness as the prior notions, in that it implicitly
assumes that the range of the function is efficiently recognizable. In contrast, we
provide a single notion that suffices for realizing the HBM model and is realiz-
able by the factoring-based constructions, by the IO-based construction, and by
the gap-DH based construction.

1.4 Other Applications of Trapdoor Permutations

The gap between ideal and general trapdoor permutations imposes a prob-
lem in other applications as well. [Rot10,GR13] discuss the security of the
[EGL85] trapdoor-permutations-based 1-out-of-k oblivious transfer protocol,
which breaks in the presence of partial-domain trapdoor functions when k ≥ 3,
and show how doubly enhanced trapdoor functions can be used to overcome this.
The concern of certifying keys is irrelevant in the oblivious transfer applications,
as the parties are assumed to be trusted. Still, certifiability concerns apply when-
ever dishonesty of one or more of the parties is considered an issue, such as the
case of interactive proofs and multi-party computation. We note however that
requiring that the trapdoor be certifiable does not suffice for making the [EGL85]
protocol secure against Byzantine attacks.

1.5 Paper Organization

In Sect. 2 we review the basic notations used in our work, as well as previous
results related to this work. In Sect. 3 we demonstrate how the soundness of the
FLS protocol may be compromised when using general TDPs, and discuss the
additional assumptions required to avoid this problem. In Sect. 4 we suggest the
alternative notion of certifiably injective trapdoor functions, and use it to over-
come the limitations of the FLS+BY combination and regain the soundness of
the FLS protocol. In Sect. 5 we construct a doubly-enhanced, certifiable injective
trapdoor function family based on indistinguishability obfuscation and injective
pseudorandom generators.

2 Review of Basic Definitions and Constructs

The cryptographic definitions in this paper follow the convention of modeling
security against non-uniform adversaries. A protocol P is said to be secure
against (non-uniformly) polynomial-time adversaries, if it is secure against any
adversary A = {Aλ}λ∈N, such that each circuit Aλ is of size polynomial in λ.

2.1 Notations

For a probabilistic polynomial time (PPT) algorithm A which operates on input
x, we sometimes denote A(x; r) as the (deterministic) evaluation A using random
coins r.



Certifying Trapdoor Permutations, Revisited 483

We use the notation Pr[E1;E2; ...;En;R] to denote the probability of the
resulting boolean event R, following a sequence of probabilistic actions E1, ..., En.
In other words, we describe a probability experiment as a sequence of actions
from left to right, with a final boolean success predicate. We sometime combine
this notion with the stacked version PrS [E1;E2; ...;En;R] in which case the
sampling steps taken in S precede E1, ..., En, and the random coins used for S
are explicitly specified. (The choice of which actions are described in a subscript
and which are described within the brackets is arbitrary and is done only for
visual clarity).

2.2 Puncturable Pseudorandom Functions

We consider a simple case of puncturable pseudorandom functions (PPRFs)
where any PRF may be punctured at a single point. The definition is formu-
lated as in [SW14], and is satisfied by the GGM PRF [GGM86,BW13,KPTZ13,
BGI14].

Definition 1 (Puncturable PRFs). Let n, k be polynomially bounded length
functions. An efficiently computable family of functions:

PRF = {PRFS : {0, 1}n(λ) → {0, 1}λ : S ∈ {0, 1}k(λ), λ ∈ N}
associated with a PPT key sampler KPRF , is a puncturable PRF if there exists
a poly-time puncturing algorithm Punc that takes as input a key S and a point
x∗ and outputs a punctured key S∗ = S{x∗}, so that the following conditions are
satisfied:

1. Functionality is preserved under puncturing: For every x∗ ∈
{0, 1}n(λ),

Pr[S ← KPRF (1λ);S∗ = Punc(S, x∗);∀x �= x∗ : PRFS(x) = PRFS∗(x)] = 1

2. Indistinguishability at punctured points: for any PPT distinguisher D
there exists a negligible function μ such that for all λ ∈ N, and any x∗ ∈
{0, 1}n(λ),

Pr[D(x∗, S∗, PRFS(x∗)) = 1] − Pr[D(x∗, S∗, u) = 1] ≤ μ(λ)

where the probability is taken over the choice of S ← KPRF (1λ), S∗ =
Punc(S, x∗), u ← {0, 1}λ, and the random coins of D.

2.3 Indistinguishability Obfuscation

We define indistinguishability obfuscation (iO) with respect to a given class of
circuits. The definition is formulated as in [BGI+01].

Definition 2 (Indistinguishability Obfuscation [BGI+01]). A PPT algorithms
iO is said to be an indistinguishability obfuscator for a class of circuits C, if it
satisfies:
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1. Functionality: for any C ∈ C,

Pr
iO

[∀x : iO(C)(x) = C(x)] = 1

2. Indistinguishability: for any PPT distinguisher D there exists a negligible
function μ, such that for any two circuits C0, C1 ∈ C that compute the same
function and are of the same size λ:

Pr[D(iO(C0)) = 1] − Pr[D(iO(C1)) = 1] ≤ μ(λ)

where the probability is taken over the coins of D and iO.

2.4 Injective TDFs and TDPs

Definition 3 (Trapdoor Functions). A family of one-way trapdoor functions, or
TDFs, is a collection of finite functions, denoted fα : {Dα → Rα}, accompanied
by PPT algorithm I (index), SD (domain sampler), SR (range sampler) and
two (deterministic) polynomial-time algorithms F (forward evaluator) and B
(backward evaluator or inverter) such that the following condition holds:

1. On input 1n, algorithm I(1n) selects at random an index α of a function fα,
along with a corresponding trapdoor τ . Denote α = I0(1n) and τ = I1(1n).

2. On input α = I0(1n), algorithm SD(α) samples an element from domain Dα.
3. On input α = I0(1n), algorithm SR(α) samples an image from the range Rα.
4. On input α = I0(1n) and any x ∈ Dα, F (α, x) = fα(x).
5. On input τ = I1(1n) and any y ∈ Rα, B(τ, y) outputs x such that F (α, x) = y.

The standard hardness condition refers to the difficulty of inverting fα on a
random image, sampled by SR or by evaluating F (α) on a random pre-image
sampled by SD, when given only the image and the index α but not the trapdoor
τ . That is, it is required that, for every polynomial-time algorithm A, it holds
that:

Pr[α ← I0(1n);x ← SD(α); y = F (α, x);A(α, y) = x′ s.t. F (α, x′) = y] ≤ μ(n)
(1)

Or, when sampling an image directly using the range sampler:

Pr[α ← I0(1n); y ← SR(α);A(α, y) = x′ s.t. F (α, x′) = y] ≤ μ(n) (2)

for some negligible function μ.
Additionally, it is required that, for any α ← I0(1n), the distribution sampled

by SR(α) should be close to from that sampled by F (SD(α)). In this context
we require that the two distributions be computationally indistinguishable. We
note that this requirement implies that the two hardness requirements given in
Eqs. 1 and 2 are equivalent. The issue of closeness of the sampling distributions
is discussed further at the end of this section.

If fα is injective for all α ← I0(1n), we say that our collection describes
an injective trapdoor function family, or iTDFs (in which case B(τ, ·) inverts any
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image to its sole pre-image). If additionally Dα and Rα coincide for any α ←
I0(1n), the resulting primitive is a trapdoor permutation.

