
Round Optimal Black-Box
“Commit-and-Prove”

Dakshita Khurana1(B), Rafail Ostrovsky2, and Akshayaram Srinivasan3

1 Microsoft Research, New England, USA
dakshkhurana@gmail.com

2 UCLA, Los Angeles, USA
3 UC Berkeley, Berkeley, USA
akshayaram@berkeley.edu

Abstract. Motivated by theoretical and practical considerations, an
important line of research is to design secure computation protocols that
only make black-box use of cryptography. An important component in
nearly all the black-box secure computation constructions is a black-
box commit-and-prove protocol. A commit-and-prove protocol allows a
prover to commit to a value and prove a statement about this value
while guaranteeing that the committed value remains hidden. A black-
box commit-and-prove protocol implements this functionality while only
making black-box use of cryptography.

In this paper, we build several tools that enable constructions of
round-optimal, black-box commit and prove protocols. In particular,
assuming injective one-way functions, we design the first round-optimal,
black-box commit-and-prove arguments of knowledge satisfying strong
privacy against malicious verifiers, namely:

– Zero-knowledge in four rounds and,
– Witness indistinguishability in three rounds.

Prior to our work, the best known black-box protocols achieving commit-
and-prove required more rounds.

We additionally ensure that our protocols can be used, if needed, in the
delayed-input setting, where the statement to be proven is decided only
towards the end of the interaction. We also observe simple applications

R. Ostrovsky—Research supported in part by NSF grant 1619348, DARPA SafeWare
subcontract to Galois Inc., DARPA SPAWAR contract N66001-15-1C-4065, US-Israel
BSF grant 2012366, OKAWA Foundation Research Award, IBM Faculty Research
Award, Xerox Faculty Research Award, B. John Garrick Foundation Award, Tera-
data Research Award, and Lockheed-Martin Corporation Research Award. The views
expressed are those of the authors and do not reflect position of the Department of
Defense or the U.S. Government.
A. Srinivasan—Research supported in part from Sanjam Garg’s 2017 AFOSR YIP
Award, DARPA/ARL SAFEWARE Award W911NF15C0210, AFOSR Award FA9550-
15-1-0274, and research grants by the Okawa Foundation, Visa Inc., and Center for
Long-Term Cybersecurity (CLTC, UC Berkeley). The views expressed are those of the
author and do not reflect the official policy or position of the funding agencies.

c© International Association for Cryptologic Research 2018
A. Beimel and S. Dziembowski (Eds.): TCC 2018, LNCS 11239, pp. 286–313, 2018.
https://doi.org/10.1007/978-3-030-03807-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03807-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-03807-6_11

Round Optimal Black-Box “Commit-and-Prove” 287

of our protocols towards achieving black-box four-round constructions of
extractable and equivocal commitments.

We believe that our protocols will provide a useful tool enabling sev-
eral new constructions and easy round-efficient conversions from non-
black-box to black-box protocols in the future.

1 Introduction

Secure computation [13,42] allows a set of mutually distrusting parties to com-
pute a joint function of their private inputs such that nothing else apart from the
function’s output is leaked. The constructions of secure computation protocols
(where the majority of the parties can be corrupted) may make use of crypto-
graphic primitives in one out of the following two ways. The construction can
either make black-box use of the primitive by referring only to the input/output
behavior of that primitive or it can make non-black-box use of the primitive by
using the code computing this primitive.

Typically, non black-box use of a cryptographic primitive is made to pro-
tect against malicious adversaries who may deviate arbitrarily from the protocol
specification. In such scenarios, a zero-knowledge proof [14] showing correct com-
putation of this primitive (which in turn requires access to the code computing
this primitive) is used. This part is computationally expensive and further, the
complexity of this step depends on the actual implementation of this crypto-
graphic functionality.

The advantage of black-box constructions is that their complexity is inde-
pendent of the complexity of implementation of the underlying primitive. In
fact, such protocols are sometimes considered as the first step towards practical
implementations. There has been an impressive body of research [7,15,16,19,25–
28,36] on constructing secure computation protocols that make black-box use
of underlying primitives. However, most of these works incur several additional
rounds of interaction when compared to non-black-box protocols.

A very natural question, which is still far from being resolved, is whether
there exist black-box protocols that match the exact round complexity of their
non-black-box counterparts.1 In this paper, we ask this question for a key crypto-
graphic functionality that lies at the center of nearly all black-box constructions:
the commit-and-prove functionality.

1.1 Commit-and-Prove Functionalities

A “commit-and-prove” functionality [6,13] is generally used to prevent malicious
behaviour by forcing participants to prove correctness of their protocol messages
w.r.t. the committed inputs. Informally, a commit-and-prove functionality allows
1 Two notable exceptions are the works of [34] and [18] who construct round-optimal

secure computation, and non-malleable commitments respectively via black-box use
of cryptography. However, these works developed techniques very specific to their
respective settings.

288 D. Khurana et al.

a party to commit to some secret value x and prove that value satisfies some
predicate P . In order to maintain secrecy, such a proof must additionally hide
the secret input x, in other words it must be zero-knowledge.

Very roughly, any commit-and-prove protocol is said to be zero-knowledge if
there exists an associated simulator that given the commitment externally, is able
to generate a proof without access to the witness (or the value being committed
via the commitment). We note that such protocols have been a core primitive
in nearly all previous works on obtaining black-box constructions, including [16,
25,27,36]. In addition to zero-knowledge, we also consider the weaker privacy
property of witness indistinguishability [9].2

Despite the above mentioned fascinating advances in constructing such pro-
tocols, we still do not know round-optimal black-box constructions of zero-
knowledge commit-and-prove functionalities. Indeed, in the black-box regime,
the best known result is due to Hazay and Venkitasubramaniam [21] which
requires 6 rounds of interaction. In fact, when not restricted to black-box use of
primitives, we have known for more than 25 years that four rounds are neces-
sary [12]3 and sufficient [5,8] for constructing zero-knowledge commit-and-prove
arguments.

However, so many years later, in the regime of black-box commit-and-prove,
the following question is still open:

“Do there exist round-optimal, black-box commit-and-prove zero-knowledge
protocols?”

1.2 Our Results

We provide a positive answer to this question. In particular, assuming injective
one-way functions, we construct the first:

– Four round black-box commit-and-prove zero-knowledge arguments of knowl-
edge against malicious verifiers, and

– Three round black-box commit-and-prove witness-indistinguishable argu-
ments of knowledge against malicious verifiers. These commitments satisfy
only a weaker notion of binding (that we call 1-of-2 binding), which never-
theless suffices for all our applications, and which we detail in Definition 4.

