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Abstract. Trapdoor permutations (TDP) are a fundamental primitive
in cryptography. Several variants of this notion have emerged as a result
of different applications. However, it is not clear whether these variants
can be based on the standard notion of TDPs.

We study the question of whether enhanced trapdoor permutations
can be based on classical trapdoor permutations. The main motivation
of our work is in the context of existing TDP-based constructions of
oblivious transfer and non-interactive zero knowledge protocols, which
require enhancements to the classical TDP notion. We prove that these
enhancements are non-trivial, in the sense that there does not exist fully
blackbox constructions of enhanced TDPs from classical TDPs.

On the technical side, we show that the enhanced TDP security of
any construction in the random TDP oracle world can be broken via a
polynomial number of queries to the TDP oracle as well as a weakening
oracle, which provides inversion with respect to randomness. We also
show that the standard one-wayness of the random TDP oracle stays
intact in the presence of this weakening oracle.

1 Introduction

Trapdoor permutations (TDPs) [RSA78,Rab79] are a family of permutations,
where each permutation in the family is easy to compute given the underlying
index key, and also easy to invert given a corresponding trapdoor key. The clas-
sical notion of one-wayness for TDPs states that it is hard to invert a randomly
chosen permutation from the family on a random image. While classical TDPs
suffice for many applications, such as public-key encryption (PKE) [Yao82], par-
allel constructions of pseudorandom synthesizers [NR99], etc., for certain appli-
cations we need to strengthen this basic one-wayness notion. The main reason
is that in protocols in which TDPs are used, the adversary may sometimes have
some side information about the underlying image element, which may give her
some advantage.
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Technically, TDPs come with a sampling algorithm S, which, on input an
index key IK and random coins R, outputs an element from the domain Domik

of the permutation E(IK, ·). We call a TDP enhanced if it is hard to find the
pre-image of a random image element Y := S(IK;R) even if the inverter is given
the randomness R (along with IK). Intuitively, enhanced TDPs allow a sampler,
given only the underlying index key, to sample an image point obliviously to its
pre-image: if we sample Y = S(IK;R) for a random R, then even given R, we
are still oblivious to the corresponding pre-image of Y.

To see when this need of enhancement arises, consider the classical construc-
tion of hones-but-curious oblivious transfer (OT) protocols [EGL82,GMW87].
In this setting, a receiver Alice(b, ·) with input bit b wishes to secretly learn the
message mb of Bob’s two messages (m0,m1). She does so by sending two image
elements Y1 and Y2 of a TDP E(IK, ·), where IK’s trapdoor key is only known
to Bob, in such a way that Alice knows the pre-image of Yb but not of Y1−b. She
does so by sampling Y1−b obliviously and by sampling Yb by applying E(IK, ·)
on a random domain element X. Bob sends to Alice encryptions c1 and c2 of the
two bits m0 and m1 under the standard TDP-based PKE construction, using
Y0 and Y1 as the ‘encoded randomness.’ Alice can open cb to recover Yb. In
order to ensure privacy for Bob, we need to assume that the underlying TDP is
enhanced one-way.

The need for strengthening the notion of TDPs was first discovered by Bel-
lare and Yung [BY93], noting that the previous TDP-based non-interactive zero
knowledge (NIZK) construction in [FLS90] requires the set of valid permuta-
tions to be certifiable. Goldreich [Gol04] was the first to realize the need for
enhanced TDPs in the context of OT constructions. It was also later discovered
that for the TDP-based non-interactive zero knowledge (NIZK) protocol [FLS90]
the zero-knowledge property relies on the TDP being doubly enhanced [Gol11],
in addition to the certifiability property. Informally, doubly-enhanced TDPs are
enhanced TDPs that provide the feature that given an index key IK it is possible
to sample random coins Ry together with the pre-image of S(IK,Ry). As noted
in [Gol11,GR13] the main reason these requirements were not noticed earlier is
because TDPs had implicitly been assumed to be permutations over {0, 1}κ (or
over domains which enable trivial sampling algorithms). While these idealized
TDPs are doubly enhanced, we do not have any candidate constructions for
them.

Faced with this difficulty, Haitner [Hai04] gives a more complicated OT pro-
tocol which works with respect to any classical TDP with dense domains. It is
not however clear whether such TDPs can be built from classical one-way TDPs.

In summary, the possibility of basing OT or NIZK on classical TDPs remains
unknown. One way to address these is to investigate whether enhanced TDPs
can be constructed from standard TDPs.

1.1 Our Result and Discussion

We take a first step toward understanding the relationships between vari-
ous notions of TDPs. Our main result shows that enhanced TDPs cannot be
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constructed from classical TDPs in a fully blackbox way (in the taxonomy
of [RTV04]). We give an overview of our result and techniques in Sect. 1.2. In
what follows, we discuss the significance of our work.

TDPs are rather coarse as a primitive, since the set of assumptions from
which TDPs can be built is relatively small, being limited to factoring-related
assumptions [RSA78,Rab79] and obfuscation-based assumptions [BPW16]. Also,
variants of the popular RSA and Rabin TDPs (see e.g., [KKM12]) as well as
variants of iO-based TDPs are already doubly enhanced [GR13,BPW16].1 Given
this state of affairs, one may ask about the motivations of this work. We provide
the following motivations.

– In a similar vein, Hsiao and Reyzin [HR04] draw attention to the distinction
between secret-coin collision resistant hash functions (CRHF) and public-coin
CRHF by showing that the latter cannot be constructed from the former in a
blackbox way. Prior to their work, these two notions had been deemed to be
equivalent. In some sense, our result shows that a similar situation relating
to public-versus-secret coins holds in the TDP setting as well, emphasizing
the need of rigorously showing which version is required in each application
and achieved by a future construction.

– Goldreich and Rothblum [Gol11] show that the TDP-based PKE construc-
tion, when instantiated with enhanced TDPs, offer properties, such as obliv-
ious ciphertext samplability, that have useful applications. This gives appli-
cations beyond the OT and NIZK settings, and serves as another motivation
for studying the possibility of basing enhanced TDPs on standard TDPs.

– TDPs turn out to be tricky objects to define, because after several decades
of research, still new aspects of this primitive are revealed, which turn out
to be required by some applications, but which were overlooked before. (See
for example the recent work of [CL17]). Faced with this landscape of TDP
with various properties, from a theoretical point of view, one would like to
understand to what extent these notions relate to each other, elucidating and
simplifying the landscape.

Open Problems. Our work leads to the following open problem: is it possible to
prove that OT cannot be based on standard TDPs in a blackbox way? Since
our work removes one path toward this goal, our techniques may be useful in an
eventual separation (if at all possible).

Other Related Work. There is a rich body of research on understanding the limi-
tations of TDPs. In particular, we know that TDPs cannot be used in a blackbox
way to construct two-message statistically-hiding commitments [Fis02], identity-
based encryption [BPR+08], correlated-secure trapdoor functions [Vah10] and
verifiable random functions [FS12]. To the best of our knowledge, all these
separations still hold even if the base TDP is doubly enhanced. Haitner et
al. [HHRS07] give lower-bounds on the round complexity of statistically-hiding
1 The TDP construction in [BPW16] does not satisfy doubly-enhanced one-wayness,

but a relaxed version of it, which nevertheless suffices for their respective application.
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commitments making blackbox use of TDPs. There is a positive construc-
tion of TDPs from indistinguishability obfuscations (IO) and one-way func-
tions [BPW16], which is not so-called domain invariant. The result of Asharov
and Segev [AS16] justifies this, showing that current non-blackbox iO-based
techniques are not sufficient to give us domain-invariant TDPs.

Gertner et al. [GKM+00] show that TDPs cannot be built from trapdoor
functions (TDFs) in a blackbox way. Their result is incomparable to ours (and
their techniques are also different), because their base primitive is TDFs, and
in their proof they make essential of the fact that the domain of a TDF can be
different from the range. Our result in contrast is about a separation between
two notions of TDPs.

1.2 Technical Overview

As common in blackbox impossibility results, we will prove our impossibility by
giving an oracle relative to which the base primitive exists, but not the target
primitive. Consider a random TDP oracle O = (g, s, e,d) with the following sub-
oracles. The key-generation oracle g : {0, 1}κ �→ {0, 1}κ is a random injective
function mapping a trapdoor key tk to an index key ik. The evaluation oracle
e(ik, ·) : {0, 1}5κ �→ {0, 1}5κ on an index key ik is defined over all elements in
{0, 1}5κ; however, e(ik, ·) is a permutation only over a sparse subset Domik of
{0, 1}5κ, where |Domik| = 2κ (hence the name sparseness). That is, we have
e(ik,Domik) = Domik.