If for any α ← I0(1n), Dα = {0, 1}p(n) for some polynomial p(n), that is,
every p(n)-bit string describes a valid domain element, we say the function is
full domain. Otherwise we say the domain is partial. Full and partial range and
keyset are defined similarly. We say that a TDF (or TDP) is ideal if it has a full
range and a full keyset.

Definition 4 (Hard-Core Predicate). p is a hard-core predicate for fα if its value
is hard to predict for a random domain element x, given only α and fα(x). That
is, if for any PPT adversary A there exists a negligible function μ such that:

Pr[α ← I0(1n);x ← SD(α); y = F (α, x);A(α, y) = p(x)] ≤ 1/2 + μ(n).

Enhancements. A trivial range-sampler implementation may just sample a
domain element x by applying SD(α), and then evaluate the TDF on it by
applying F (α, x). This sampler, while fulfilling the standard one-way hardness
condition, is not good enough for some applications. Specifically, for the case of
NIZK, we require the ability to obliviously sample a range element in a way that
does not expose its pre-image (without using the trapdoor). This trivial range
sampler obviously does not qualify for this case.

Goldreich [Gol04] suggested the notion of enhanced TDPs, which can be used
for cases where sampling is required to be available in a way that does not expose
the pre-image. They then demonstrate how enhanced trapdoor permutations can
be used to obtain NIZK proofs (as we describe later in Sect. 2.5). We revisit this
notion, while extending it to the case of injective TDF (where the domain and
range are not necessarily equal).

Definition 5 (Enhanced injective TDF, [Gol04]). Let {fα : Dα → Rα} be a
collection of injective TDFs, and let SD be the domain sampler associated with
it. We say that the collection is enhanced if there exists a range sampler SR that
returns random samples out of Rα, and such that, for every polynomial-time
algorithm A, it holds that:

Pr[α ← I0(1n); r ← {0, 1}n; y = SR(α; r);A(α, r) = x′ s.t. F (α, x′) = y] ≤ μ(n)
(3)

where μ is some negligible function.

The range sampler of an enhanced injective TDF has the property that its
random coins do not reveal a corresponding pre-image, i.e. an adversary which
is given an image along with the random coins which created it, still cannot
inverse it with all but negligible probability.

[Gol11] additionally suggested enhancing the notion of hard-core predicates
in order to adapt the FLS proof (that uses traditional hard-core predicates) to
the case of enhanced trapdoor functions. Loosely speaking, such a predicate p
is easy to compute, but given α ← I0(1n) and r ← {0, 1}n, it is hard to guess
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the value of the predicate on the pre-image of the image sampled by the range
sampler using the coins r:

Definition 6 (Enhanced Hard-Core Predicate, [Gol11]). Let {fα : Dα → Rα}
be an enhanced collection of injective TDFs, with domain sampler SD and range
sampler SR. We say that the predicate p is an enhanced hard-core predicate of
fα if it is efficiently computable and for any PPT adversary A there exists a
negligible function μ such that

Pr[(α, τ) ← I(1n); r ← {0, 1}n; y = SR(α; r);x = B(τ, y);A(α, r) = p(α, x)] ≤ 1/2 + μ(n)

Or, equivalently, if the following two distribution ensembles are computation-
ally indistinguishable:

1. {(α, r, p(α,B(τ, SR(α; r)))) : (α, τ) ← I(1n), r ← {0, 1}n}n∈N

2. {(α, r, u) : α ← I0(1n), r ← {0, 1}n, u ← {0, 1}}n∈N

The hard-core predicates presented in [GL89] satisfy this definition without
changes (as they do not use the trapdoor index).

Definition 7 (Doubly Enhanced injective TDF, [Gol08]). Let {fα : Dα → Rα}
be an enhanced collection of injective TDFs, with domain sampler SD and range
sampler SR. We say that this collection is doubly-enhanced if it provides another
polynomial-time algorithm SDR with the following properties:

– Correlated pre-image sampling: for any (α, τ) ← I(1n), SDR(α; 1n) out-
puts pairs of (x, r) such that F (α, x) = SR(α; r)

– Pseudorandomness: for any PPT distinguisher D there exists a negligible
μ such that:

Pr[(α, τ) ← I(1n); (x, r) ← SDR(α); D(x, r, α) = 1]−
Pr[(α, τ) ← I(1n); r ← {0, 1}∗; y = SR(α; r); x = B(τ, y); D(x, r, α) = 1] ≤ μ(n)

SDR provides a way to sample pairs of an element x in the function’s domain,
along with random coins r which explain the sampling of the image y = fα(x)
in the function’s range. Note that since the collection is enhanced, r must not
reveal any information of x.

[GR13] review these enhanced notions of trapdoor permutations in light of
applications for which they are useful, specifically oblivious transfer and NIZK,
providing a comprehensive picture of trapdoor permutations and the require-
ments they should satisfy for each application. They additionally suggested a
number of intermediate notions between idealized TDPs, enhanced TDPs and
doubly-enhanced TDPs, and discussed notions of enhancements for general trap-
door and one-way functions.
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On the Uniformity of Distributions Sampled by the Domain, Range and Cor-
related Pre-image Samplers: In Definitions 3 and 7 we required that the distri-
bution sampled by (a) running the domain sampler SD, (b) inverting images
sampled by the range sampler SR, and (c) taking pre-images sampled by the
correlated pre-image sampler SDR, are all computationally indistinguishable.
This is a relaxation of the definition given in [Gol11,GR13], which require
that all three of these distributions be statistically close. The relaxed notion is
adapted from [BPW16], which indeed define and implement the computational-
indistinguishable variant. While samplers that are statistically close to uniform
are often needed in situations where the permutation is applied repeatedly, com-
putational closeness suffices in our setting.

2.5 Non-interactive Zero-Knowledge

Definition

Definition 8 (Non-
Interactive Zero Knowledge, Blum-Feldman-Micali [BFM88]). A pair of PPT
algorithms (P, V ) provides an (efficient-prover) Non-Interactive Zero Knowledge
(NIZK) proof system for language L ∈ NP with relation RL in the Common
Reference String (CRS) Model if it provides:

– Completeness: for every (x,w) ∈ RL we have that:

Pr
P,crs

[π ← P (x,w, crs);V (x, crs, π) = 0] ≤ μ(|x|)

where the probability is taken over the coins of P and the choice of the CRS
as a uniformly random string, and μ(n) is some negligible function.

– Soundness: for every x /∈ L:

Pr
crs

[∃π : V (x, crs, π) = 1] ≤ μ(|x|)

where the probability is taken over the choice of the CRS as a uniformly
random string, and μ(n) is some negligible function.

– Zero-Knowledge: there exists a PPT algorithm S (simulator) such that the
following two distribution ensembles are computationally indistinguishable:

• {(x, crs, π) : crs ← U, π ← P (x,w, crs)}(x,w)∈RL

• {S(x)}(x,w)∈RL
.

Here U denotes the set of uniformly random strings of length polynomial
in |x|.
While it sometimes makes sense to have a computationally unbounded prover,

it should be stressed that the verifier and simulator should both be polynomial-
time.