Our protocols satisfy correctness and soundness even in the delayed-input setting,
where the predicate to be proved can be decided even in the last round of the
protocol, however, the witness or message to be committed must be known before
the prover sends his first message. Additionally, as simple applications of these
protocols, we give the first constructions of four round extractable and equivocal
commitments that only make black-box use of injective one-way functions.

2 Please refer to Sect. 3 for a formal definition of witness indistinguishable commit-
and-prove protocols.

3 Due to limitations on the round-complexity required to implement existing non
black-box techniques, we restrict ourselves to black-box reductions in this paper.

Round Optimal Black-Box “Commit-and-Prove” 289

Discussion. Our construction makes non-black-box use of the predicate, similar
to all previous constructions in this line of work. With respect to constructions
making black-box use of the predicate, we would like to point to the negative
result of Rosulek [39] which shows that any (honest-verifier) zero-knowledge
argument for the NP language L = {x : ∃ws.t.f(w) = x} and f is a one-way
function must make use of the code of the function f .

We note that similar to previous work using MPC-in-the-head [IKOS07] and
follow-ups, our techniques can be used directly to build black-box protocols in
cases where the predicate is information theoretic. There are several settings
in literature where the predicate is indeed information theoretic. A few simple
examples include:

– A commit-and-prove protocol for checking equality of two committed values
(This is in fact used in our construction of equivocal commitments).

– A commit-and-prove protocol for checking that one committed value corre-
sponds to a fixed polynomial evaluated on a different committed value (Eg,
in the ZK arguments that achieve four round non-malleable commitments in
GRRV14.)

– Comparison queries or range proofs, showing that a committed value lies in a
certain fixed range (Such proofs have become increasingly popular in recent
years).

– These techniques may also be relevant to distributed secure protocols with
information-theoretic guarantees.

Furthermore, as we note in the paper, in many other situations, where
the predicate itself involves cryptography, cut-and-choose techniques have been
extensively explored (Please see [1,22,23,30–33,40,41] and references therein).
Specifically, the works of [16,17,35] used cut-and-choose to separate such predi-
cates into cryptographic components, for which malicious security was obtained
using cut-and-choose, and information-theoretic components, for which tailored
commit-and-prove protocols were built. In this paper, we concentrate on the lat-
ter and build round-optimal, black-box commit-and-prove ZK protocols to gener-
ically solve the problem of commit-and-prove for information-theoretic predi-
cates. As simple applications of these results, in the paper, we construct the
first four round extractable and equivocal commitments from injective one-way
functions.

1.3 Related Works

Goldreich and Krawcyzk [12] showed that four rounds are necessary to construct
zero-knowledge argument system that make black-box use of a verifier for lan-
guages outside of BPP. Bellare et al. [5] and Feige et al. [8] gave protocols that
matches this round complexity from the minimum assumption that one-way
functions exist.

The commit and prove functionality was first used implicitly in [13] and
was later formalized in [6]. The constructions given in these works made non-
black-box use of one-way functions. A constant round black-box commit and

290 D. Khurana et al.

prove zero-knowledge proof was implicit in the work of Ishai et al. [27] assuming
collision resistant hash functions. Later works of [16,17,35] improved the con-
crete round complexity of this construction and also constructed zero-knowledge
argument systems from one-way functions. More recently, Hazay and Venkita-
subramaniam [21] constructed a six-round black-box commit and prove zero-
knowledge argument from injective one-way functions. This work represents the
state of the art in terms of round complexity of black-box commit and prove.

2 Our Techniques

Our starting point is the work of Hazay and Venkitasubramaniam [21], who con-
structed three-message black-box commit-and-prove ZK protocols with constant
soundness, by making use of robust offline/online randomized encodings.

Starting Point: Robust Offline/Online Encoding. A randomized encoding [2–
4,24,42] of a boolean circuit f is a function ̂f along with a decoding algorithm
Dec such that for any input x in the domain of the function f , with overwhelming
probability it holds that Dec(̂f(x;Um)) = f(x), where Um denotes the uniform
distribution over m bits. Moreover, the encoding ̂f required to satisfy computa-
tional privacy, meaning that the encoding ̂f(x,Um) reveals no information about
x and f , except f(x). A randomized encoding is called offline/online if it has two
components: an offline component that does not depend on the input, and an
online component which is a function of the input. We will denote these by two
functions ̂foff and ̂fon such that ̂f(x; r) = (̂foff(r), ̂fon(x, r)). Such an encoding is
called robust, if additionally the following is true: when there exists no x such that
f(x) = a, then for any r, there does not exist any z such that Dec(̂foff(r), z) = a.
The work of [21] showed that robust randomized encodings can be instantiated
in multiple ways, including the use of adaptive garbled circuits.

Black-Box Commit and Prove with Constant Soundness. Let us now explain how
the work of [21] used offline/online randomized encodings to construct black-box
commit and prove ZK proofs with constant soundness error. Additionally, if the
encodings are robust then this zero-knowledge proof satisfies correctness and
soundness in the delayed-input setting.

The prover P has a message m and wants to convince the verifier that φ(m) =
1 where φ is some predicate. The protocol is as follows:

1. In the first round, P secret shares m into two shares m0 and m1. It then
constructs a function f which has hardwired a secret share m0 of m, and
obtains as input the other share m1 and the predicate φ. This function outputs
(1, φ,m1) if and only if φ(m0 ⊕m1) = 1; otherwise it outputs ⊥. It constructs
an offline encoding of this function ̂foff(r) and sends ̂foff(r) and also sends a
(standard) non-interactive commitment to m1.

2. The verifer V sends a random single bit challenge b.

Round Optimal Black-Box “Commit-and-Prove” 291

3. If b := 0 then the prover sends f, r and the verifier checks if ̂foff(r)
is computed correctly. Otherwise, P opens the commitment to m1 and
also sends ̂fon((m1, φ), r). V checks if the opening is valid and also runs
Dec(̂foff(r), ̂fon((m1, φ), r)) and checks if this output is (1,m1, φ).

In the case where b = 0, the commitment computationally hides m1, whereas
when b = 1, the privacy of the randomized encoding ensures that m0 remains
hidden. As shown in [21], this can indeed be formalized to prove that the protocol
satisfies zero-knowledge. However, the protocol is only 1/2 sound: in particular,
a cheating prover can guess the verifier’s challenge in advance, and use this to
generate an accepting proof of a false statement.

Boosting Soundness. In order to boost soundness to close to 1, a natural idea is
to parallel repeat this basic protocol to achieve negligible soundness error. But
this idea does not work because we want a commit-and-prove: meaning that a
malicious prover should be forced to commit to a single value and prove that
it satisfies the predicate. In a näıve parallel repetition, a cheating prover could
use different m’s to compute the first message in different parallel repetitions.
Therefore, we must find a way to ensure consistency of messages used across
different parallel executions.