The sampling oracle s(ik, ·) is a random injective function which allows us
to sample from Domik: given a string r ∈ {0, 1}κ, s(ik, r) returns an element in
Domik. Finally, the inversion oracle d is defined in a manner consistent with the
other oracles.

The Oracle O by Itself is Too Strong. Such a randomly chosen oracle O is overly
strong, satisfying already all enhanced forms of one-wayness. Thus, it cannot be
taken as is for deriving an impossibility. To address this problem, we will add a
weakening oracle u, which does not harm the standard one-wayness of O, but
which helps us break the enhanced one-wayness of any blackbox construction
(GO,SO,EO,DO). Our blackbox separation will then follow from this.

Intuition Behind the Weakening Oracle u. As a starter, suppose we are content
with u only breaking the enhanced one-wayness of O (as opposed to any TDP
construction from O). Thus, u should provide help for an inverter who has
the randomness of the challenge image. A natural choice for u would be the
following: on input u(ik, r), let y := s(ik, r) and return x ∈ Domik for which we
have e(ik, x) = y.

Indeed, the above oracle u breaks the enhanced one-wayness of O. We can
also see that the oracle u does not harm the standard one-wayness of O. This is
because of the sparse and random nature of the outputs of the oracles, making the
oracle u effectively useless for standard one-wayness. However, this oracle u is not
much useful beyond this simple scenario. In particular, imaging a self-composing
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TDP construction, whose evaluation algorithm Ee is the self-composition of
e(ik, ·); i.e., Ee(ik, x) = e(ik, e(ik, x)). An adversary A against enhanced one-
wayness is given (ik, r, y), and should find x such that y = e(ik, e(ik, x)). Given
the randomness r, the adversary A can find x0 such that e(ik, x0) = y by call-
ing u(ik, r), but A cannot continue to get to x, because A does not have the
randomness of x0.

Description of the Oracle u. The above discussion directs us toward a natural
choice of u: on input (ik, r), letting y := s(ik, r), the oracle u(ik, r) returns the
randomness of the pre-image of y, not the pre-image itself. That is, letting x ∈
Domik be such that e(ik, x) = y, the oracle u(ik, r) returns r0, where s(ik, r0) = x.

Returning to the construction example above, it is not hard to see that this
new oracle u not only breaks the enhanced one-wayness of the self-composition
construction, but that of more general k-composition constructions, in which we
compose e(ik, ·) k times. One would just need to sequentially call u k times to
get down to the base pre-image.

The Construction does not Call u Itself. We will assume that the construction
(GO,SO,EO,DO), which we want to show that can be broken by a polynomial
number of queries to (O,u), does not call u itself. This is sufficient for deriving
a fully blackbox separation because the base oracle O by itself is a one-way
TDP against all poly-query adversaries with access to (O,u). Our separation
model is close to those of [GMR01,HR04], which only rule out fully-blackbox
constructions, as opposed to the earlier models of [IR89,Sim98,GKM+00], which
also rule out relativizing reductions.

Main Techniques. We now give a high-level sketch of how to attack a general
construction (GO,SO,EO,DO). Let (IK,R) be the challenge input to the adver-
sary: if Y := SO(IK;R), the adversary should invert Y w.r.t. IK. The main
difficult part in inverting Y is to reply to queries for which we need to invert
some image y w.r.t. the oracle e(ik, ·). We denote such queries as e−1(ik, y):
namely, if e(ik, x) = y, then e−1(ik, y) = x.

As in the above k-composition construction example, suppose (informally)
one can start the decryption execution of Y without having the underlying inver-
sion key; namely, it is just a matter of answering a few oracle queries of the form
e−1(ik, y) for various (ik, y). Roughly, for any meaningful query qu := e−1(ik, y)
during this execution we will have two cases: (I) y was generated during the

process which produced (IK, ∗) $←− GO(1κ): namely, during this process there
was a query/response ((ik, x) −→

e
y) or ((ik, r) −→

s
y) for some x and r, and (II) y

was generated during the execution of Y := SO(IK;R).
We will show that cases (I) and (II) are the only likely cases; this is roughly

because otherwise one can forge such a valid (ik, y) without making a corre-
sponding query: This is very unlikely because of the sparseness of the oracle
outputs.

Let Qs be the set of all queries/responses during SO(IK;R). If during the
inversion of Y Case (II) holds, then either ((ik, x) −→

e
y) in Qs, in which case the
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answer to the query qu is clear, or ((ik, r) −→
s

y) is in Qs, which can be used along
with the oracle u to reply to the query qu.

The main difficult part of our analysis involves handling Case (I): in this
case the adversary does not have enough information to reply to qu correctly. At
a high-level, our solution is as follows. We will distinguish between two types
of such qu queries: important and immaterial. We say qu is important if a
query/response ((ik, ∗) −→

s
y) or ((ik, ∗) −→

e
y) happens with ‘good’ probabil-

ity during a random execution of X′ $←− SO(IK) followed by EO(IK,X′). If qu is
important, then e−1(ik, y) is likely to be determined by performing these two
preceding executions many times. If qu is immaterial (namely, it will not be
picked up during these many sample executions), then we will show that during
the inversion of Y one may reply to qu with a random answer without making
the result of the overall inversion of Y significantly skewed. The intuition is: in
this case neither of ((ik, ∗) −→

s
y) and ((ik, ∗) −→

e
y) are likely to happen during

the sampling algorithm that produced the challenge pre-image X and during
EO(IK,X) which results in Y. We will use this intuition to build hybrid oracles,
denoted O♦˜O, which provide random answers to such immaterial queries but
relative to which all of IK, X and Y are valid.

In Sect. 4 we will give a more concrete overview of our techniques and app-
roach by showing how to break the enhanced one-wayness of any construction
whose oracle access is of the form (Gg,Ss,Ee,Dd). We will then give the general
attack against all constructions in Sect. 5.

2 Preliminaries

If D is a distribution, we use x $←− D to indicate x is sampled according to D
and we use x′ ∈ D to indicate x′ ∈ support(D). If R(x1, . . . , xn) is a randomized
algorithm, then R(a1, . . . , an) denotes the random variable R(a1, . . . , an; r), where

r $←− {0, 1}∗.
If f is a function and Dom is a set, then f(Dom) �= {f(x) | x ∈ Dom}.
We start with the definition of a family of trapdoor permutations. Each func-

tion E(IK, ·) in the family acts as a permutation over a domain DomIK ⊆ {0, 1}w

(for some fixed polynomial w specified by the permutation family), where the
domain DomIK may possibly depend on IK. Moreover, this induced permuta-
tion can be inverted using any matching trapdoor key for IK. Finally, there is a
sampling algorithm S, where S(IK) allows one to sample from DomIK.

Definition 1 (Trapdoor Permutations). Let w = w(κ) be an arbitrary poly-
nomial. A family of trapdoor permutations TDP consists of four PPT algorithms
G, S, E and D defined as follows.

– G(1κ): The key generation algorithm G takes as input a security parameter
1κ and outputs a pair (IK,TK) of index/trapdoor keys.
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– S(IK;R): The sampling algorithm S takes as input an index key IK and ran-
domness R ∈ {0, 1}κ and outputs an element X ∈ {0, 1}w. We use DomIK to
denote the set of values X which are outputted by S(IK; ·).

– E(IK,X): The evaluation algorithm E takes as input an index key IK and an
element X ∈ {0, 1}w and outputs Y ∈ {0, 1}w ∪ {⊥}.

– D(TK,Y): The inversion algorithm D takes as input a trapdoor key TK, and
an element Y ∈ {0, 1}w and outputs X ∈ {0, 1}w ∪ {⊥}.

We will now define the notion of correctness, as well as two one-wayness
notions. As terminology, we say that an index key IK is valid if (IK, ∗) = G(1κ; R)
for some randomness R.

– Correctness. For any valid index key IK, the function E(IK, ·) induces a
permutation over DomIK. Moreover, for any security parameter κ we have
Pr[D(TK,E(IK,X)) = X] = 1, where (IK,TK) $←− G(1κ), R $←− {0, 1}κ and
X := S(IK;R).

– Standard one-wayness. For any PPT adversary we have A Pr[A(IK,Y) =

D(TK,Y)] = negl(κ), where (IK,TK) $←− G(1κ), R $←− {0, 1}κ and Y :=
S(IK;R).

– Enhanced one-wayness. For any PPT adversary A.

Pr[A(IK,Y,R) = D(TK,Y)] = negl(κ),

where (IK,TK) $←− G(1κ), R $←− {0, 1}κ, Y := S(IK;R). Note that Y can
be computed from IK and R, but we include it separately just for notational
convenience.