The common reference string is considered the practical one for NIZK proof
systems, and is the one widely accepted as the appropriate abstraction. When
discussing NIZK proof systems, we sometime omit the specific model being
assumed, in which case we mean the CRS model.
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NIZK in the Hidden-Bit Model. A fictitious abstraction, which is neverthe-
less very helpful for the design of NIZK proof systems, is the hidden-bits model.
In this model the common reference-string is uniformly selected as before, but
only the prover can see all of it. The prover generates, along with a proof π, a
subset I of indices in the CRS, and passes them both to the verifier. The verifier
may only inspect the bits of the CRS that reside in the locations that have been
specified by the prover in I, while all other bits of the CRS are hidden to the
verifier.

Definition 9 (NIZK in the Hidden-Bit Model [FLS90,Gol98]). For a bit-string
s and an index set I denote by sI the set of values of s in the indexes given
by I: sI := {(i, s[i]) : i ∈ I}. A pair of PPT algorithms (P, V ) constitute an
(efficient-prover) NIZK proof system for language L ∈ NP with relation RL in
the Hidden-Bit (HB) Model if it provides:

– Completeness: for every (x,w) ∈ RL we have that:

Pr
P,crs

[(π, I) ← P (x,w, crs);V (x, I, crsI , π) = 0] ≤ μ(|x|)

where the probability is taken over the coins of P and the choice of the CRS
as a uniformly random string, and μ(n) is some negligible function.

– Soundness: for every x /∈ L:

Pr
crs

[∃π, I : V (x, I, crsI , π) = 1] ≤ μ(|x|)

where the probability is taken over the choice of the CRS as a uniformly
random string, and μ(n) is some negligible function.

– Zero-Knowledge: there exists a PPT algorithm S (simulator) such that the
following two distribution ensembles are computationally indistinguishable:

• {(x, crsI , π) : crs ← U, (π, I) ← P (x,w, crs)}(x,w)∈RL• {S(x)}(x,w)∈RL
.

Here U denotes the set of uniformly random strings of length polynomial
in |x|.
While the hidden-bit model is an unrealistic one, its importance lies in two

facts. Firstly, it provides a clean abstraction for NIZK systems, which facilities
the design of “clean” proof systems. Efficient-prover NIZK proof systems for NP-
hard languages exist unconditionally in the hidden-bit model [FLS90,Gol98]:

Theorem 1 ([FLS90]). There exists a NIZK proof system in the hidden-bit
model for any NP language (unconditionally). Furthermore, the protocol is sta-
tistical zero-knowledge and statistically sound.

Secondly, proof systems in the hidden-bit model can be easily transformed
into proof systems in the more realistic CRS model, using general hardness
assumptions. Feige, Lapidot and Shamir [FLS90] suggests such a transformation.
In the rest of this section, we describe their construction and the details of the
underlying hardness assumptions. We remark that in the hidden-bit model, we
can obtain both perfect soundness (with a negligible completeness error) and
perfect completeness (with a negligible soundness error).
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From Hidden-Bit to CRS. The following is a review of the full details of the
FLS protocol and the enhancement that followed to adapt it to general trapdoor
permutations. This follows the historic line of research by [FLS90,BY96,Gol98,
Gol11,GR13]. We refer the reader to [CL17] for a more comprehensive overview.

The FLS Protocol: Assuming the existence of one-way permutations, Feige, Lapi-
dot and Shamir [FLS90] constructed a NIZK proof-system in the CRS model
for any NP language. The key to this protocol is having the prover provide
the verifier with pre-images of random images taken from the one-way permuta-
tion’s range. They also offer an efficient implementation of the prescribed prover,
using trapdoor permutations, which allow the prover to efficiently invert random
images using the secret trapdoor key. We refer to this construction as the FLS
protocol. The full details of this protocol are given in [FLS90].

Theorem 2 ([FLS90]). Assuming the existence of one-way permutations,
there exists a NIZK proof system in the CRS model with an inefficient prover
for any NP language.

Theorem 3 ([FLS90]). Assuming the existence of an ideal trapdoor permu-
tation family, there exists a NIZK proof system in the CRS model (with an
efficient prover) for any NP language.

As shown by [FLS90], the FLS protocol provides a NIZK proof system assum-
ing that the underlying TDP is ideal. However, existing instantiations of TDPs
are not ideal, and in fact are far from it. Most reasonable constructions of TDPs
have both partial keysets and partial domains. This leads to two gaps which
arise when using general TDPs, in place of ideal ones.

Ideal Domains + General Keys: The Bellare-Yung Protocol: The first hurdle,
discovered by Bellare and Yung [BY96], involves the use of general trapdoor
keys (rather than ideal ones). The problem is that the soundness of the FLS
protocol relies on the feasibility of recognizing permutations in the collection.
If the permutation is ideal then every key describes a permutation, and there-
fore detecting a permutation is trivial. However, existing instantiations of TDPs
require sampling keys of a certain form using a specific protocol. This brings us
to the problem of certifying permutations, which aims to answer the question
of how to certify that a given key indeed describes a valid permutation. Bellare
and Yung [BY96] suggested a certification procedure for permutations, assuming
nothing of the keyset, but requiring that the range remains full. We refer to this
procedure as the Bellare-Yung protocol. In a nutshell, the prover in the Bellare-
Yung protocol simply inverts random images taken from the CRS into their pre-
images and presents the verifier with those pre-images. The verifier validates
the pre-images. By having the prover inverts enough random pre-images, the
verifier is convinced that only a negligible part of the range is non-invertitable,
meaning the function is “almost” injective. [BY96] show that this property of
almost-injectivity is strong enough for FLS.
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Theorem 4 ([BY96]). Assuming the existence of a full-domain trapdoor
permutation family (whose keys may be hard to recognize), there exists a NIZK
proof system in the CRS model for any NP language (with an efficient prover).

General Domains: Doubly Enhanced TDPs: The second gap concerns the case
of partial domains, where the function’s domain is comprised of elements of
specific structure (and not just {0, 1}n). The FLS protocol treats the CRS as
a sequence of range elements. In the case of the general abstraction of trap-
door permutations, an additional domain sampling algorithm is required. This
problem is solved by requiring the use of doubly enhanced trapdoor permuta-
tions. Given the permutation index α, both the prover and the verifier use the
enhanced sampling algorithm SR(α) to sample elements from the permutation’s
range. They treat the CRS as a sequence r1, ..., rl, where each rl ∈ {0, 1}n is
handled as random coins for the range sampler. They create a list of range items
yi = SR(α; ri) and use them for the rest of the FLS protocol. Using the range
sampler solves the completeness issue of NIZK in the CRS model for permuta-
tions with general domains. However, the resulting protocol may no longer be
zero-knowledge, as the verifier now obtains a list of random pairs (xi, ri) such
that fα(xi) = Sα(ri), but it is not clear that it could have generated such pairs
itself. The two enhancements solve just that, and allow the verifier to obtain
such pairs on its own.

Theorem 5 ([GR13]). Assuming the existence of a general doubly-enhanced
trapdoor permutation family with efficiently recognizable keys, there exists
a NIZK proof system in the CRS model for any NP language (with an efficient
prover).