To achieve this, we augment the constant soundness protocol in the following
way:

1. Instead of secret sharing m, the prover now secret shares w := (m‖r) where r
is a random element from a finite field F.4 Let w0 and w1 be the secret shares.
The prover constructs a function f that has w0 hardwired in its description
and takes as input the other share w1 along with an augmented predicate φ′

(which we will define later). f outputs (1, w1, φ
′) if and only if φ′(w0 ⊕ w1) =

1. It constructs an offline encoding of this function ̂foff(r) and sends ̂foff(r)
and also sends a (standard) non-interactive commitment to w1.

2. The verifier chooses a random bit b as before and additionally chooses a
random element α ← F \ {0} and sends b, α to P.

3. The prover computes γ := rα + m and sets the predicate φ′((m‖r)) to check
if φ(m) = 1 and if γ is correctly computed. The prover sends γ and responds
to the verifier’s challenge bit as before.

In the parallel repetition of the above protocol, P chooses a “global” r that
remains the same for each of the repetitions and also sends a single γ := rα+m in
the third round; in each repetition, the predicate φ′ shows that this “global” γ is
consistent with the value w used in that repetition. We now show that the above
augmented constant soundness protocol can force a prover to use consistent
witness across multiple parallel executions. Say, the prover tries to use different
witnesses (r′,m′) �= (r,m) across parallel repetitions. Then, with overwhelming
probability rα+m �= r′α+m′ by the Schwartz-Zippel lemma. Thus, the predicate
that the prover is trying to prove in those repetitions is false and hence he will

4 We assume that the message m also belongs to the same finite field.

292 D. Khurana et al.

be caught if he tries to use inconsistent witness in many repetitions. We show
that this parallel repetition satisfies witness indistinguishability.

Achieving Zero-Knowledge. As mentioned earlier, our three round parallel rep-
etition of the augmented constant soundness protocol satisfies witness indistin-
guishability. Indeed, in order for it to achieve zero-knowledge property, it is
necessary to have an additional round of interaction [11].

Our four round commit and prove ZK protocol follows the FLS paradigm
[8] i.e., we run two special purpose witness indistinguishable protocols in oppo-
site directions between the prover P and the verifier V. Recall that in the FLS
paradigm the first protocol is a WI-PoK run by the verifier proving the knowl-
edge of some trapdoor information. The second WI-PoK protocol run by the
prover shows the knowledge of a witness for the statement x or the knowledge
of verifier’s trapdoor information. Intuitively, the soundness of the protocol fol-
lows from the security of the first WI-PoK and the zero-knowledgeness property
follows from the observation that the simulator can rewind and extract the trap-
door information from the first WI-PoK and then use it in the second protocol.

In our construction, the first WI protocol run by V is a 3-round two-com pro-
tocol. Intuitively, the two-com protocol is a commitment to two random strings
s0 and s1 such that commitment to sb for a random b ∈ {0, 1} is binding whereas
the commitment to the other string s1−b is equivocal. The trapdoor information
is the string sb. We demonstrate how to construct this primitive with black-
box use of statistically binding commitment scheme using ideas from [34]. We
additionally show that this trapdoor information can be extracted in expected
polynomial time by rewinding the verifier. We wish to emphasize that the trap-
door that we use is in some sense “information theoretic” in nature and in
contrast, the trapdoors usually used in the FLS paradigm are “crytographic” in
nature such as the inverse of a given one-way function, or a signature under a
public verification key, etc. Indeed, using such cryptographic trapdoors in the
FLS paradigm leads to non-black-box use of one-way functions.

The second WI protocol run by P is essentially the 3-round WI protocol
that we constructed earlier which proves that either the committed message m
satisfies the predicate or m is the trapdoor. We show that a combination of
these two special purpose WI protocols is a zero-knowledge commit and prove
by carefully relying on the timing of the messages exchanged and the delayed
input property of the second WI. We refer the reader to the main body for the
details.

3 Preliminaries

In this section, we recall some preliminaries and tools that will be useful in our
constructions. We will denote the security parameter by λ, and we will say that
a function f : N → N is negligible if for every polynomial p(·) and all sufficiently

Round Optimal Black-Box “Commit-and-Prove” 293

large n it holds that f(n) < 1
p(n) . We use the abbreviation PPT to denote

probabilistic polynomial-time.

3.1 Commitment Schemes

A commitment scheme enables a party, known as the sender S, to commit to
a value while keeping it secret from the receiver R – this property is called
hiding. Furthermore, it is guaranteed that at a later stage, the opening of the
commitment can only yield a single value – this property is called binding. We
consider commitment schemes that are statistically binding and computationally
hiding.

Definition 1 (Commitment schemes). A commitment scheme 〈C(m), R〉 is
a two-phase protocol between a committer C and receiver R. At the beginning of
the protocol, C obtains as input a message m ∈ {0, 1}p. Next, C and R execute
the commit phase, and obtain commitment transcript τ ← Commit〈C(m),R〉.
They also store (private) randomness used respectively by C and R as stateC,τ

and stateR,τ . At the end of this phase, R outputs 0 or 1, where 1 denotes that
R accepted the commitment phase. The view of the receiver (including its coins,
any auxiliary information z and transcript) at the end of this phase is denoted
by ViewR〈C(M),R(z)〉.

Later, C and R possibly engage in another (interactive) decommit phase,
which we denote by Decommit〈τ, C(m, stateC,τ),R(stateR,τ)〉 at the end of which
R outputs ⊥ or a message m̃ ∈ {0, 1}p.

We require these algorithms to satisfy the following properties:

– Correctness. If C,R honestly follow the protocol, Pr[R accepts the
decommitment] = 1 − negl(λ).

– Computational hiding. For every PPT machine R∗ with auxiliary infor-
mation z, the distributions {ViewR〈C(m),R(z)〉} and {ViewR〈C(0),R(z)〉}
are computationally indistinguishable.

– Statistical binding. For any (unbounded) malicious C∗,

Pr
[R accepts decommitment to m̃1 and m̃2 where m̃1 �= m̃2] ≤ negl(λ)

where the probability is over the randomness of sampling (τ ← Commit
〈C∗,R〉), (m̃1 ← Decommit〈τ, C∗,R(stateR,τ)〉) and (m̃2 ← Decommit〈τ, C∗,
R(stateR,τ)〉) . We will say that the scheme satisfies computational binding if
the above holds for any PPT committer C∗ with auxiliary input z.

We now define an extractable commitment scheme [37,38]. Intuitively, a
commitment scheme is extractable if there exists an expected polynomial time
machine that can extract the value committed by a cheating committer.