We now define the notion of fully-blackbox constructions, tailored to our
setting. See [RTV04,BBF13] for more general notions.

Definition 2 (Fully blackbox constructions). A fully-blackbox (shortly,
a blackbox) construction of an enhanced TDP from a standard TDP con-
sists of a PPT oracle-aided construction (G,S,E,D) and a PPT oracle-aided
reduction algorithm Red satisfying the following. For any correct TDP oracle
O = (g, s, e,d) (where correctness is defined in Definition 1) we have

1. Correctness: (GO,SO,EO,DO) is a correct TDP;
2. Security: for any adversary A breaking the enhanced one-wayness of the

oracle-aided scheme (GO,SO,EO,DO), the oracle algorithm RedO,A breaks
the standard one-wayness of O.

3 Main Theorem and Proofs Roadmap

In this section we describe our main theorem and the roadmap of the proofs.
As common in impossibility results, we prove our main theorem by showing

the existence of an oracle relative to which the base primitive exists (namely,
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standard TDPs), but not the target primitive (namely, enhanced TDPs). Tech-
nically, our separation model is closest to that of [HR04], which only results in
fully-blackbox separations, as opposed to the more general relativizing separa-
tions, considered in most previous work, e.g., [IR89,Sim98,GKM+00].

Theorem 1 (Impossibility of Enhanced TDPs from Standard TDPs).
There exists oracles (O,u,v), where O := (g, s, e,d), such that both the following
conditions hold.

1. O is a standard TDP against every polynomial-query adversary AO,u,v: That
is, the probability that AO,u,v(ik, y) = x is at most negligible, where (ik, tk) $←−
g(1κ), x $←− s(ik) and y := e(ik, x).

2. The enhanced one-wayness of any construction (GO,SO,EO,DO) can be
broken by a poly-query adversary BreakO,u,v. That is, the probability that
BreakO,u,v(IK,R,Y) = DO(TK,Y) is non-negligible, where (IK,TK) $←−
GO(1κ), R $←− {0, 1}∗ and Y := SO(IK;R).

As a result, there exists no fully-blackbox construction of enhanced TDPs from
standard TDPs.

Roadmap: Proof of Theorem 1. The “as a result” part follows immediately from
Parts 1 and 2 of the theorem, and thus we focus on proving these two parts.
(For completeness, we show how to derive the “as a result” part below.) As
common in impossibility results, we show the existence of the oracles (O,u,v),
required by Theorem 1, by first describing a distribution of oracles, and then
proving results for oracles randomly chosen from this distribution. We will first
start by describing a distribution Ψ of oracles (g, s, e,d,u,v). A randomly chosen
O = (g, s, e,d) from this distribution will allow one to implement an ideal version
of a TDP, which not only satisfies standard one-wayness, but also enhanced-one-
wayness. We then introduce two weakening oracles u and v, so that the oracle O
still provides standard one-wayness in the presence of u and v, but the enhanced
one-wayness of any TDP construction instantiated with O can be broken by
making a polynomial number of queries to (O,u,v).

In the following definition, whenever we say a function f : Dom → Ran with
property P (e.g., injectivity) is a randomly chosen function we mean f is chosen
uniformly at random from the space of all functions from Dom to Ran having
property P .

Definition 3. We define an oracle distribution Ψ that produces an ensemble of
oracles (Oκ,uκ,vκ)κ. For all κ and all ik ∈ {0, 1}κ, choose a set Dik uniformly
at random under the conditions that Dik ⊆ {0, 1}5κ and that |Dik| = 2κ.

– gκ : {0, 1}κ → {0, 1}κ is a random injective function, mapping a trapdoor key
to an index key.

– sκ : {0, 1}κ × {0, 1}κ → {0, 1}5κ is a random function, where for all ik ∈
{0, 1}κ: sκ(ik, ·) is 1-1 and for all r ∈ {0, 1}κ: sκ(ik, r) ∈ Dik.
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– eκ : {0, 1}κ × {0, 1}5κ → {0, 1}5κ ∪ {⊥} is a random function, satisfying the
following two conditions: for all ik ∈ {0, 1}κ: eκ(ik,Dik) = Dik and for all
x /∈ Dik: eκ(ik, x) = ⊥.

– dκ : {0, 1}κ×{0, 1}5κ → {0, 1}5κ∪{⊥} is a function, where dκ(tk, y) is defined
as follows. Letting ik := gκ(tk), if y ∈ Dik, then letting x be the unique string
satisfying eκ(ik, x) = y, set dκ(tk, y) := x. Otherwise (i.e., if y /∈ Dik), set
dκ(tk, y) := ⊥.

– uκ : {0, 1}κ × {0, 1}κ → {0, 1}κ is defined as follows. For ik ∈ {0, 1}κ and
r ∈ {0, 1}κ, letting y := sκ(ik, r) and r0 be such that y = eκ(ik, sκ(ik, r0)), set
uκ(ik, r) := r0.

– vκ : {0, 1}κ×{0, 1}5κ → {⊥,
} is defined as follows: vκ(ik, x) checks whether
the given input x is in Dik or not: set vκ(ik, x) := 
 if x ∈ Dik, and
vκ(ik, x) := ⊥, otherwise.

Redundancy of the Oracle vκ. Note that the oracle vκ can be simulated by eκ.
We only include this oracle as it will simplicity notation.

Convention and Notation. We will often drop the security parameter κ as a sub-
index to the oracles whenever the underlying security parameter is clear from
the context. For an oracle algorithm Ag,s,e,d we use notation such as (qu −→

g
an)

to indicate that A queries g on qu and receives an as the answer. We also use
(qu −→

g
?) to indicate that the query qu is asked.

We will now give a simple-information theoretic lemma showing that a ran-
domly chosen TDP O is standard one-way even in the presence of the oracle
u. The proof of the following theorem is based on simple information theoretic
arguments and so is omitted.

Lemma 1 (O is one-way relative to (O,u,v)). For any polynomial query
adversary A we have

Pr[AO,u,v(ik, y) = x and e(ik, x) = y] ≤ 1
2κ/3 ,

where (g, s, e,d,u,v) ← Ψ , O := (g, s, e,d), tk $←− {0, 1}κ and ik = g(tk). This
bound holds so long as A is poly-query bounded (and unbounded otherwise).

The following lemma shows how to break the enhanced one-wayness of any
candidate construction.

Lemma 2 (Breaking enhanced one-wayness of any construction). Let
(G,S,E,D) be a candidate blackbox construction of a TDP. There exists a poly-
nomial query adversary Break such that

Pr[BreakO,u,v(1κ, IK,R,Y) = X] ≥ 1 − 1
κ2

,

where (g, s, e,d,u,v) $←− Ψ , O := (g, s, e,d), (IK,TK) $←− GO(1κ), R $←− {0, 1}∗,
Y := SO(IK;R) and X := DO(TK,Y).
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Completing the Proof of Theorem 1. The proof of Theorem 1 follows easily by
combining Lemmas 1 and 2, as given below.

Proof (of Theorem 1). We will first prove the “as a result” part of the theo-
rem. Suppose to the contrary that there exists an enhanced TDP construction
(G,S,E,D), and let Red be the PPT security reduction algorithm guaranteed
to exist by Definition 2. Let (O,u,v) be the oracle shown to exist by Parts 1
and 2 of the theorem. By Part 2 of the theorem we know that there exists a
polynomial query adversary BreakO,u,v which breaks the enhanced one-wayness
of (GO,SO,EO,DO). Thus, by definition of blackbox constructions, RedBreak,O

should break the standard one-wayness of O. This however is a contradiction to
Part 1, because RedBreak,O can be simulated by a polynomial query adversary
AO,u,v.

We now prove Parts 1 and 2. To show the existence of the oracles
(g, s, e,d,u,v) required by the theorem, we show

1. For a measure-one of oracles (g, s, e,d,u,v), the oracle (g, s, e,d) is stan-
dard oneway against all polynomial-query adversaries with oracle access to
(g, s, e,d,u,v).

2. For a measure-one of oracles (g, s, e,d,u,v), the adversary BreakO,u,v breaks
the enhanced one-wayness of (GO,SO,EO,DO).

The above two statements implies the existence of a specific oracle
(g, s, e,d,u,v), meeting the requirement of the theorem.

We show how to derive Condition 2 from Lemma 2. The proof of Condition 1
follows similarly from Lemma 1.