Moreover, in order to certify general keys, [Gol11,GR13] suggested combining
between doubly enhanced permutations and the Bellare-Yung protocol, by using
the doubly-enhanced domain sampler to sample images by the Bellare-Yung
prover and verifier. We reexamine this suggestion in Sect. 3.

Basing FLS on Injective Trapdoor Functions: Before moving on, we mention that
while the FLS protocol is originally described using (trapdoor) permutations, it
may just as well be described and implemented using general injective trapdoor
functions. In this case, since the CRS is used to generate range elements, there is
no useful notion of “ideal” injective trapdoor functions; if f maps n-bit strings
into m-bit strings, where m > n, then there must exists some m-bit strings
which do not have a pre-image under f . However, using a doubly-enhanced
general injective trapdoor function, the FLS protocol and the generalization
into general TDPs will work without any changes, under assuming the keys are
efficiently recognizable. In Sect. 5 we show an example for such a injective TDF
and it’s application to NIZK proof systems.

3 FLS with General Doubly Enhanced TDPs Is Unsound

We begin with a careful reexamination of the FLS protocol, in light of the work of
[Gol11,GR13]. We discuss a crucial problem yet to be detected when applying the
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Bellare-Yung protocol on general TDPs, which have both partial domains and
partial keysets. Specifically, we identify that the soundness of the FLS protocol
may be compromised when using such trapdoor functions.

3.1 The Counter Example

In preparation to describing the counter example, we first sketch the full details
of the Bellare-Yung protocol, while allowing both partial range and partial keyset
for the TDPs, as suggested by [GR13]. Recall that we are provided with a doubly-
enhanced TDP family, described using the algorithms I(1n) → (α, τ), F (α, x) →
y,B(τ, y) → x, S(α; r) → y. We treat the CRS as a sequence of random coins
for the sampler S, and apply S both on the prover and on the verifier side to
obtain range elements.

– Input: (α, τ) ← I(1n)
– CRS: a sequence of l random strings r1, ..., rl, each acts as random coins for

S.
– Prover: is given (α, τ) and does the following:

1. Calculate yi := S(α; ri) for each 1 ≤ i ≤ l.
2. Calculate xi := B(τ, yi) for each 1 ≤ i ≤ l.
3. Output {(i, xi) : 1 ≤ i ≤ l}

– Verifier: is given α and {(i, xi) : 1 ≤ i ≤ l}, and does the following
1. Calculate yi := S(α; ri) for each 1 ≤ i ≤ l.
2. Validate that yi = F (α, xi) for each 1 ≤ i ≤ l. If any of the validations

fail, reject the proof. Otherwise, accept it.

Looking into the details of the protocol, we detect a potential problem. We
demonstrate it by instantiating the FLS+BY protocols using a specific family
of doubly-enhanced trapdoor permutations, which was proposed by [BPW16]:

Let PRFk be a pseudorandom function family, and iO an indistinguishability
obfuscator. Let Ck be the circuit that, on input (i, t), if t = PRFk(i) outputs (i+
1, PRFk(i+1)) (where i+1 is computed modulo some T ) and otherwise outputs
⊥. Denote by C̃ := iO(Ck) the obfuscation of Ck. The BPW construction gives
a DETDP F where C̃ is the public permutation index, and k is the trapdoor.
To evaluate the permutation on a domain element (i, PRFk(i)), just apply C̃.
To invert (i + 1, PRFk(i + 1)) given k, return (i, PRFk(i)). The range sampler
is given as an obfuscation of a circuit which samples out of a (sparse) subset of
the function’s range. One-wayness holds due to a hybrid puncturing argument:
the obfuscation of the cycle (i, PRFk(i)) → (i + 1, PRFk(i + 1)) (where i + 1
is computed module T ) is indistinguishable from that of the same cycle when
punctured on a single spot i∗, by replacing the edge (i∗, PRFk(i∗)) → (i∗ +
1, PRFk(i∗ + 1)) with a self loop from (i∗, PRFk(i∗)) to itself. By repeating the
self-loops technique we obtain a punctured obfuscated cycle where arriving from
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(i, PRFk(i)) to its predecessor (i − 1, PRFk(i − 1)) cannot be done efficiently
without knowing k itself.2

Suppose that the [BPW16] construction is used to instantiate the FLS+BY
protocols, and consider the following malicious prover: Let C ′

k be a circuit which,
given input (i, t), does the following: if t = PRFk(i) or t = PRFk(i − 1), output
(i + 1, PRFk(i + 1)). Otherwise, output ⊥. Denote C̃ ′ := iO(C ′

k). We give out
C̃ ′ as the public key and keep k as the trapdoor. We keep the domain sampler
as it is, that is, it returns only items of the form (i, PRFk(i)).

Denote Dk = {(i, PRFk(i) : i ∈ [1...T ])} and D̃k = {(i, PRFk(i)) : i ∈
[1...T ]}∪ (i, PRFk(i−1)) : i ∈ [1...T ]}. It is easy to see that C ′

k is a permutation
when restricted to the domain Dk, but it is many-to-one when evaluated on the
domain D̃k: each item (i + 1, PRFk(i + 1)) ∈ Dk has 2 pre-images: (i, PRFk(i))
and (i, PRFk(i−1)). Note that the one-wayness of the trapdoor function is main-
tained even when extended to the domain D̃k: For each image (i+1, PRFk(i+1))
we now have two pre-images, one is (i, PRFk(i)) which is hard to invert to due
to the same puncturing argument as in the original BPW paper, and the second
is (i, PRFk(i − 1)) which has no pre-image of its own, and therefore no path on
the cycle can lead to it (keeping the same one-wayness argument intact).

Finally, our cheating prover can wrongly “certify” the function as a per-
mutation. The domain sampler will always give an image in Dk as it was not
altered. During the Bellare-Yung certification protocol, the prover can invert
y = (i + 1, PRFk(i + 1)) ∈ Dk to, say, (i, PRFk(i)), which will pass the vali-
dation. However, during the FLS protocol, the prover can choose to invert any
y ∈ Dk to one of its two distinct pre-images, one from Dk and another from
D̃k \ Dk, which breaks the soundness of the protocol. (Indeed, for natural hard-
core predicates of F the predicate values for the two preimages associated with
a random i are close to being statistically independent).

3.2 Discussion

We attribute the loss in soundness when applying the FLS+BY combination on
the [BPW16] construction to a few major issues.

First, we observe that both the sampling and forward evaluation algorithms
are required to operate even on illegitimate keys. However, the basic definition of
trapdoor permutations (c.f. [Gol98]) does not address this case at all. Ignoring
this case may make sense in settings where the party generating the index is
trusted, but this is not so in the case of NIZK proof systems. We therefore
generalize the basic definition of trapdoor permutations so that the forward

2 In order to add an enhanced domain sampler, the BPW construction returns ele-
ments of the form (PRG(r), PRFk(PRG(r))), where PRG is a pseudorandom gen-
erator which lengthens the input by a significant factor. The domain sampler is just
an obfuscation of a circuit which outputs the above pair on some random r. By
augmenting the sampler even more, they were able to doubly-enhance their TDP, at
the cost of creating a very sparse part of the domain which is sampleable. We leave
the rest of the details to the reader.
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evaluation and domain sampling definitions generalize to any α, rather than just
those which were generated by running the index-generation algorithm. That is,
for every α, Dα is some domain over which F (α, ·) is well defined, and S(α; r)
returns elements from that domain.