Definition 2 (Extractable Commitments). A commitment scheme is said
to be extractable, if there exists a PPT oracle algorithm E that given τ ←
Commit〈C∗,R〉 and oracle access to C∗, outputs m̃, r such that ∃r where τ =
Commit〈C(m̃),R〉 using randomness r for C.

294 D. Khurana et al.

An equivocal commitment scheme allows an expected polynomial time
machine called as the equivocator to equivocate a commitment transcript to any
chosen committed value. Equivocal commitments have been extensively used to
obtain round optimal constructions of secure two-party and multiparty compu-
tations [10,29].

Definition 3 (Equivocal Commitments). A commit-and-prove scheme is
equivocal if there exists a PPT oracle algorithm Eq that interacts with oracle
access to any malicious receiver R∗ to output a commitment transcript τ̃ . Next,
it obtains externally generated string m′, and then runs Decommit〈τ̃ ,EqR∗

,R∗〉.
Then, we require that the distributions

ViewR∗(τ ← Commit〈C(M ′),R∗〉,Decommit〈τ, C,R∗〉) and

ViewR∗(τ̃ ← Commit〈EqR∗
,R∗〉,Decommit〈τ̃ ,EqR∗

,R∗〉)

are computationally indistinguishable.

3.2 Commit-and-Prove Protocols

We start with the definition of commit and prove witness indistinguishable proof
of knowledge. Our construction of commit and prove witness indistinguishable
proof of knowledge satisfies a weaker notion of 1-of-2 binding. Intuitively, 1-of-2
binding states that there exists at most two different messages that a committed
transcript can be opened to.

Definition 4 (Commit-and-Prove Witness Indistinguishable Proof of
Knowledge). A commit-and-prove witness indistinguishable proof of knowledge
is a protocol between a prover P and verifier V. It consists of two phases, a
commit phase and reveal phase.

In the commit phase, P interacts with V to commit to a message m. It also
proves that the m satisfies some predicate φ, in other words it proves that φ(m) =
1. Let τ denote the transcript τ ← Commit-and-Prove〈P(m,φ),V(φ)〉. They also
store (private) randomness used respectively by P and V as stateP,τ and stateV,τ .
At the end of this phase, V outputs 0 or 1, where 1 denotes that V accepted the
commit-and-prove phase.

Later, the parties P and V possibly engage in another decommit phase, which
we denote by Decommit〈τ,P(m, stateP,τ),V(stateV,τ)〉, at the end of which V
outputs ⊥ or m̃ ∈ {0, 1}p.

We require the protocol to satisfy the following conditions:

– Completeness. If P,V honestly follow the protocol, Pr[V accepts the
proof] = 1 − negl(λ).

– Witness Indistinguishability. Let the view of a malicious verifier V∗ at
the end of the commit phase when the honest prover has input message m
be denoted by ViewV∗(Commit-and-Prove〈P(m),V∗(z)〉). For any malicious

Round Optimal Black-Box “Commit-and-Prove” 295

verifier V ∗, and any two messages m1,m2 such that φ(m1) = 1 and φ(m2) =
1, the distributions {P (m1), V ∗(z)} and {P (m2), V ∗(z)} are computationally
indistinguishable.

– Proof of Knowledge. There exists a PPT oracle algorithm E that given
oracle access to P∗ and τ ← Commit-and-Prove〈P∗,R(φ)〉 outputs m̃ such
that the following properties are satisfied for every PPT P∗:

• φ(m̃) = 1.
• 1-of-2-Binding. This requires that the committer cannot decommit to

two values m1,m2, both of which are different from m̃. In other words, we
require the commit-and-prove to bind any malicious committer to at least
one out of two values. Formally, Pr[m̃ �∈ {m1,m2}] ≤ negl(λ), whenever
m1 ← Decommit〈τ,P∗,V(stateV,τ)〉, and also when
m2 ← Decommit〈τ,P∗,V(stateV,τ)〉.

We now give the definition of commit and prove zero-knowledge argument of
knowledge. We include the equivocality property into our zero-knowledge con-
dition. This will be helpful when proving the security of our construction of
equivocal commitment scheme.

Definition 5 (Commit-and-Prove Zero-Knowledge Arguments of
Knowledge). A commit-and-prove zero-knowledge argument of knowledge is
a protocol between a prover P and verifier V. It consists of two phases, a commit
phase and reveal phase.

In the commit phase, P interacts with V to commit to a message m. It also
proves that the m satisfies some predicate φ, in other words it proves that φ(m) =
1. Let τ denote the transcript τ ← Commit-and-Prove〈P(m,φ),V(φ)〉. They also
store (private) randomness used respectively by P and V as stateP,τ and stateV,τ .
At the end of this phase, V outputs 0 or 1, where 1 denotes that V accepted the
commit-and-prove phase.

Later, the parties P and V possibly engage in another decommit phase, which
we denote by Decommit〈τ,P(m, stateP,τ),V(stateV,τ)〉, at the end of which V
outputs ⊥ or m̃ ∈ {0, 1}p.

We require the protocol to satisfy the following conditions:

– Completeness. If P,V honestly follow the protocol, Pr[V accepts the
proof] = 1 − negl(λ).

– Argument of Knowledge. There exists a PPT oracle algorithm E that
given oracle access to P∗ and τ ← Commit-and-Prove〈P∗,R(φ)〉 outputs m̃
such that the following properties are satisfied for every PPT P∗:

• φ(m̃) = 1.
• Computational Binding. Pr

[

m ← Decommit〈τ,P∗,R(stateR,τ)〉 ∧
m �= m̃] ≤ negl(λ).

– Zero-Knowledge. Let ViewV∗(Commit-and-Prove〈P(m),V∗(z)〉) denote the
view of a malicious verifier V∗ at the end of the commit phase when the honest
prover has input message m such that φ(m) = 1. There exists a simulator

296 D. Khurana et al.

Sim that outputs ViewCommit(SimV∗
). Next, it obtains input m and outputs

ViewDecommit(SimV∗
(m)). Then, we require that for all values m,

(

ViewCommit(SimV∗
),ViewDecommit(SimV∗

(m))
)

c≈
(

ViewV∗(Commit-and-Prove〈P(m),V∗(z)〉),Decommit〈τ,P(stateP,τ),V∗)

In particular, this also implies that any malicious verifier V ∗, and any two
messages m1,m2 such that R(φ,m1) = 1 and R(φ,m2) = 1, the distribution
ViewV∗(Commit-and-Prove〈P(m1),V∗(z)〉) and the distribution
ViewV∗(Commit-and-Prove〈P(m2),V∗(z)〉) are computationally indistinguish-
able.

Remark 1. A commit-and-prove protocol is said to satisfy delayed-input com-
pleteness, if P,V obtain the predicate φ in the last round of a protocol.