By Lemma 2 we have

Pr
(O,u,v),IK,R

[BreakO,u,v(1κ, IK,R) = X] ≥ 1 − 1
κ2

. (1)

Using a simple averaging argument we may obtain

Pr
(O,u,v)

[

Pr
IK,R

[BreakO,u,v(1κ, IK,R) = X] ≥ 1
κ3

]

≥ 1 − 1
κ1.5

. (2)

Thus, for at most a 1
κ1.5 fraction of all oracles (O,u,v), the adversary

BreakO,u,v, on security parameter 1κ, recovers the pre-image correctly with prob-
ability less than 1

κ3 . Since
∑

1
κ1.5 converges, by the Borel-Cantelli Lemma we

have that for a measure-one of oracles (O,u,v), the adversary BreakO,u,v breaks
the enhanced-onewayness of (GO,SO,EO,DO): for all sufficiently large κ, the
adversary recovers X from BreakO,u,v(1κ, IK,R,Y) with probability at least 1

κ3 .
�

Roadmap for the Proof of Lemma 2. We are left with proving Lemma 2, which
constitutes the main technical bulk of our work. As a warp up, first in Sect. 4 we
will prove and give an overview of our techniques for a special case of Lemma 2:
that in which the oracle access of the construction is of the form (Gg,Ss,Ee,Dd).
Then, we will give the proof for the general case in Sect. 5.
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4 Proof of Lemma 2: Special Case (Gg, Ss,Ee,Dd)

In this section we show how to break the enhanced one-wayness of a simple
class of TDP constructions, those in which the oracle access is of the form
(Gg,Ss,Ee,Dd). We call such constructions type-1. We first start with a gen-
eral overview.

Setup. The input to the adversary BreakO,u,v is (IK,R,Y), where (IK,TK) $←−
Gg(1κ), R $←− {0, 1}∗ and Y := Ss(IK;R). The goal of Break is to find X such
that X := Dd(TK,Y).

High-Level Idea of Break’s Strategy . Consider a partial fake oracle g′ and
randomness R′ under which we have Gg′

(R′) = (IK, ˜TK) for some ˜TK. By a
partial oracle we mean an oracle that is defined only on a small set of all queries,
those that occur exactly during the execution of Gg′

(R′). Such a fake oracle
g′ and corresponding matching randomness R′ can be found by doing expensive
offline computation and without interacting at all with the real oracles (O,u,v).

Now consider the effect of super-imposing g′ on the real oracle g to get an
oracle g̃. This oracle g̃ is defined according to g′ on all queries defined in g′, and
otherwise is defined as in g.

For this perturbed oracle g̃, we will define a correspondingly perturbed ora-
cle ˜d so that (g̃, s, e, ˜d) is a valid TDP. Now since we know Gg̃(R′) = (IK, ˜TK),
we must have X = D

˜d(˜TK,Y), and thus recovering the challenge pre-image X
amounts to one’s ability to perform the execution of D˜d(˜TK,Y) by only mak-
ing a polynomial number queries to (O,u,v). As we will see, the naive way
of performing this execution will result in an exponential number of queries to
(O,u,v). Our main technique will allow us to get around this problem by mak-
ing use of the oracle u and knowledge of R (which is the randomness underlying
the image point Y).

Organization of Section 4. In Sect. 4.1 we will give a more detailed (but still
informal) overview of the above approach for the case in which each of the
algorithms (G,S,E,D) makes only one query. We will then formally describe an
attack against any candidate many-query construction (Gg,Ss,Ee,Dd) in the
next two subsections.

4.1 General Overview: One Query Case

We will now give a concrete overview of the above abstract approach for the
following type of construction: We assume each of the algorithms (Gg,Ss,Ee,Dd)
makes only one query. The input to the adversary BreakO,u,v is (IK,R,Y), where

(IK,TK) $←− Gg(1κ), R $←− {0, 1}∗ and Y := Ss(IK;R). Let X denote Break’s
challenge image point; namely, we have Ee(IK,X) = Y.

We sketch the main steps taken by Break, and will explain about each of
them.
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Sampling a Fake Oracle and a Trapdoor Key. Sample an oracle g′ and a ran-
domness value R′ uniformly at random in such a way that

Gg′
(1κ; R′) = (IK, ˜TK), (3)

for some ˜TK. Since G makes only one query, we may think of g′ as only one
query/response pair qa := (tk −→

g
ik). Thus, we may write Eq. 3 as Gqa(1κ; R′) =

(IK, ˜TK).

Defining the Oracle g̃. Consider an oracle g̃ := qa♦∗g, where the composed
oracle qa♦∗g is defined as follows: (qa♦∗g)(tk′) = ik if tk′ = tk; otherwise,
(qa♦∗g)(tk′) = g(tk′). Briefly, the oracle qa♦∗g first forwards a given query to
qa, and if the query is not defined there, the query will be forwarded to g.

Defining the Oracle ˜d. We now define ˜d in such a way that (g̃, s, e, ˜d) forms a
valid TDP oracle. For any tk′ and y′, the value of ˜d(tk′, y′) is formed as follows.
Letting ik′ = g̃(tk′):

– If v(ik′, y′) = ⊥, then set ˜d(tk′, y′) = ⊥;
– Otherwise, letting x′ be the unique string for which we have e(ik′, x′) = y′,

set ˜d(tk′, y′) = x′. Note that since we know v(ik′, y′) = 
 (because otherwise
the previous check would hold), by definition of e (Definition 3) such x′ does
exist and it is unique.

Performing the Execution D
˜d(˜TK,Y) is Enough. It is straightforward to

verify that (g̃, s, e, ˜d) forms a valid TDP oracle. Moreover, by definition of g̃
and R′, we have Gg̃(R′) = (IK, ˜TK). Now since Ee(IK,X) = Y, by completeness
of the construction, we will have D

˜d(˜TK,Y) = X, where X is Break’s challenge
image point.

Executing D
˜d(˜TK,Y) efficiently? Can we execute D

˜d(˜TK,Y) by making only a
polynomial number of queries to (g, s, e,d,u)? Let us look at all the possibilities
for a possible encountered query ((tk′, y′) −→̃

d
?) below. Let ik′ := g̃(tk′), which

can be computed by making at most one query to g.

1. Simple case: ik′ �= ik (recall that ik is defined in the query/response set qa,
which in turn forms g̃): in this case by inspection we can see that we indeed
have d(tk′, y′) = ˜d(tk′, y′), and so the answer can be determined by calling
d directly.

2. Simple case: ik′ = ik and v(ik, y′) = ⊥: in this case we can again easily see
that d(tk′, y′) = ⊥.

3. Problematic case: ik′ = ik and v(ik, y′) �= ⊥: in this case Break cannot
right away compute the value of ˜d(tk′, y′) because in order to do so, Break
must find an x′ such that e(ik, x′) = y′.
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The Oracle u and Randomness R to the Rescue. From the above dis-
cussion, the attacker Break only needs to handle Case 3. That is, from the pair
(ik, y′), upon which Line 3 is hit, and without knowledge of ik’s trapdoor key
g−1(ik), the attacker Break should find an x′ such that e(ik, x′) = y′. Recall that
D makes only one query, and so if Break gets past this “one-time” problematic
case, it will be done.

Recall that the input to Break is (IK,R,Y), where R is the randomness
underlying the image point Y. We claim that with all but negligible probability
the following must hold: letting (ik, y′) be the pair upon which Line 3 was hit,
during the execution of Ss(IK;R) we must have a query/response pair ((ik, r) −→

s

y′) for some r. Assuming that this claim holds, Break may then simply call
((ik, r) −→

u
?) to get r′, and then call ((ik, r′) −→

s
?) to get x′, completing its attack.

It remains to prove the above claim. We show that if the claim does not
hold, then one may efficiently produce a pair (ik′, y′), where y′ is a valid image
of s(ik′, ∗), without ever calling s(ik′, ·) on the corresponding pre-image of y′,
and without ever calling e and d at all. Due to the sparse and random nature
of the oracle s, the probability of this event is at most negligible. To produce
(ik′, y′), do the following.

– Sample (IK,TK) $←− Gg(1κ), R $←− {0, 1}∗ and set Y := Ss(IK;R).
– Form ˜TK and ˜d as above. (This step is done offline, without interacting with

the real oracles).
– Run D

˜d(˜TK,Y) and as soon as as query ((tk′, y′) −→̃
d

?) is made, return

(ik′, y′), where ik′ := g(tk′).

Our claim about the pair (ik′, y) now follows.

4.2 Definitions and Simple Lemmas

In this section we will give some definitions and simple lemmas, which will then
be used in Sect. 4.3. Some of these were informally reviewed in Sect. 4.1.