We next claim that in order for the soundness of the complete FLS+BY
protocol to be preserved, two additional requirements are needed: First, mem-
bership in Dα should be efficiently recognizable given α. That is, there should
exist a polynomial-time algorithm which, given α and some string x, decides if
x represents an element in Dα or not. Second, the domain sampler S should be
guaranteed to sample (almost) uniformly out of Dα. We stress that both these
requirements should hold with respect to any index α, in particular indices that
were not generated truthfully. Furthermore, they are made on top of the existing
requirements from doubly-enhanced trapdoor permutations.

We call doubly enhanced trapdoor permutations that have these properties
public domain. We formalize this notion in Definition 13 and prove that it indeed
suffices for regaining the soundness of the FLS+BY combination in Theorem 7
(see Sect. 4.3).

In the rest of this section, we show that these two requirements are indeed
necessary, by demonstrating that if either of the two do not hold then the result-
ing proof system is not sound.

First, consider the case where S’s sampling distribution is non-negligibly far
from uniform over Dα. The soundness of Bellare-Yung depends on the observa-
tion that if the function is not an almost-permutation, then by sampling enough
random images from the function’s domain, there must be a sample with cannot
be inverted (with all but negligible probability). However, if the sampler does
not guarantee uniformity this claim no longer holds, as the prover may give out a
sampler which samples only out of that portion of the range which is invertible.

Secondly, assume S indeed samples uniformly from the domain, and con-
sider the case where Dα is not efficiently recognizable. As it turns out, both the
Bellare-Yung protocol and the original FLS protocol require the verifier to deter-
mine whether pre-images provided by the prover are indeed in Dα. Otherwise,
a malicious prover could certify the permutation under a specific domain, but
later provide pre-images taken out of an entirely different domain, thus enabling
it to invert some images to two or more pre-images of its choice.

Indeed, the attack described in Sect. 3.1 takes advantage of the loophole
resulting from the fact that the domain of the [BPW16] is neither efficiently
recognizable nor efficiently sampleable. The exact reason for the failure depends
on how the domain of [BPW16] is defined with respect to illegitimate indices. Say
for α = C̃, we give out Dα which includes only pairs (i, x) such that x = PRFk(i)
(for the specific k used to construct C̃). In that case, S indeed samples uniformly
from Dα. However since Dα is not efficiently recognizable, the prover cannot
check that the pre-image it was given is from Dα. In particular it cannot tell if
it is from Dk = Dα or from D̃k. On the other hand, if Dα = {0, 1}∗, then Dα

may be trivially recognizable for any index, but S does not guarantee a uniform
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sample from Dα. Indeed, S may sample only from that subset of Dα which is
invertible, thus breaking the soundness.

4 Certifying Injectivity of Trapdoor Functions

We go back to the original problem of certifying permutations in a way that is
sufficient for the FLS protocol, while addressing the more general problem of
certifying injectivity of trapdoor functions (which may or may not be permuta-
tions). We note that although this problem is motivated by the need to fill in
the gaps in the FLS protocol, a solution for it might be interesting on its own.

In Sect. 4.1 we define the notion of Certifiable Injectivity as a general abstrac-
tion of certifiability for doubly-enhanced injective trapdoor functions. In Sect. 4.2
we prove that this notion indeed suffices for regaining the soundness of the FLS
protocol. In Sect. 4.3 we show how certifiable injectivity can be realized by any
trapdoor permutations whose domain provides certain additional properties, by
using the Bellare-Yung certification protocol. In Sect. 4.4 we suggest the notion
of Perfectly Certifiable Injectivity as a specific variant of certifiable injectivity,
where there is no longer need for a certification protocol and the resulting sound-
ness is optimal.

4.1 Certifiable Injectivity - Definition

We define a general notion of certifiability for injective trapdoor functions, which
requires the existence of a general prover and verifier protocol for the function
family. The verifier in our notion provides two levels of verification: a general
verification procedure V for an index α, and then a pointwise certification pro-
cedure ICert which, on index α and an image y, “certifies” that with all but
negligible probability y has only one pre-image under α. The purpose of this pro-
tocol is to guarantee that if the verifier accepts the proof given by the prover on
a certain index α, then with all but negligible probability (over the coins of the
range sampler), the range sampler cannot sample images which are certified by
ICert and can be inverted to any two pre-images. We note that this certification
must not assume recognizability of the domain.

Definition 10 (Certifiable Injective Trapdoor Functions (CITDFs)). Let F =
{fα : Dα → Rα} be a collection of doubly enhanced injective trapdoor functions,
given by way of algorithms I, F,B, SD, SR. We say that F is certifiably injective
(in the common reference string model) if there exists a polynomial-time algo-
rithm ICert and a pair of PPT algorithms (P, V ), which provides the following
properties:

– Completeness: for any (α, τ) ← I(1n) we have:
1. PrP,V,crs[π ← P (α, τ, crs);V (α, crs, π) = 1] = 1, where the probability is

taken over the coins of P and V and the choice of the CRS, and
2. For any x ∈ Dα, ICert(α, x) = 1.
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– Soundness: there exists a negligible function μ such that the following holds
for any α ∈ {0, 1}∗ :

Pr
crs,V,r

[∃π, x1 �= x2 ∈ {0, 1}∗ :V (α, crs, π) = 1, F (α, x1) = F (α, x2) = SR(α; r),

ICert(α, x1) = ICert(α, x2) = 1] ≤ μ(n)

where the probability is taken over the coins of V the choice of the CRS, and
the random coins given to the range sampler. Note that this must hold for any
α, including those that I cannot output, and that π can be chosen adaptively
given the common reference string.

– Enhanced Hardness (even) given the Proof: for any polynomial-time
algorithm A there exists a negligible function μ, such that the following holds

Pr
P,crs,r

[(α, τ) ← I(1n);π ← P (α, τ, crs);x ← A(α, r, crs, π);

F (α, x) = SR(α; r)] ≤ μ(n)

where the probability is taken over the coins of P , the choice of the CRS and
the randomness r for the range sampler.

Certifiable injectivity gives a general way to certify that a given key describes
an injective function, even when using general, partial-domain/range functions.
The proof generated by P and verified by F is used to certify that the given key
α is indeed injective, in the sense that if V accepts it then no two acceptable
pre-images can map to the same image (with all but negligible probability). Note
that our hardness condition only requires that inversion remains hard. Partial
information on the preimage x can be leaked, and there is no “zero-knowledge-
like” property.

4.2 Certifiable Injectivity Suffices for the Soundness of FLS

Our key theorem, stated next, shows how combining certifiable injectivity with
the FLS protocol and doubly-enhanced permutations, we overcome the existing
problems and obtain NIZK for NP from general permutations.

Theorem 6 (DECITDFs → NIZK). Assuming the existence of doubly-
enhanced, certifiably injective trapdoor functions, there exists a NIZK proof sys-
tem in the CRS model for any NP language.