3.3 Robust Offline/Online Randomized Encoding

We start with the definition of a randomized encoding [2,3,24].

Definition 6 (Randomized Encoding). Let f : {0, 1}n → {0, 1}� be a func-
tion. Then a function f̂ : {0, 1}n × {0, 1}m → {0, 1}s is said to be a randomized
encoding of f , if:

– Correctness: There exists a decoder algorithm Dec such that for any input
x ∈ {0, 1}n, except with negligible probability over the randomness of the
encoding and the random coins of Dec, it holds that Dec(f̂(x,Um)) = f(x).

– Computational (statistical) privacy: There exists a PPT simulator S,
such that for any input x ∈ {0, 1}n the following distributions are computa-
tionally (statistically) indistinguishable:

• {f̂(x,Um)}n∈N,x∈{0,1}n , and,
• {S(f(x))}n∈N,x∈{0,1}n

We recall the definition of robust randomized encoding from [21].

Definition 7 (Robust Offline/Online Randomized Encoding). [21] A
randomized encoding is called an online/offline encoding, if there exists func-
tions ̂foff and ̂fon such that ̂f(x; r) = (̂foff(r), ̂fon(x, r)). That is, there exists an
offline component that does not depend on the input, and an online component
which is a function of the input. It is called robust if additionally, it holds that:
if there exists no x such that f(x) = a, then for any r, there does not exist any
z such that Dec(̂foff(r), z) = a.

In AppendixA, we describe a simplified variant of the construction of
robust offline/online randomized encodings from [21], that only assumes one-way
functions.

Round Optimal Black-Box “Commit-and-Prove” 297

4 Three-Round Black-Box Commit-and-Prove WIPoK

In this section, we describe a three-round black-box commit-and-prove witness
indistinguishable proof of knowledge protocol.

4.1 Construction

The construction is described in Fig. 1, and uses a robust randomized encoding
(̂foff , ̂fon), secure in the presence of adaptive choice of inputs.

We have the following theorem.

Input: The prover P and verifier V have common input a predicate φ. P
additionally obtains input m ∈ F (where F is a finite field) such that φ(m) = 1.

Definition of f : The function f has w0 ∈ F
3 hardwired. It takes as in-

put the predicate φ, two elements α, β ∈ F, an element w1 ∈ F
3, two values

(a, b) ∈ F, and does the following:

1. Set (m‖r‖s) = w0 + w1.
2. If a �= (r + αm) and b �= (s + βm) output ⊥.

Else, output (φ(m), φ, α, β, w1, (a, b)).

Protocol:

1. P chooses r
$← F. For i ∈ [λ], P does the following:

(a) Choose wi
0

$← F
3 and compute wi

1 := wi
0 ⊕ (m‖r‖⊥).

(b) Choose ωi
$← {0, 1}∗ and compute ̂foff(ωi) and τi ← Com(wi

1).
(c) Send (̂foff(ωi), τi).

2. V sends ch $← {0, 1}λ, α
$← F and β ← F.

3. P chooses b
$←F, and sets a = (r+αm). It sends a, b. Additionally, for every

i ∈ [λ], P does the following:
(a) If chi = 0, send wi

0, ωi.
(b) If chi = 1, send ̂fon(φ||α||β||wi

1‖(a, b), ωi), and decommit to τi.

Verification Phase:

– Output 1 if the following checks pass for every i ∈ [λ]:
1. If chi = 0, check if the received wi

0 is embedded in the circuit ̂foff

computed using randomness ri.
2. If chi = 1, run Dec(̂foff , ̂fon) and accept if the evaluation outputs

(1, φ, α, β, wi
1, (a, b)) where wi

1 is obtained from the decommitment to
τi.

Fig. 1. Black-box witness indistinguishable proof of knowledge

Theorem 1. The protocol described in Fig. 1 is a black-box commit-and-prove
witness indistinguishable argument of knowledge according to Definition 4.

298 D. Khurana et al.

The completeness of the protocol can be easily verified from inspection. Fur-
thermore, the protocol only makes black-box access to a non-interactive commit-
ment scheme and a robust randomized encoding. Recall that a robust randomized
encoding can be constructed from black-use of a one-way function. We now show
witness indistinguishability.

Lemma 1. The protocol described in Fig. 1 satisfies witness indistinguishability
according to Definition 4.

Proof. To prove witness indistinguishability of this protocol, we consider the
following sequence of hybrid experiments.

The first hybrid Hyb0 corresponds to the view of a (malicious) verifier inter-
acting with an honest prover that follows the protocol in Fig. 1 using the message
m0 for the predicate φ.

We define a hybrid Hyb0,k for each k ∈ [0, λ] that corresponds to the view
of a (malicious) verifier interacting with a prover that uses the message m1 in
the first k instances and the message m0 in the remaining instances. To be more
precise, the prover in Hyb0,k does the following:

– In round-1,
1. P chooses r, s

$← F.
2. For i ∈ [k], P does the following:

(a) Choose wi
0

$← F
3 and compute wi

1 := wi
0 ⊕ (m1‖⊥‖s).

(b) Choose ωi
$← {0, 1}∗ and compute ̂foff(ωi) and τi ← Com(wi

1).
(c) Send (̂foff(ωi), τi).

3. For i ∈ [k + 1, λ], P does the following:

(a) Choose wi
0

$← F
3 and compute wi

1 := wi
0 ⊕ (m0‖r‖⊥).

(b) Choose ωi
$← {0, 1}∗ and compute ̂foff(ωi) and τi ← Com(wi

1).
(c) Send (̂foff(ωi), τi).

– In round-3,
1. P sends b := s + βm1 and a = r + αm0. Additionally, for every i ∈ [λ], P

does the following:
(a) If chi = 0, send wi

0, ωi.
(b) If chi = 1, send ̂fon(φ||α||β||wi

1‖(a, b), ωi), and decommit to τi.

Claim. Assuming the hiding property of Com and the adaptive security of robust
randomized encoding, Hyb0,k−1

c≈ Hyb0,k for each k ∈ [λ].

Proof. Assume for the sake of contradiction that there exists a malicious verifier
that can distinguish Hyb0,k−1 and Hyb0,k with non-negligible probability. We will
construct an adversary B that breaks the security of either the robust randomized
encoding or the hiding property of Com with non-negligible probability. B chooses
a bit bk

$← {0, 1}.

Case-1: bk = 0. In this case, B does the following:

Round Optimal Black-Box “Commit-and-Prove” 299

1. For all i �= k, B generates the commitments and the randomized encoding
as in Hyb0,k−1. For i = k, it does the following:

(a) Choose wi
0

$← F
3 and compute wi

1 := wi
0 ⊕ (m0‖r‖⊥) and ŵi

1 := wi
0 ⊕

(m1‖⊥‖s). Give the two messages wi
0, ŵ

i
1 as the challenge messages

to the hiding property of Com. Obtain the challenge commitment τi.
(b) Choose ωi

$← {0, 1}∗ and compute ̂foff(ωi) and τi ← Com(wi
1).