TDP-Valid and Ψ -Valid Oracles. Recall the distribution Ψ on oracles (O,u,v)
given in Definition 3. We say that an oracle O1 := (g1, s1, e1,d1) is Ψ -valid
if O1 is a possible output of Ψ . This means in particular that the input and
output sizes of the sub-routines of O1 match those specified in Definition 3.
We say that an oracle O2 := (g2, s2, e2,d2) is TDP valid if O2 satisfies the
completeness condition of Definition 1. Note that if an oracle is Ψ -valid then it
is also TDP-valid, but the converse is not true.

Similarly, we say that a partial oracle O′ (which is not defined on all points)
is Ψ -valid (resp., TDP-valid) if there exists a full Ψ -valid (resp., a full TDP-valid)
oracle O such that O′ ⊆ O. Here, O′ ⊆ O means that O agree with O′.
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Definition 4 (Composed Oracles ♦∗). Let O := (g, s, e,d) be a Ψ -valid
oracle and let

g′ := {(tk1 −→
g

ik1), . . . , (tkw −→
g

ikw)}

be a partial Ψ -valid oracle consisting of only g-type queries. We define the com-
posed oracle g′♦∗O := (g̃, s, e, ˜d), which has perturbed key-generation and inver-
sion oracles, as follows.

– g̃(·): for a given tk, let g̃(tk) �= iki if tk = tki for i ∈ [w]; otherwise, g̃(tk) �=
g(tk).

– ˜d(·, ·): for a given pair (tk, y), define ˜d(tk, y) as follows. Assuming ik = g̃(tk),
let ˜d(tk, y) �= e−1(ik, y). Here, e−1(ik, ·) is the inverse function of e(ik, ·)—
i.e., e−1(ik, y) = x if for some x, e(ik, x) = y; otherwise, e−1(ik, y) = ⊥.
Note that by definition of Ψ , the function e−1(ik, ·) is indeed well-defined.

It is straightforward to verify that the operation ♦∗ preserves completeness.

Lemma 3. Let O and g′ be as in Definition 4. Then, the composed oracle g′♦∗O
is TDP-valid.

Proof. The proof is straightforward and so is omitted. �
Consider a random Ψ -valid oracle (g, s, e,d,u,v). Imagine an adversary that

wants to come up with a pair (ik, y) ∈ {0, 1}κ × {0, 1}5κ of an index-key/image
such that y lies in the support of s(ik). The following lemma shows that the
probability that an adversary can do this in non-trivial way is exponentially
small.

Lemma 4. For any polynomial query oracle adversary B with access only to the
oracles (g, s,u,v) we have

Pr

[
(ik, y)

$←− Bg,s,u,v(1κ) s.t.
(
((ik, ∗) −→

s
y) /∈ Que

)
∧ (v(ik, y) = �) ∧ (|ik| = κ))

]
≤ 1

23κ
,

(4)

where (g, s, e,d,u,v) $←− Ψ and Que is the set of all query/response pairs that
Bg,s,u,v makes. We stress that B is not allowed to make e or d queries.2

Proof. The proof is based on a simple information-theoretic argument and so we
sketch the main idea. Assume w.l.o.g. that B before returning its guess (ik, y),
it calls the oracle v on (ik, y). This only increases the number of queries by one.

At any point of execution, say the next query of B is a hit if the next query
is a v query, say ((ik′, y′) −→

v
?), which is a valid forgery; namely, (a) ((ik′, ∗) −→

s

y′) /∈ Que, (b) |ik′| = κ and (c) v(ik′, y′) = 
.
At any point, the probability that the next query is a hit given we had no

hits before is at most
2κ

25κ − 2κ
. The proof now follows by a union bound. �

2 We may define and prove a version of this lemma which allows the adversary B to
also make e and d queries. This current version however suffices for what we need
for the simple separation we show in this section.
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4.3 Many-Query Case

Fix the candidate type-1 construction (Gg,Ss,Ee,Dd). We will build an adver-
sary Breakg,s,u,v which breaks the enhanced one-wayness of (Gg,Ss,Ee,Dd) by
making a polynomial number of queries to its oracles. The attacker Break does
not need to call the oracles e and d during its attack, so we did not put them
as superscripts to Break.

For simplicity we assume the following for all constructions (G,S,E,D) dis-
cussed in this paper. This assumption is made only for simplicity and all our
results can be proved without it.

Assumption 2. Each of the algorithms GO, SO, EO and DO on a security
parameter 1κ call their oracle O always on the same security parameter 1κ.

We will now describe the attacker Break. We will use notation and concepts
from Definition 4.
Attacker Breakg,s,u,v(IK,R,Y):

Oracles: (g, s,u,v),where (g, s, e,d,u,v) $←− Ψ . Set O := (g, s, e,d).

Input: (IK,R,Y), where (IK, ∗) $←− Gg(1κ), R $←− {0, 1}κ and Y := Ss(IK;R).
Operations:

1. Sample (in an offline manner) a pair (g′,R′) uniformly at random, where
g′ is a partial Ψ -valid oracle and R′ ∈ {0, 1}κ, under the condition that
(IK, ˜TK) = Gg′

(1κ; R′), for some ˜TK. Let g′♦∗O := (g̃, s, e, ˜d) be formed as
in Definition 4.

2. Let L := ∅. Run Ss(IK;R) and for any query/response pair ((ik, r) −→
s

y) made,

add ((ik, r) −→
s

y) to L.

3. Simulate the execution of D
˜d(˜TK,Y) using the oracles g, s,u,v as follows.

For any encountered query qu := ((tk, y) −→̃
d

?), first compute g̃(tk) to get ik;

this can be done by making at most one query to g. Then,
(a) if v(ik, y) = ⊥, then reply to qu with ⊥ and continue the execution;
(b) else if ((ik, r) −→

s
y) ∈ L for some r, then call ((ik, r) −→

u
?) to receive r0

and call ((ik, r0) −→
s

?) to get x. Return x as the response to the query qu,

add ((ik, r0) −→
s

x) to L and continue the execution.
(c) else (i.e., if v(ik, y) = 
 and ((ik, ∗) −→

s
y) /∈ L), then halt the execution

and return Fail.
4. If the simulation has not halted yet, return ˜X, the output of D˜d(˜TK,Y).

Theorem 3. The attacker Break is successful with probability at least 1 − 1
23κ .

Namely,

Pr[Breakg,s,u,v(IK,R,Y) = X] ≥ 1 − 1
23κ

,

where the probability is taken over (g, s, e,d,u,v) ← Ψ , (IK,TK) ← Gg(1κ),
R ← {0, 1}κ, Y := Ss(IK,R) and X := Dd(TK,Y).
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Proof Roadmap. We show that if the execution of Break never halts due to
Line 3c, then the retrieved string ˜X is indeed the correct pre-image of Y. We will
then show that the probability that Line 3c is ever hit (which we call the event

Bad) is at most
1

23κ
, by “reducing” it to Lemma 4. These two will complete the

proof.

Lemma 5. Let Bad be the event that line (3c) is hit during the execution of
Breakg,s,u,v(IK,R,Y). Then

Pr[Bad] ≤ 1
23κ

,

where the probability is taken over (g, s, e,d,u,v) ← Ψ , (IK, ∗) ← Gg(1κ), R ←
{0, 1}κ, Y := Ss(IK, R) and over Break’s random coins.

We first show how to derive Theorem 3 from Lemma 5 and we will then prove
Lemma 5.
Proof of Theorem 3. All probabilities that appear below are taken over the
variables sampled in the theorem. We claim

α
�= Pr[Breakg,s,u,v(IK,R,Y) = X | Bad] = 1.

Assuming the claim is true, we may combine it with Lemma 5 to get

Pr[Breakg,s,u,v(IK,R,Y) = X] ≥ (1 − 1
23κ

)α = 1 − 1
23κ

,

as desired. To prove the above claim first note that by Lemma 3 we have
g′♦∗O := (g̃, s, e, ˜d) is a valid TDP-oracle, where g′ is formed in Step 1 of Break’s
execution. Moreover, recall that Y = Ee(IK,X) and that (IK, ˜TK) ∈ Gg̃(1κ).
Thus, by the correctness condition of the blackbox construction (G,S,E,D) (Def-
inition 2) we have X = D

˜d(˜TK,Y). The claim now follows by noting that if the
event Bad does not hold, then the simulated execution of D˜d(˜TK,Y) performed
by Break proceeds identically to the real decryption. The proof is now complete.