Proof Sketch: We adapt the FLS protocol in an intuitive way: given a
DECITDF, we treat the CRS as two separate strings. The first string is used to
certify the injectivity of the trapdoor function, using the CI-prover and verifier,
while the second is used for the FLS protocol. Moreover, we adapt the veri-
fier part of the FLS protocol to pointwise-certify any pre-image presented to it
by running ICert on it. The soundness guarantee of CI notion ensures that a
malicious prover must choose a trapdoor index which describes an injective (or
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at least an almost-injective) function over the domain of elements accepted by
ICert, or otherwise the CI verifier would reject the first part of the proof. The
hardness guarantee ensures that the FLS proof remains zero-knowledge, even in
the presence of the CI proof.

Proof Let F = {fα : Dα → Rα} be a collection of doubly-enhanced, certifiably
injective trapdoor functions, and let L be an NP language.

We extend the definition of enhanced hard-core predicates to hold with
respect to the CI proof (as well as the index):

Definition 11 (CI-Enhanced Hard-Core Predicate). Let F = {fα} be a collec-
tion of doubly-enhanced certifiably injective trapdoor functions, with P being a
CI-prover for it and SR the enhanced range sampler. We say that the predicate
p is a CI-enhanced hard-core predicate of fα if it is efficiently computable, and
for any PPT adversary A there exists a negligible function μ such that

Pr
crs

[(α, τ) ← I(1n);π ← P (α, τ, crs); r ← {0, 1}n;

A(α, crs, π, r) = p(α, f−1
α (SR(α; r)))] ≤ 1/2 + μ(n)

Similarly to (plain) enhanced hard-core predicates, this definition is uncondi-
tionally realizable for any doubly-enhanced certifiably injective TDF (e.g. using
the [GL89] hard-core predicate, which does not use the function index).

Recall that by Theorem 1, there exists a hidden-bit-model proof system for
L, denote it (PHB , VHB). Let p be a CI-enhanced hard-core predicate for fα.

We treat the common reference string as two separate substrings cCI , cFLS .
cCI will be used by the CI-prover and CI-verifier (PCI , VCI) for F . cFLS will be
used by the prover-verifier pair from the FLS protocol, which is adapted to the
use of doubly-enhanced trapdoor functions (based on the adaptation suggested
by [Gol11]).

Let (P, V ) be the following protocol:

– The prover P : given an instance-witness pair (x,w) ∈ RL:
1. Selects (α, τ) ← I(1n).
2. Invoke PCI(α, τ, cCI) to obtain a proof πCI for the injectivity of fα.
3. Treat cFLS as a sequence of random strings r1, ..., rl, where each ri is of

length needed for the random coins for SR (which is polynomial in n).
For i = 1, ..., l, let yi = SR(α; ri), xi = B(τ, yi), and σi = p(xi).

4. Invoke PHB on σ = (σ1, ..., σl), to obtain (I, πHB) - I is a list of indices
to reveal, and πHB is the hidden-bit-model proof. Let πFLS be the pair
(πHB , {(i, xi) : i ∈ I}).

5. Output (α, πCI , πFLS).
– The verifier V : given an instance x and a proof (α, πCI , πFLS):

1. Invoke VCI(α, cCI , πCI) to check the proof πCI for the injectivity of fα.
If the validation failed, reject the proof.

2. πFLS := (πHB , {(i, xi) : i ∈ I}). Treat cFLS as a sequence of random
strings r1, ..., rm.
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3. Check that, for every i ∈ I, yi := SR(α; ri) = F (α, xi) and ICert(α, xi)
accepts. If any of the validations failed, reject the proof.

4. Let σi = p(xi) for all i ∈ I. Let σI = (i, σi)i∈I . Invoke VHB on x, σI , πHB ,
and accepts if and only if it accepts.

We next prove that (P, V ) provide a NIZK proof system for L in the CRS
model.

Completeness follows immediately from the completeness of the CI notion
and of the FLS protocol.

For Soundness, we follow the line of [BY96], of bounding the extra error in
soundness induced when the trapdoor function is not a permutation, adapting
it to the notion of DECITDFs:

Definition 12. Let F = {fα : {0, 1}m → {0, 1}n} be a DECITDF family. The
Certified Collision Set of an index α is the set of all n-bit strings which have
more than one certified pre-image under fα:

CIC(α) := {y ∈ {0, 1}n :∃x1 �= x2 ∈ {0, 1}m s.t. fα(x1) = fα(x2) = y

andICert(α, x1) = ICert(α, x2) = 1} (4)

We say that fα is (certified) almost-injective if |CIC(α)| is negligible.

Lemma 1. Let F be a DECITDF family with a CI verifier VCI , and let α be
some index such that fα is not (certified) almost-injective. Then Prcrs,V [∃π :
VCI(α, crs, π) = 1] ≤ μ(n) for some negligible function μ, where the probability
is taken over the choice of the crs and the random coins of V .

Proof. Follows directly from the soundness condition of Definition 10.

Next, suppose x /∈ L, and let (α, πCI , πFLS) be some proof given to V . We
split our proof to cases:

– fα is not (certified) almost-injective: then by Lemma 1, VCI(α, crs, π) rejects
with all but negligible probability.

– fα is (certified) almost-injective. As shown by [FLS90], if yi /∈ CIC(α) for
all i = 1, ..., l, then VHB rejects the proof on x with all but negligible prob-
ability. This is so because on every presumed pre-image xi presented to it
by the prover, the verifier checks that fα(xi) = yi and ICert(α, xi) = 1.
As yi /∈ CIC(α), there can only exists one pre-image xi that passes both
certifications, thus each hidden-bit can be opened into only one certified pre-
image, preserving the soundness of the underlying hidden-bit proof. Finally,
we bound the additional error induced by the case where yi ∈ CIC(α) for
some i, by Pr[∃1 ≤ i ≤ l : yi ∈ CIC(α)]. By our assumption, |CIC(α)| is
negligible in n, thus the additional error is negligible as well.

This completes the proof of the soundness condition.
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For Zero Knowledge, we follow the zero-knowledge proof given in [Gol11].
The proof is given using a hybrid argument, based on the security of the doubly-
enhanced injective trapdoor function, and while handling the issue of addition-
ally simulating the certifiable injectivity proof. We refer the reader to [CL17] for
the full details of the zero-knowledge condition.

This completes the proof of Theorem 6.

4.3 Certifiable Injectivity for Public-Domain TDPs Using
Bellare-Yung

Building on the discussion in Sect. 3.2, we formalize the notion of public-domain
trapdoor permutations. We then show that, when applied to public-domain per-
mutation, the BY certification mechanism suffices for guaranteeing Certifiably
Injectivity (and, thus, also soundness of the FLS paradigm).

Definition 13 (Public-Domain Trapdoor Permutations). Let fα : {Dα → Dα}
be a trapdoor permutation family, given by (I, S, F,B). We say that it is public-
domain if the following two additional properties hold:

– The domain is efficiently recognizable: that is, there exists an
polynomial-time algorithm Rec which, for any index α and any string x ∈
{0, 1}∗, accepts on (α, x) if and only if x ∈ Dα. In other words, Dα is defined
as the set of all strings x such that Rec(α, x) accepts.

– The domain is efficiently sampleable: that is, for any index α, S(α)
samples almost uniformly from Dα.

We stress that both properties should hold with respect to any α, including
ones that were not generated by running I.

We show that indeed, for the case of public-domain doubly-enhanced trap-
door permutations, Bellare-Yung can be used to obtain certifiable injectiveness.