(c) Send (̂foff(ωi), τi).
2. If chk obtained from the receiver is not equal to bk, we abort and output a

random bit. Else, continue the protocol as per the description of Hyb0,k−1.
Output whatever the verifier outputs

3. Note that if τk is a commitment to wi
1 then the distribution is identical to

Hyb0,k−1; else, it is identical to distribution Hyb0,k. Thus, if the malicious
verifier can distinguish between Hyb0,k−1 and Hyb0,k with probability p
then B breaks the hiding of the commitment scheme with probability at
least p/2.

Case-2: bk = 1. In this case, B does the following:
1. For all i �= k, B generates the commitments and the randomized encoding

as in Hyb0,k−1. For i = k, it does the following:

(a) Choose wi
1

$← F
3 and computes wi

0 := wi
1 ⊕ (m0‖r‖s) and ŵi

0 := wi
1 ⊕

(m1‖r‖s). Give to the randomized encoding challenger two circuits
f [wi

0] and f [ŵi
0] as the challenge circuits. Obtain ̂foff as the challenge

circuit.
(b) Send ̂foff and τi ← Com(wi

1).
2. If chk obtained from the receiver is not equal to bk, we abort and output

a random bit. Else,
(a) Obtain α from the verifier.
(b) Send φ||α||β||wi

1‖(a, b), ωi as the challenge input to the randomized
encoding challenger and obtain ̂fon.

(c) Send ̂fon as response to chk and decommit to τk.
3. Finally, output whatever the verifier outputs.

Notice that the output of the two circuits f [wi
0] and f [ŵi

0] on the challenge
input is exactly the same. Thus, B constitutes a valid challenger to the adap-
tive security of randomized encoding. Thus, if ̂foff corresponds to a offline
randomized encoding of fwi

0
, the view of the malicious verifier is identical to

Hyb0,k−1. Else, the view is identical to Hyb0,k. Thus, a malicious verifier dis-
tinguishing Hyb0,k−1 and Hyb0,k can be used to break the security of robust
randomized encodings.

We now prove that Hyb0,0 is identically distributed to Hyb0. Notice that Hyb0,0

is the same as Hyb0, except that the prover sends b = s + βm1 instead of
sampling b uniformly at random. Since s is information theoretically hidden in
both Hyb0,0 and Hyb0 it follows that both these distributions are identical. A
similar argument shows that Hyb0,λ is identical to Hyb1. This completes the
proof of the claim.

300 D. Khurana et al.

The proof of WI follows by noting that Hyb0,λ is distributed identically to
the case where the prover uses the witness W1 to generate the proof.

We will now prove that it is an argument of knowledge:

Lemma 2. The protocol in Fig. 1 is a proof of knowledge against PPT provers,
even for statements chosen adaptively by such a prover in the last round, accord-
ing to Definition 4.

Proof. We begin by describing the extractor (having oracle access to a PPT
prover P∗) that takes as input an accepted transcript T and outputs a value m̃
such that φ(m̃) = 1 and there exists at most two messages m̃1, m̃2 such that
m̃ ∈ {m̃1, m̃2} and either P∗ will decommit to m̃1 or m̃2.

The extractor rewinds the cheating prover P∗ to the beginning of the third
round multiple times, and gives different uniformly chosen challenge messages
ch

$← {0, 1}λ. It stops when it obtains for some i ∈ [λ], two decommitments
wi

0, w
i
1 such that wi

0 ⊕ wi
1 = (m‖r‖s), and outputs m if φ(m), and r + αm = a

or s + βm = b from the main thread.
Let T be the accepted protocol transcript. Because of robustness of the ran-

domized encoding and a simple averaging argument, we note that with over-
whelming probability over the choice of random challenge ch ∈ T, at least
λ − O(log2 λ) indices i are such that fwi

0
(φ, α, β, wi

1, a, b) �= ⊥. Let S be the
set of indices i such that the above is true. Then, we have for each i ∈ S, let
wi

1 ⊕ wi
0 = (mi‖ri‖si) where φ(mi) = 1. Further, for every i ∈ S, we now have

from the definition of f that, ri + αmi = a and si + βmi = b. With overwhelm-
ing probability over α, β, this is possible only if there exists at most two values
m̃1, m̃2 such that mi ∈ {m̃1, m̃2} for all i ∈ S (by Schwartz-Zippel lemma).

We finally argue that the extractor runs in expected polynomial time. Let p
be the probability that conditioned on the first two messages of the protocol, the
prover P∗ generates an accepting proof. Since the running time of the extractor in
each rewind is bounded by some polynomial poly(λ), we have that the expected
running time of the extractor is p . poly(λ)

p = poly(λ).

4.2 Black-Box One-Binding Commitment to Two Strings

In this section, we describe how to use the black-box commit-and-prove WIPoK
to generate a commitment to two strings such that one of the two commitments is
binding, and the other can be freely equivocated by a simulator. Such a protocol
can also be built using ideas from [34], however, we give a direct instantiation via
a slight modification of our black-box commit-and-prove WIAoK. This scheme
is referred to as two-com, and is described in Fig. 2.

We also note that unlike [34], when we use scheme two-com, honest parties
will never need to rely on equivocation, and equivocation will only be used in
the proof of security.

Witness indistinguishability of the argument of binding of one of the two
commitments follows directly via witness indistinguishability of the underlying
protocol, using an identical proof to the one in Lemma1.

Round Optimal Black-Box “Commit-and-Prove” 301

Input: Committer C has input two messages m0, m1.

Definition of f : The function f has w0 ∈ F
2 hardwired. The relation

R(x, w) = 1 if and only if (x1 = w OR x2 = w), where x = x1||x2.
The function f takes as input an instances x ∈ F

2, an element α ∈ F, an element
w1 ∈ F

2, two values (a, ã) ∈ F
2, and does the following:

1. Compute (w‖r‖r̃) = w0 + w1.
2. If a �= (r + αw) and ã �= (r̃ + α1w), output ⊥. Else, output

(R(x, w), x, α, w1, (a, ã)).

Protocol:

1. C chooses r
$← F. For i ∈ [λ], P does the following with w = m0:

(a) Chooses wi
0

$← F and computes wi
1 := wi

0 ⊕ (w‖r).
(b) Chooses ri

$← {0, 1}∗ and computes ̂foff
wi

0
(ri), σi ← Com(ri) and τi ←

Com(wi
1).

(c) Sends (̂foff
wi

0
(ri), σi, τi).