�
Proof of Lemma 5. Let β := Pr[Bad]. We show how to construct an adversary
Bg,s,u,v with oracle access to (g, s,u,v) which makes a poly number of queries
and with probability at least β forges some (ik, y) ∈ {0, 1}κ × {0, 1}5κ in the
sense of Lemma 4. Applying the lemma we will then obtain β ≤ 1

23κ , as desired.
The adversary Bg,s,u,v(1κ) first samples a random input (IK,R,Y) for Break:

namely, (IK,TK) $←− Gg(1κ), R $←− {0, 1}∗ and Y := Ss(IK;R). Then, Bg,s,u,v

simulates the execution of Breakg,s,u,v(IK,R,Y) with the only deviation that
whenever Break’s execution hits Line (3c) with the underlying strings ik and y,
then B halts and returns (ik, y). If Break’s execution is successfully completed
without ever hitting Line (3c), then Bg,s,u,v gives up and returns ⊥. Let Que
be the set of all query/response pairs that Breakg,s,u,v makes to its oracles, and
note |Que| is polynomial.
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Validity of B’s Forgery Output. As per Lemma 4, we need to show three
things: that, (a) ((ik, ∗) −→

s
y) /∈ Que, (b) v(ik, y) = 
 and (c) |ik| = κ.

Condition (a) holds because for any s query ((ik′, r′) −→
s

y′) ever made by

B, this query/response is added to the set L. By the underlying if-condition of
Line (3c), we have ((ik, ∗) −→

s
y) /∈ L and hence ((ik, ∗) −→

s
y) /∈ Que. Condition

(b) also holds immediately by the underlying if-condition of Line (3c). Finally,
by Assumption 2 |ik| = κ. To see this, recall from the description of Break that
ik = g̃(tk) and that |tk| = κ. Thus, by definition of g̃ we have |ik| = κ, as
desired. The proof is now complete. �

5 Proof of Lemma 2: General Case

Sketch of the Attack. Let (IK,R,Y) be the inputs to BreakO,u,v, where

(IK,TK) $←− GO(1κ) and Y := SO(IK;R). Let Q be the set of all query/response
pairs during SO(IK;R) = Y. Let X := DO(TK,Y). Let us first try to proceed as

before: sample (O′, ˜TK) such that (IK, ˜TK) $←− GO′
(1κ) and attempt to perform

DO′♦∗O. However, things are not as simple as before. Previously, we were able
to show that for any meaningful query which asks for the value of e−1(ik, y), we
must have ((ik, ∗) −→

s
y), and so Break can simulate the answer using u. However,

this does not hold here, because y may be coming from the queries made by GO,
to which Break does not have access.

Our solution at a high level is as follows. We work with a partial oracle ˜O
for which initially we have (IK, ˜TK) $←− G

˜O(1κ). This oracle will then be used
to invert Y (using ˜TK) as the secret key, but since ˜O is not necessarily defined
on all encountered queries (since it is a partial oracle) we need to “make up”
answers as we go on in a consistent manner. Ideally, we would like to produce
answers by directly resorting to O, so to make the whole execution as close to the
real execution as possible. However, this is not always possible, and so at times
we need to fake some answers. Whenever, a new answer is generated (either by
directly calling O or by faking it) we add the new query/answer pair to ˜O and
will continue. Let us elaborate more.

Consider the execution of D˜O(˜TK,Y): Suppose we encounter a query qu that
is not defined in ˜O yet. We have two cases. If qu is of type g, s or e—namely,
a query which does not require any “trapdoor” information to reply to—we
will use the oracle O directly to answer to this query but with some case to
make sure we do not introduce inconsistencies. (Remember that ˜O fakes some
answers, so “blind” use of O may potentially creat inconsistencies.) If, however,
qu is of d-type, we will make use of our trapdoor-based accumulated knowledge
of the oracle O along with the oracle u if we happened to have the required
information. Let us give a more detailed explanation.

1. Suppose qu := ((ik′, r′) −→
s

?), but ˜O(qu) is not defined yet. Suppose

x′ = s(ik′, r′). We may think we can simply reply to qu with x′ and add
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the query/response pair qua := ((ik′, r′) −→
s

x′) to ˜O. However, we may

get the following problem: There may already be a (fake) query/response
qua1 := ((ik′, x′) −→

e
⊥) ∈ ˜O, which would be inconsistent with qua. Thus,

˜O ∪ {qua} will not be TDP-consistent, and so we cannot guarantee correct
inversion w.r.t. this oracle. We handle this as follows: In case of such inconsis-
tencies, we will reply to qu with a random answer (which is unlikely to create
inconsistencies) and will add the result to ˜O.
A same situation may hold for an e query and we will handle such incon-
sistencies in a similar manner. For g queries, however, we will preempt the
possibility of inconsistencies by putting Break in “normal form”; see Assump-
tion 5.

2. Suppose qu := ((tk′, y′) −→
d

?), and qua := (tk′ −→
g

ik) ∈ ˜O. (We will force

qua to already be in ˜O by putting Break in normal form.) We have two cases:
(a) trapdoor-available: g(tk′) = ik (i.e., tk′ is the real trapdoor key); or (b)
trapdoor-absent: g(tk′) �= ik: That is, the trapdoor key tk′ has been “faked”
before.
If case (a) holds, we call the real oracle O on qu and will use the result as
is if it leads to no inconsistencies—we, however, now have many more cases
of inconsistencies, as compared to Part 1; if an inconsistency occurs, we will
fake the answer.
For case (b) we need to resort to our side trapdoor-information about O (e.g.,
set Q above: the set of all query/response pairs during SO(IK;R) = Y). Also,
to handle case (b), we will also need to collect all frequent trapdoor informa-
tion that happen during random executions of SO and EO. This collection of
information is done in Step 1 of the algorithm Break.

For our analysis, we will show w.h.p. the union of ˜Ouni
�= ˜O∪W1 ∪W2 is TDP-

valid, where W1 is the (hidden) set of all queries/responses made to sample the
challenge pre-image X and W2 is the (hidden) set of all query/response pairs in
EO(IK,X). Note that W1 and W2 are not available to Break (which is the reason
we called them hidden). Proving this will show that w.h.p. the decrypted result,
˜X, by Break will be equal to X. This is because relative to ˜Ouni, (IK, ˜TK) is valid,
X is valid (i.e., outputted by S

˜Ouni(IK)), Y = EO(IK,X) and ˜X = DO(˜TK,Y).
We now proceed to describe the attack formally. We start with the following

assumption.

Assumption 4. We assume that Gg,s,e,d never calls the oracle d. (It can predict
the answer with high probability.) For notational convenience we keep d as a
superscript to G.

We first start by describing two procedures that will be used by Break. The
first procedure samples many executions of S and E in order to collect frequent
trapdoors. The second procedure allows one to sample a fake secret key w.r.t. a
priori information about the real oracle O.
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Definition 5 (Sampling frequent queries). We define a probabilistic oracle
procedure SFreqO:

– Input: (1κ, p, IK), where p is an integer.
– Output: A set of query/response pairs Freq ← SFreqO(1κ, p, IK) sampled as

follows. Let Freq = ∅. Do the following p times:
• Sample X ← SO(IK) and execute EO(IK,X) and record all query/response

pairs to Freq.

Definition 6. We define the procedure SOrc.

– Input: (Freq, IK): A set of query/answer pairs Freq and an index key IK.
– Output: (TK′,Qg,Qs,Qe), produced as follows. Qe sampled as follows. Sam-

ple a Ψ -generated O′ = (g′, s′, e′,d′) and TK′ uniformly at random subject
to the conditions that (a) O′ is consistent with Freq (i.e., O′ ∪Freq is a valid
TDP) and (b) GO′

= (IK,TK′). Let Qg, Qs and Qe contain, respectively, the
g, s and e query/response pairs made during the execution of GO′

. (Recall
that by Assumption 4 no d queries are made).

We need the following normal-form condition for our attack algorithm.

Assumption 5. We assume the following for any oracle algorithm A with oracle
access to (g, s, e,d): Any query ((tk, y) −→

d
?) is preceded by a query (tk −→

g
?).

Moreover, if d(tk, y) = x �= ⊥, then A will make the query ((ik, x) −→
e

?) after

making the query ((tk, y) −→
d

?).

Partial Oracles. In the algorithm Break below we will work with partial oracles,
defined only on a subset of their input queries. Specifically, for a partial oracle
˜O we define the following notation: We write ˜O(qu) = null to indicate ˜O is not
defined on the query qu. This should not be confused with ˜O(qu) = ⊥ as we
use ˜O(qu) = ⊥ to indicate that the output of ˜O(qu) is a fixed invalid symbol.
We say ˜O is TDP consistent, if there exists a full TDP oracle ˜Ofull such that
˜O ⊆ ˜Ofull.

Parameter γ. For any Ψ -valid oracle O we assume that each of the algorithms
GO, SO, EO and DO on inputs corresponding to the security parameter 1κ make
exactly κγ oracle queries.