Theorem 7. Any doubly-enhanced public-domain trapdoor permutation family
is certifiably injective.

Proof. Let F be a doubly enhanced public-domain trapdoor permutation. Let
(P, V ) the prover and verifier from the enhanced Bellare-Yung protocol for F ,
that is, the version of Bellare-Yung that uses the enhanced range sampler to
generate images from the random coins given in the common reference string, as
described in Sect. 3.1. Let Rec be a polynomial-time domain recognizer for Dα,
for any index α (which exists since the permutation family is public-domain).
We claim that F is certifiably injective, with ICert(α, x) = Rec(α, x) and (P, V )
giving the CI prover and verifier.

Completeness follows immediately from that of Bellare-Yung. The hardness-
given-the-proof requirement follows from the Bellare-Yung protocol providing
zero-knowledge secrecy, which implies an even stronger guarantee. For sound-
ness, we note that if Prr[∃x1 �= x2 ∈ {0, 1}∗ : F (α, x1) = F (α, x2) =
SR(α; r), ICert(α, x1) = ICert(α, x2) = 1] is non-negligible, then by definition
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F (α, ·) is not almost-injective over Dα. As shown by [BY96], this implies that
the verifier will reject any proof with all but negligible probability, which implies
our soundness requirement.

We note that some existing candidate constructions, such as ones on the
line of [BPW16], are not public-domain, as they inherently need the sampling
algorithm to hold secrets. Indeed, as demonstrated in Sect. 3, Bellare-Yung does
not suffice to guarantee soundness when instantiating FLS with such a candidate.
On the other hand, the RSA TDPs are public-domain: the domain Z∗

N is indeed
efficiently recognizable for any public index N , and a PPT certifiably uniform
domain sampler can be described for any public key N of RSA, by mapping
strings in {0, 1}n to Z∗

N in a way that obtains (almost) uniform samples in Z∗
N .3

For those constructions the FLS+BY combination is indeed sound.

4.4 Perfectly Certifiable Injectivity

While certifiable injectivity seems to capture the minimal requirement for a trap-
door permutation that suffices for FLS, the requirement of a prover and verifier
algorithms are somewhat cumbersome when viewed purely in the context of trap-
door permutations. We thus suggest a strengthened notion of Perfectly Certifiable
Injectivity, which is a variant of certifiable injectivity in which the pointwise cer-
tification algorithm ICert provides a stronger guarantee, eliminating the need
for an additional prover-verifier protocol.

Definition 14 (Perfectly Certifiable Injective TDFs). A doubly-enhanced injec-
tive TDF family is perfectly certifiable injective if, in addition to the standard
set of algorithms I, SD, SR, F,B, it defines a certification algorithm ICert.

ICert is given a permutation index α and a pre-image x, and accepts or
rejects, providing the following two guarantees:

– Completeness: If α ← I0(1n) and x ← SD(α) then ICert(α, x) = 1.
– Perfect Soundness: For any index α, there do not exist any x1 �= x2 ∈

{0, 1}∗ such that F (α, x1) = F (α, x2) and ICert(α, x1) = ICert(α, x2) = 1.
Note that α needs not be generated honestly by I.

The standard hardness condition is required as usual (and must apply even
in the presence of ICert).

Perfect CI is a special case of general CI, where the soundness of ICert is
absolute; for any α, x1, if ICert(α, x1) = 1 then it is guaranteed that there exists
no second pre-image x2 which maps to F (α, x1) and accepted by ICert(α, ·).
It turns out that in the specific case where the trapdoor function family in
use is perfectly certifiable injective with, the index certification protocol can

3 Full details can be found in [BY96] and [GR13], appendix B.
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be completely avoided. Indeed, the soundness requirement of Definition 10 is
trivially fulfilled, as:

Pr
r

[∃x1, x2 : F (α, x1) = F (α, x2) = SR(α; r), ICert(α, x1) = ICert(α, x2) = 1] = 0

An important property of this technique is that the soundness it provides is
perfect, in that it is identical to the soundness obtained by using ideal trapdoor
permutations. No additional error is incurred, since for every image there exists
a single acceptable pre-image (unconditionally).

5 Doubly Enhanced Perfectly Certifiable Injective
Trapdoor Functions from iO+

We construct doubly-enhanced injective trapdoor functions using iO + pseudo-
random generators (which can be constructed from one way functions). Addi-
tionally, assuming the pseudorandom generator is injective, we show that the
injectivity of our construction is perfectly certifiable. Using the additional cer-
tification procedure, our construction suffices for general NIZK proofs for NP-
languages. This construction is motivated by the [SW14] CPA-secure public key
encryption system.

For simplicity, in Sects. 5.1, 5.2 and 5.3, we assume that the PRGs and PPRFs
being used by our construction are full domain; that is, every string in {0, 1}p(n)

(for some p(n) polynomial in the security parameter n), can be mapped to a
pre-image of the function. This assumption makes sense in the context of gen-
eral pseudorandom generators and puncturable pseudorandom functions, where
natural full-domain candidates exist (c.f. [GGM86]). However this is not the
case for injective PRGs, which are required for our certifiable injectivity proof.
In Sect. 5.4 we show how this assumption can be relaxed, by allowing injec-
tive PRGs with a domain which is efficiently sampleable and recognizable. We
additionally demonstrate how these requirements can be realized by existing
candidates.

5.1 Construction

Let g be an n-to-2n bits PRG, d be a n/2-to-n PRG, {fk : {0, 1}2n →
{0, 1}n}k∈K and {hw : {0, 1}n → {0, 1}n}w∈W puncturable PRF families, and
iO an indistinguishability obfuscation scheme.

Let Tk, Sk,w and Qw be the following circuits:

Tk(x): (Forward evaluator)

constants:

puncturable PRF key k
t = g(x)

s = fk(t)
return (x ⊕ s, t)

Sk,w(r): (Range Sampler)

constants:

puncturable PRF key k for f
puncturable PRF key w for h

x = hw(r)
return Tk(x)
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Qw(ρ): (Correlated Pre-Image Sampler)
constants:

puncturable PRF keys w for h
r = d(ρ)
x = hw(r)
return (x, r)

We define our injective TDF in the following way:

– I(1n): Choose k ← K as a PRF key for f , and w ← W as a PRF key for h.
Denote T̃ := iO(Tk), S̃ := iO(Sk,w), Q̃ := iO(Qw). Output α := (T̃ , S̃, Q̃) as
the public TDP index, and τ := k as the trapdoor.

– F (α = (T̃ , S̃, Q̃), x ∈ {0, 1}n): output T̃ (x).
– B(τ = k, y = (c ∈ {0, 1}n, t ∈ {0, 1}2n)): output c ⊕ fk(t).
– SD(α = (T̃ , S̃, Q̃), r ∈ {0, 1}n): output r.
– SR(α = (T̃ , S̃, Q̃), r ∈ {0, 1}n): output S̃(r).

Motivation: T̃ = iO(Tk) is used as the forward evaluation algorithm, with the
secret key k used to invert it. S̃ = iO(Sk,w) is used as a range sampler providing
the first enhancement, with hw being used to re-randomize the random coins
provided to in to create a secret pre-image. Q̃ = iO(Qw) will be used to provide
the second enhancement, using yet another round of re-randomization on the
coins provided to it.