2. R sends ch $← {0, 1}λ and α
$← F.

3. P sends the opening x = (m0||m1). Additionally, P chooses ã
$← F sends ã

and a = r + αw. Additionally, for every i ∈ [λ], P does the following:
(a) If chi = 0, sends wi

0, s
i
0 and decommits to σi.

(b) If chi = 1, sends ̂fon
wi

0
(x||α||wi

1‖(a, ã); ri), and decommits to τi.

Verification Phase:

– Output 1 if the following checks pass for every i ∈ [λ]:
1. If chi = 0, check if the received wi

0 is embedded in the circuit ̂foff
wi

0
com-

puted using randomness ri. Check that the decommitment information
to σi is correct.

2. If chi = 1, run the evaluation algorithm for randomized encoding ̂foff
wi

0

with ̂fon
wi

0
as input and accept if the evaluation outputs (1, x, α, wi

1, (a, ã))

where wi
1 is obtained from the decommitment to τi.

Fig. 2. Commitment to two strings where one is binding

We will now argue why the protocol in Fig. 2 is such that any (malicious)
committer is bound to one of the two openings m ∈ {m0,m1}, by the end of the
first round. This relies on soundness of the witness indistinguishable argument.
Specifically, by the Schwartz-Zippel lemma, there exist at most two witnesses
W,W ′ such that at least (λ − log2 n) parallel executions generated by a mali-
cious committer, have a commitment to either W or W ′, or both. Now, because
of the soundness of individual WI arguments, once the first message has been
committed, in the third message, any (malicious) committer can only open to
m0,m1 such that:

302 D. Khurana et al.

– If in the first message, all but log2 n commitments were to the same witness
W , then either W = m0 or W = m1.

– If in the first message, all but log2 n commitments were to two witnesses
W,W ′ then W = m0,W

′ = m1 or vice-versa.

5 Four-Round Black-Box Commit-and-Prove
Zero-Knowledge

In this section, we describe a black-box commit-and-prove zero-knowledge argu-
ment in four rounds based on injective one-way functions. We start with a
description of the main tools used in the construction.

5.1 Construction

Our construction is described formally in Fig. 3, and makes use of the following
primitives:

– A non-interactive, statistically binding commitment Com.
– A three-round commitment to two strings, together with a black-box witness-

indistinguishable proof that one of the two commitments is binding by the
end of the first round. We also require the other commitment to be equivocal.
Such a scheme is described in [34], Sect. 3. Let two-com(s1, s2) denote such a
scheme for committing to strings s1 and s2.

– A robust randomized encoding ̂foff , ̂fon according to Definition 6.

5.2 Proof of Security

We start with the lemma which shows that the protocol described in Fig. 1 is a
commitment to the witness w.

Lemma 3. The protocol described in Fig. 3 is a statistically binding commitment
to the element w ∈ F.

Proof. We start with the description of the decommit phase and then argue
statistical binding and computational hiding of the protocol.

The decommit phase involves opening the commitments σi, σ′
i and σ∗

i and
sending wi

0 for every i ∈ [λ]. For each i ∈ [λ], compute wi‖ri := wi
0 + wi

1 (where
a value is substituted with a default symbol if the decommitment information is
not valid) and output the value w that occurs in more than λ/2 positions. If there
is no w that occurs in more that λ/2 positions then we reject the decommitment
information.

Since the commitment sent in the second round of the protocol is statistically
binding and we have defined the decommitment phase to output the majority
of the committed values, we note that there can exist at most one valid decom-
mitment to a protocol transcript except with negligible probability. Thus, the
protocol is statistically binding. We note that computational hiding property
follows the zero-knowledge property we later show.

Round Optimal Black-Box “Commit-and-Prove” 303

Input: The prover P and verifier V have common input x and relation R. P
additionally obtains input w such that R(x, w) = 1. We assume that w ∈ F

where F is a finite field.

Definition of f : The function f has hardwired a share of the witness
w0, and a share of trapdoor information s0. It takes as input the instance x, a
challenge α, a share of the witness w1, a share of trapdoor information s1, a
value a, ŝ0, ŝ1 (recovered from the third message of the two-com) and does the
following:

1. Compute s = s0 ⊕ s1. If ŝ0 = s or ŝ1 = s, output (1, x, w1, s1, a). Else,
continue.

2. Compute w‖r = w0 ⊕ w1. If a �= (rα + w), output ⊥. Else, output
(R(x, w), x, w1, s1, a).

Protocol:

1. V picks strings ŝ0, ŝ1
$← {0, 1}2λ and sends the first message π1 of

two-com(ŝ0, ŝ1).
2. P chooses r

$← F, and s ← {0, 1}λ. For i ∈ [λ] it does the following:
(a) Choose wi

0 uniformly at random and compute wi
1 := wi

0 ⊕ (w‖r).
(b) Choose si

0 uniformly at random and compute si
1 := si

0 ⊕ s.
(c) Choose ri

$← {0, 1}∗, compute ̂foff
wi

0,si0
(ri), σi := Com(ri), σ′

i := Com(wi
1)

and σ∗
i := Com(si

1).
Send (̂foff

wi
0,si0

(ri), σi, σ
′
i, σ

∗
i) for each i ∈ [λ] along with the second message π2

of two-com.
3. V sends the strings ŝ0 and ŝ1, the third message π3 of two-com to P, together

with ch $← {0, 1}λ and α
$← F \ {0}.

4. P sends a = r +αw (in the field F), and does the following for every i ∈ [λ]:
(a) If chi = 0, send wi

0, s
i
0 and decommit σi.

(b) If chi = 1, send ̂fon
wi

0,si0
(x||α||a||ŝ0||ŝ1, w

i
1, s

i
1; ri) and the decommitment

to σ′
i and σ∗

i .

Check Phase:

– For every i ∈ [λ]:
1. If chi = 0, check if the received wi

0, s
i
0 are embedded in the circuit ̂foff

wi
0,si0

computed using randomness ri. Also check that the decommitment in-
formation to σi is correct.

2. If chi = 1, run the evaluator for the garbled circuit by providing
with ̂fon

wi
0,si0

and ̂foff
wi

0,si0
as inputs and accept if the evaluation outputs

(1, x, wi
1, s

i
1) where wi

1 and si
1 are obtained from the decommitment to

σ′
i and σ∗

i .

Fig. 3. Four round black-box commit-and-prove ZKAoK

304 D. Khurana et al.

Lemma 4. The protocol in Fig. 3 is an argument of knowledge against PPT
provers, even for statements chosen adaptively by such a prover in the last round,
according to Definition 5.

Proof. We begin by describing the extractor (having oracle access to a PPT
prover P∗) that takes as input an accepted transcript T and outputs a value
w ∈ F that occurs in majority of the positions and is such that R(x,w) = 1.