The Attack Algorithm Breakg,s,e,d,u,v: We describe all components of the attack
algorithm.
Oracles. (O,u,v). Parse O := (g, s, e,d).
Input. (1κ, IK,R)
Output. (˜X,Freq, ˜O).3

3
˜X is the final result of inversion. The other two outputs, namely Freq, ˜O, are partial
oracles, which are included in the output so to help us later state our security
statements easier.
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1. Sample Freq ← SFreqO(1κ, κ2γ+8, IK). Let ˜O and Real be two partial oracles,
both initially empty.

2. Sample (˜TK,Qg,Qs,Qe) ← SOrc(Freq, IK). Add Qg ∪ Qs ∪ Qe ∪ Freq to ˜O.
3. Run SO(R)—which gives us the challenge image Y—and add all the underly-

ing query/response pairs to Real. Also, add all elements of Freq to Real. From
this point on, all the queries made to the real oracles (g, s, e,d,u,v) will be
recorded in Real.

4. Simulate the execution of D·(˜TK,Y) and answer an encountered query qu as
follows:
4.1 Already answered in ˜O: if for some ans, (qu, ans) ∈ ˜O, then reply to

qu with ans;
4.2 g-type query: if qu is of g-type, then reply to qu by calling the real

oracle g and add the query/response pair to ˜O;
4.3 s-type query: if qu := ((ik, r) −→

s
?), then call ((ik, r) −→

s
x). If ((ik, x) −→

e

⊥) /∈ ˜O, then reply to qu with x and add ((ik, r) −→
s

x) to ˜O. Otherwise,

reply to qu with x′ ← {0, 1}5κ and add ((ik, r) −→
s

x′) to ˜O.

4.4 e-type query: if qu := ((ik, x) −→
e

?) for some ik and x: Call the real

oracle ((ik, x) −→
e

?) to get y;

4.4.1 if y = ⊥ or ((∗, ∗) −→
e

y) /∈ ˜O, then reply to qu with y add ((ik, x) −→
e

y)

to ˜O;
4.4.2 Otherwise, reply to qu with a random y′ ← {0, 1}5κ and add

((ik, x) −→
e

y′) to ˜O.

4.5 d-type query: if qu := ((tk, y) −→
d

?) for some tk and y: letting ik be

such that (tk −→
g

ik) ∈ ˜O.

4.5.1 if ((ik, x) −→
e

y) ∈ ˜O, then reply to qu with x and add ((tk, y) −→
d

x)

to ˜O.
4.5.2 else if ((ik, y) −→

e
⊥) ∈ ˜O then reply to qu with ⊥ and add ((tk, y) −→

d

⊥) to ˜O.
4.5.3 otherwise,

4.5.3.1 if for some tk′: (tk′ −→
g

ik) ∈ Real then call ((tk′, y) −→
d

?) to get x:

(A) if ((ik, x) −→
e

∗) /∈ ˜O, then reply to qu with x and add

((ik, x) −→
e

y) to ˜O.

(B) if ((ik, x) −→
e

∗) ∈ ˜O then reply to qu with a random x′ ←
{0, 1}5κ and add ((ik, x′) −→

e
y) to ˜O.

4.5.3.2 else if ((ik, x) −→
e

y) ∈ Real, then

(A) if ((ik, x) −→
e

∗) /∈ ˜O then reply to qu with x and add ((ik, x) −→
e

y) to ˜O.
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(B) if ((ik, x) −→
e

∗) ∈ ˜O then reply to qu with a random x′ ←
{0, 1}5κ and add ((ik, x′) −→

e
y) to ˜O.

4.5.3.3 else if for some r: ((ik, r) −→
s

y) ∈ Real, then call ((ik, r) −→
u

?) to

get r0 and call ((ik, r0) −→
s

?) to get x0:

(A) if ((ik, x0) −→
e

∗) /∈ ˜O, then reply to qu with x0 and add

((ik, x0) −→
e

y) to ˜O.

(B) if ((ik, x0) −→
e

∗) ∈ ˜O, then reply to qu with a random x′ ←
{0, 1}5κ and add ((ik, x′) −→

e
y) to ˜O.

4.5.3.4 else if v(ik, y) = ⊥ then reply to qu with ⊥;
4.5.3.5 otherwise, reply to qu with a random x′ ← {0, 1}5κ and add both

of ((tk, y) −→
d

x′) and ((ik, x′) −→
e

y) to ˜O.

5. Letting ˜X be the result of the simulated execution of D·(˜TK, Y ), return
(˜X,Freq, ˜O).

5.1 Proof of Attack Effectiveness

We now focus on proving Lemma 2. We first start with a simple information the-
oretic lemma, which generalizes Lemma 4 to the case in which the “forger” may
call all the underlying oracles. For that lemma, we need the following definition.

Definition 7. Let Q be a set of query/response pairs obtained from oracles
(g, s, e,d,u,v). We say that (ik, x) is embedded in Q if

– ((ik, ∗) −→
s

x) ∈ Q, or
– ((ik, ∗) −→

e
x) ∈ Q or

– for some tk: (tk −→
g

ik) ∈ Q and ((tk, ∗) −→
d

x) ∈ Q.

The following lemma generalizes Lemma 4. The proof again follows using
standard information-theoretic arguments and so is omitted.

Lemma 6. Let B be a a polynomial-query oracle adversary. We have

Pr
(O,u,v)←Ψ

[(ik, y) $←− Bg,s,e,d,u,v(1κ) s.t. |ik| = κ

and v(ik, y) = 
 and (ik, y) is not embedded in Que] ≤ 1
23κ

, (5)

where Que is the set of all query/answer pairs of B.
We define the following environment that specifies a random choice of the

oracles (g, s, e,d,u,v) as well as random variables used to form a random input
to an adversary against enhanced one-wayness of the construction.

Environment. The environment Env(κ) specifies the following random vari-
ables: (IK,Query,Ry,Y,Rx,X,O):
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– (g, s, e,d,u,v) ← Ψ . Let O := (g, s, e,d);
– (IK,TK) ← GO(1κ) and let Query be the set of all query/response pairs asked

during the execution;
– Ry ← {0, 1}∗;
– Y := SO(IK,Ry);
– X := DO(TK,Y)
– Rx ← S, where

S := {R | SO(IK,R) = X}.

Notation HitQ. For an oracle algorithm AO we let HitQ(AO(X)) denote the
set of all query response pairs made during the execution of AO(X). If A is a
randomized algorithm, then HitQ(AO(X)) will be a random variable.

Notation ♦. For a partial oracle ˜O and full oracle O we let ˜O♦O denote the
oracle that responds to a query qu as follows: if ˜O(qu) �= null then ˜O♦O(qu) =
˜O(qu); otherwise, ˜O♦O(qu) = O(qu). Note that even if both ˜O and O are TDP
consistent, ˜O♦O is not necessarily so.

Lemma 7. Let (IK,Query,Ry,Y,Rx,X,O,u,v) ← Env(κ) and (˜X,Freq, ˜O) ←
BreakO,u,v(1κ, IK,R).

1.
Pr[X = S

˜O♦O(IK,Rx) and E
˜O♦O(IK,X) = Y] ≥ 1 − 1

4κ2
(6)

2. Letting

ALLQ := ˜O ∪ HitQ(S˜O♦O(IK,Rx)) ∪ HitQ(E˜O♦O(IK,X))

we have Pr[ALLQ is TDP consistent ] ≥ 1 − 1
2κ2 .

Let us first show how to use Lemma 7 to prove Lemma 2. We will then prove
Lemma 7.

Proof (Proof of Lemma 2). Let all the variables be sampled as in Lemma 2.
Let Rx ← S, where

S := {R | SO(IK,R) = X}.

Let Evnt1 and Evnt2 denote the events of Parts 1 and 2 of Lemma 7. That is,

– Evnt1 : X = S
˜O♦O(IK,Rx) and E

˜O♦O(IK,X) = Y
– Evnt2 : ALLQ is TDP consistent .

We claim if Evnt1 ∧ Evnt2 holds, then ˜X = X. This implies our result since

Pr[˜X = X] ≥ Pr[Evnt1 ∧ Evnt2] ≥ 1 − Pr[Evnt1] − Pr[Evnt2] ≥ 1 − 1
κ2

.
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It remains to prove the above claim. We show if Evnt1 ∧ Evnt2 then (I)
ALLQ is TDP consistent, (II) (IK, ˜TK) ∈ GALLQ(1κ), (III) ˜X = DALLQ(˜TK, Y ),
(IV) X = SALLQ(IK,Rx), (V) EALLQ(IK,X) = Y. Then, by the correctness of the
construction (G,S,E,D) we obtain ˜X = X, and the proof will be complete.