An interesting point about our construction is that both enhancements do
not depend at all on the structure of the TDF itself. In fact, all the enhancements
need in order to work is any full-domain, or even efficiently sampleable domain,
TDF, and the proof remains the same. Hence, our technique of re-randomizing
the input via a length-preserving PRF can be considered as a generic method for
doubly-enhancing any efficiently-sampleable-domain TDF, using iO and one-way
functions.

5.2 Completeness, Hardness and Enhancements

Theorem 8. The function family described using (I, F,B, SD, SR) gives a
doubly-enhanced injective trapdoor function family.

Proof Sketch: using a hybrid argument, we reduce the hardness of inverting
F to the (1) security of the iO scheme, (2) the selective security of a punctured
PRF key at the punctured point, and (3) the pseudorandomness of the PRG g.
The enhancements are shown using a similar argument. We refer the reader to
[CL17] for the full details of this proof.
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5.3 Certifiable Injectivity

We show that our construction is perfectly certifiable injective, under the
assumption that the PRG g is injective. Moreover, the soundness of the cer-
tification protocol is perfect. This shows that our construction is sufficient for
realizing the FLS paradigm.

Recall that, on input x, our TDF evaluation returns (x⊕s, t), where t = g(x)
(and s is determined by the secret trapdoor). The certifier ICert is given x,
obtains y = F (α, x), and compares the last 2n bits of y to g(x). If they are
equal, ICert accepts. Otherwise it rejects.

Theorem 9. Assuming g is a full-domain injective PRG, our TDF family,
along with ICert, is perfectly certifiable injective.

Proof. For y ∈ {0, 1}3n, denote by y[n + 1 : 3n] the last 2n bits of y.

1. Completeness: if y = F (α, x) for an honestly created α, then by the definition
of our TDF we have y = (c, t) for t = g(x) and c = x ⊕ fk(t). So y[n + 1 :
3n] = t = g(x) and ICert accepts.

2. Soundness: Suppose x1, x2, y such that F (α, x1) = F (α, x2) = y and
ICert(α, x1) = ICert(α, x2) = 1. By definition, since ICert(α, xi) = 1 for
both x1 and x2, we have that g(x1) = y[n + 1 : 3n] = g(x2). Since g is
injective, this means x1 = x2.

The soundness, hardness and enhancements proofs for the TDF are not
harmed, as ICert does not depend on the private key k.

5.4 On the Assumption of Full-Domain iPRGs

As mentioned in the opening of Sect. 5, our construction and security proof rely
on the assumption that the underlying PRGs and PPRFs are full-domain; That
is, every string in {0, 1}p(n) (for some p(n) polynomial in the security parameter
n) can be mapped to a pre-image of the function. This assumption makes sense
in the case of general PRGs and PPRFs, where natural full-domain candidates
exists. However this is not the case for injective PRGs, which are required for
our certifiable injectivity proof.

We first note that for the completeness, security and enhancements, the full-
domain assumption can be relaxed by allowing functions with an efficiently sam-
pleable domain. The domain sampler is then used to map random coins, as well
as the output of some of the primitives we use, into domain items.

Secondly, we show that the certifiable injectivity of our construction is main-
tained under the relaxed assumption of an injective PRG with a domain which
is efficiently recognizable (as well as sampleable). That is, we require that there
exists a polynomial-time global domain recognizer algorithm Rec which, given
some string x ∈ {0, 1}n, decides if that string is in the domain or not, and g is
injective over the set of all strings which Rec accepts. Assuming the existence of
such a recognizer algorithm Rec, we modify ICert such that given a supposed
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pre-image x, ICert first runs Rec(x). Only after, ICert continues to compare
the last 2n bits of y = F (α, x) to g(x). It accepts only if both conditions passed.
The CI soundness requirement follows directly.

We point out that the recognizable domain requirement is indeed necessary
for certifiable injectivity. Without it, a malicious prover might be able to cheat
using a similar attack to the one described in Sect. 3: the prover can give pre-
images taken outside of the PRG’s supposed domain, on which ICert might
arbitrarily accept, and the verifier won’t be able to tell the difference.

Finally, we demonstrate how injective pseudorandom generators with effi-
ciently recognizable and sampleable domains can be constructed based on stan-
dard assumptions. We suggest two alternatives; one using a black-box construc-
tion from another primitive (one-way permutations), and another based on spe-
cific algebraic structure (the DDH assumption).

iPRGs from OWPs: Assuming one-way permutations with an efficiently sam-
pleable domain, an injective length-doubling pseudorandom generator can be
obtained using the textbook construction (c.f. [Gol98]). That is, let owp be a
one-way permutation over domain Dn ⊆ {0, 1}n, and let p be a hard-core pred-
icate for it. Then prg1(x) = (owp(x), p(x)) is a pseudorandom generator which
is single-bit expending. For i > 1, let prgi(x) := prgi−1(owp(x)), p(x) be the
result of recursively applying prgq on the first n bits of the output. Using a
hybrid argument, prgn(x) is a injective length-doubling PRG. Constructing an
injective pseudorandom generator from primitives weaker then one-way permu-
tations remains an open question.4

For the certifiable injectivity of our TDP construction, we require that the
PRG’s domain, Dn, be efficiently recognizable. However when this is the case
additional attention is required, since the first n bits of prgn(x) describe an
element in that domain, and hence they are clearly distinguishable from just any
n-bit string. We circumvent this issue by defining our PRG as pseudorandom
with respect to Dn ◦ Un := {(x, s) : x ← Dn, s ← {0, 1}n}. That is, we adapt
the security requirement of the PRG to the following: for any PPT adversary A,
Pr[x ← Dn : A(prgn(x)) = 1] − Pr[x ← Dn, s ← {0, 1}n : A((x, s)) = 1] ≤ μ(n),
where μ(n) is negligible. Under the revised definition, our security proof remains
sound, with the change that when replacing t∗ = prgn(x∗) with a random t∗,
the replaced value is taken out of Dn ◦ Un (instead of a random 2n-bit string).

A one-way permutation with an efficiently recognizable domain can be
obtained, e.g., based on the discrete log assumption.

iPRGs from DDH: Based on the DDH assumption [DH76], [Bon98] suggested
the the following candidate for injective PRGs. Let Gp = {x2 : x ∈ Zp}, where
p is a safe prime (that is p = 2q + 1 for some prime q). We define the following

4 [Rud84,KSS00,MM11] give a black-box separation between one-way permutations
and weaker primitives, such as one-way functions.
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enumeration from Gq to Zq (see e.g. [CS03,CFGP05]):

i(x) =

⎧
⎪⎨

⎪⎩

x if 1 ≤ x ≤ q

p − x if q + 2 ≤ x ≤ p

0 otherwise

Let g be a generator for Gp. For a, b ∈ Zq, let:

prg(a, b) = i(ga), i(gb), i(gab)

Then by the DDH assumption, prg is an injective pseudorandom generator
from Z2

q → Z3
q . Using the same technique, an injective length-doubling PRG

from Z3
q → Z6

q can be constructed by using

prg(a, b, c) = i(ga), i(gb), i(gc), i(gab), i(gac), i(gbc)
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