First, note that (I) follows by definition of Evnt2.
To prove (II) and (III), first note that we have (IK, ˜TK) ∈ G

˜O(1κ) and
˜X = D

˜O(˜TK,Y). Now since ˜O ⊆ AllQ and since ALLQ is TDP consistent, we
have (IK, ˜TK) ∈ GALLQ and ˜X = DALLQ(˜TK,Y). Note that the mere fact that
˜O ⊆ ALLQ will not be sufficient to conclude these two last statements (II) and
(III); the reason is that there may be collisions between ˜O and ALLQ \ ˜O (e.g.,
a query qu may receive different responses from the two oracles), rendering the
corresponding executions ambiguous.

Similarly, from the facts that ALLQ is TDP consistent and that Evnt1 holds,
we conclude (IV) and (V). �

We now show how to prove Lemma 7, starting with Part 1. We give the proof
of Part 2 of the lemma in the full version. To this end, we define some variables
and events to help us describe things more concisely.

Sub-oracles ˜O1, ˜O2, ˜O3, ˜O4 and set Rand. We define four sub-oracles of ˜O,
which capture some of the query/response pairs that were added to ˜O as a
result of faking answers for those queries that created conflict with the real oracle
O. Recall that for removing such conflicts, we sampled elements uniformly at
random from {0, 1}5κ and used those for faking answers. Informally, the set Rand
contain those points sampled for these purposes. We now formally define these
pieces of notation.

– ˜O1: We let ˜O1 contain any query/response pair ((ik, x) −→
e

y′) added to ˜O as
a result of Line 4.4.2..

– ˜O2: We let ˜O2 contain any query/response pair added to ˜O as a result of
Condition (B) of Line 4.5.3.1..

– ˜O3: We let ˜O3 contain any query/response pair added to ˜O as a result of
Condition (B) of Line 4.5.3.3..

– ˜O4: We let ˜O4 contain any query/response pair ((ik, x) −→
e

y) added to ˜O as
a result of Line 4.5.3.5..

– Rand: We let Rand contain all x such that ((∗, x) −→
e

∗) ∈ ˜O2∪ ˜O3 or ((∗, ∗) −→
e

x) ∈ ˜O1. Intuitively, the set Rand contains all points that were sampled
uniformly at random for making up fake answers.

Events Surp1, Surp2, Surp3, Surp4. We define some events which we will prove
can only happen with negligible probability.

– Surp1: the event that for some ((ik, ∗) −→
e

y′) ∈ ˜O1 we have v(ik, y′) = 
 or

for some ((ik, x′) −→
e

∗) ∈ ˜O2 ∪ ˜O3 ∪ ˜O4 we have v(ik, x′) = 
.
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– Surp2: the event that during the execution SO(IK;Rx) a query qu = ((ik, x) −→
e

?) or a query ((∗, x) −→
d

?) is made where x ∈ Rand;

– Surp3: the event that there exists ((ik, x) −→
e

y) ∈ ˜O4 such that (ik, y) is not
embedded in Query.

– Surp4: For x �= x′ and y �= ⊥: ((ik, x) −→
e

y) ∈ ˜O and ((ik, x′) −→
e

y) ∈ ˜O.

Let Surp = Surp1 ∨ Surp2 ∨ Surp3 ∨ Surp4.

Set Dif. Let Q := Qg ∪ Qs ∪ Qe, where recall that the sets Qg, Qs and Qe are
formed during Line 2 of the algorithm Break. Let Dif be the set of queries formed
as follows: For any query/response pair (qu −→∗ ∗) ∈ Q, add the query qu to Dif.

Moreover, for any (ik, x) that occurs in Query ∪ Q:

(A) if for some r: s(ik, r) = x add ((ik, r) −→
s

?) to Dif;

(B) add ((ik, x) −→
e

?) to Dif;

(C) add ((tk, x) −→
d

?) to Dif, where tk = g−1(ik);

(D) if for some x′: e(ik, x′) = x, add ((ik, x′) −→
e

?) to Dif.4

Events Match and MissQ. Equipped with the set Dif we now define the following
two events.

– Match: ˜O♦O agrees with HitQ(SO(IK;Rx)) ∪ HitQ(EO(IK,X)).
– MissQ:

∃〈qu〉 ∈ Dif s.t. 〈qu〉 /∈ Freq and 〈qu〉 ∈ HitQ(SO(IK;Rx)) ∪ HitQ(EO(IK,X)).

Lemma 8. If Match holds, then MissQ ∨ Surp holds.

Lemma 9. We have Pr[MissQ] ≤ 1
8κ2 .

Lemma 10. We have Pr[Surp] ≤ 1
2κ .

Proof (of Part 1 of Lemma 7). Let α(n) denote the probability of this part of
the lemma. We have α(n) ≥ Pr[Match]. From Lemmas 8, 9 and 10 Pr[Match]
≤ 1

4κ2 . The proof is complete. �
We give the proof of Lemma 8 in the full version. We now prove Lemma 9,

for which we will use the following standard lemma.

Lemma 11. Let x1, . . . , xt+1 be independent, Bernoulli random variables, where
Pr[xi = 1] = p, for all i ≤ t + 1. Then

Pr[x1 = 0 ∧ · · · ∧ xt = 0 ∧ xt+1 = 1] ≤ 1
t
.

4 Note that we do not claim that Dif can be built efficiently. We merely introduce Dif
to define a related event.
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Proof (of Lemma 9). Let ExecO(IK) be the following random execution: Sam-
ple X′ ← SO(IK) and run EO(IK,X′). Recall that Freq is formed by running
ExecO(IK) independently t := κ2γ+8 times. Also, note that Rx is a uniformly
random string, and thus (SO(IK;Rx);EO(IK,X)) corresponds to a random exe-
cution of ExecO(IK).

Using simple inspection, we may verify |Dif| ≤ 6κγ . Now applying Lemma 11
for each element of Dif and taking a union bound, we will have Pr[MissQ] ≤
6κγ 1

κ2γ+8 ≤ 1
8κ2 , as desired. �

Proof (of Lemma 10). We can easily show that each of the events Surp1, Surp2

and Surp4 happens with probability at most 1
23n : Arguing about the probability

of each of these events amounts to arguing that a randomly chosen element in
{0, 1}5κ happens to lie in a sparse subset of {0, 1}5κ. Thus, we omit the details
for these parts.

We focus on bounding the probability of Surp3. Recall that

– Surp3: a query ((tk, y) −→
d

?) is made for which Line 4.5.3.5. is hit and

for which (ik, y) is not embedded in Query, where (ik, y) is defined as in
Line 4.5.3.5.. Also, recall that the notion of embeddedness from Definition 7.

We will show that whenever the event Surp3 holds, we can forge a pair (ik, y)
in the sense of Lemma 4, obtaining Pr[Surp3] ≤ 1

23n .
In order for Line 4.5.3.5.—during the simulated execution of D·(˜TK,Y)—to

be hit with the underlying values (ik, y), all of the following must hold at that
point:

(I) ((ik, ∗) −→
e

y) /∈ Real—this is because otherwise Line 4.5.3.2. would have
been hit.

(II) ((ik, ∗) −→
s

y) /∈ Real—this is because otherwise Line 4.5.3.3. would have
been hit.

(III) ((tkreal, ∗) −→
d

∗) /∈ Real, where tkreal = g−1(ik)—this is because otherwise

Line 4.5.3.1. would have been hit (by Assumption 5).
(IV) v(ik, y) = 
—this is because otherwise Line 4.5.3.4. would have been hit.

We now show show how the above conditions enable us to forge in the
sense of Lemma 4. In particular, the above conditions immediately imply that
(ik, y) is not embedded in Real. Also, notice that the set Real contains all those
query/response pairs made by BreakO,u,v(1κ, IK,R) (to its real oracles) up to
the point the event Surp3 holds. Moreover, since Surp3 holds, then, by defini-
tion, the pair (ik, y) is not embedded in Query either, which contains all the
query/response pairs used to produce IK. We may now design a forgery attack
as follows. The forger BO,u,v(1κ) first samples (IK, ∗) ← GO(1κ) and then sim-
ulates BreakO,u,v(1κ, IK,R) for R ← {0, 1}∗. Whenever the event Surp3 holds
with the underlying pair (ik, y), then B will halt and return (ik, y). Note that
BreakO,u,v(1κ, IK,R) can efficiently recognize the occurrence of the event Surp3.
The success probability of BO,u,v(1κ) is the probability that Bad holds. �
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