The extractor rewinds the cheating prover P∗ to the beginning of the third
round and gives different uniformly chosen challenge messages ch

$←{0, 1}λ. The
extractor stops when it obtains for some i ∈ [λ], two decommitments wi

0, w
1
i such

that wi
0 ⊕ wi

1 = (w‖r) and outputs w if r + αw = a from the main thread.
We will now prove that for any PPT prover, the extracted w is such

that R(x,w) = 1 – in particular, we will show that for any PPT prover,
Pr[s = ŝ0 or s = ŝ1] ≤ negl(λ). Suppose for contradiction there exists a polyno-
mial poly(·) and β ∈ {0, 1} such that Pr[s = ŝβ] ≥ 1

poly(λ) . We will use this to
contradict witness indistinguishability of two-com, or the hiding of the commit-
ments in two-com. We consider the following sequence of hybrid experiments.

Hyb0 corresponds to the real experiment, where the challenger generates the
verifier messages according to the honest verifier strategy, such that the com-
mitment ŝ0 is equivocable and the commitment ŝ1 is binding for γ ∈ {0, 1}.
It then uses the extraction strategy described above to extract s such that
Pr[s = ŝβ] ≥ 1

poly(λ) for some β ∈ {0, 1}.
In Hyb1a, the challenger sends messages exactly the same way as Hyb0, except

that it samples ŝ
$← {0, 1}λ, and in the third message, equivocates ŝ0 to ŝ. The

value extracted by the challenger must remain indistinguishable between Hyb0

and Hyb1, because of the equivocation property of the commitment to ŝ0. How-
ever, since ŝ was chosen uniformly at random and independent of ŝ0, the proba-
bility that ŝ equals si

1 ⊕ si
0 (which are both fixed before ŝ is chosen), is at most

2−λ. Otherwise, β = 1 and we consider the following sequence of hybrids.
In Hyb1b, the challenger sends messages the same way as Hyb0, except that the

commitment ŝ0 is binding and the commitment ŝ1 is equivocable for γ ∈ {0, 1}.
It then uses the extraction strategy described above to extract s. By witness
indistinguishability of the argument, this is such that Pr[s = ŝ1] ≥ 1

poly(λ) .
In Hyb2, the challenger sends messages exactly the same way as Hyb1b, except

that it samples ŝ
$← {0, 1}λ, and in the third message, equivocates ŝ1 to ŝ. The

value extracted by the challenger must remain indistinguishable between Hyb1b

and Hyb2, because of the equivocation property of the commitment to ŝ1. How-
ever, since ŝ was chosen uniformly at random and independent of ŝ0, the proba-
bility that ŝ equals si

1 ⊕si
0 (which are both committed by the prover even before

ŝ is chosen), is at most 2−λ.
We now argue that the extracted w occurs in the majority of positions. Let T

be the accepted protocol transcript. We note that with overwhelming probability
over the choice of random challenge ch ∈ T, at least λ − O(log2 λ) positions are
such that fwi

0,si
0
(x, α,wi

1, s
i
1, a, ŝ0, ŝ1) = (1, x, α, wi

1, s
i
1, (a, ã)). This follows from

the robustness property of the randomized encoding scheme. Let S be the set

Round Optimal Black-Box “Commit-and-Prove” 305

of positions such that the above is true. Additionally, we showed above that
for any i (in particular, for any i ∈ S) si

0 ⊕ si
1 is not equal to ŝ0 or ŝ1 with

overwhelming probability. Thus, we have for each i ∈ S, let wi
1 ⊕ wi

0 = (wi‖ri)
where R(x,wi) = 1. Since fwi

0,si
0
(x, α,wi

1, s
i
1, a, ŝ0, ŝ1) = (1, x, α, wi

1, s
i
1, (a, ã))

for every i ∈ S, we now have from the definition of f that, wiα + ri = a. With
overwhelming probability over α, this is possible only if there exists (w, r) ∈ F

such that wi = w and ri = r for all i ∈ S (by Schwartz-Zippel lemma).
We finally argue that the extractor runs in expected polynomial time. Let p

be the probability that conditioned on fixing the first two messages of the main
thread the prover P∗ gives an accepted proof. Since the running time of the
extractor in each rewind is bounded by some polynomial poly(λ), we have that
the expected running time of the extractor is p . poly(λ)

p = poly(λ).
This completes the proof of soundness, and of the argument of knowledge

property.

Lemma 5. The protocol in Fig. 3 is zero-knowledge against all PPT verifiers V.

Proof. We begin with a brief overview of the simulation strategy (for simplicity
in this overview we only consider non-aborting verifiers). The simulator runs the
verifier on randomly chosen prover message for the second round, and observes
the openings ŝ

(1)
0 and ŝ

(1)
1 . On learning ŝ

(1)
0 , ŝ

(1)
1 , the simulator rewinds and sends

a prover message by setting s = ŝ
(1)
0 . If the verifier responds with ŝ

(2)
0 �= ŝ

(1)
0 , the

simulator rewinds again and sets s = ŝ
(1)
1 . Denote the response of the verifier in

the second rewinding by ŝ
(3)
0 , ŝ

(3)
1 .

Since the first message of two-com is binding to at least one string, if
ŝ
(2)
0 �= ŝ

(1)
0 , then with overwhelming probability, it must be the case that the

commitment to ŝ1 is binding. In other words, s = ŝ
(1)
1 = ŝ

(3)
1 with overwhelming

probability. In this case, the simulator uses s as witness to complete the proof.
The general simulation strategy is detailed in Fig. 4.

Proof of Simulation Security. The proof that the simulated distribution is indis-
tinguishable from the real distribution will rely on the witness indistinguishabil-
ity of a three round sub-protocol that is being executed within the main protocol.
Let us give the details.

It was shown in [21] that the single execution (i.e., for each i ∈ [λ]) of
the sub-protocol is zero-knowledge with soundness error 1/2. Hence, this sub-
protocol is also witness indistinguishable. The parallel repetition of any witness
indistinguishable protocol preserves the WI property. This also directly proves
that conditioned on not aborting, a real transcript is indistinguishable from an
ideal transcript.

Next, we prove that the probability of abort is at most negl(λ)-far between the
real and ideal worlds. Note that by binding property of two-com, the simulator
obtains one opening out of ŝ0 and ŝ1 correctly. Therefore, the simulation proceeds
to Step 4(b) after at most two non-aborting rewinds. Now, the simulator rewinds
the verifier in Step 4(b): by computational hiding of the second message of the

306 D. Khurana et al.

Input: The simulator Simu and verifier V have common input x and relation R.

Definition of f : The function f has hardwired a share of the witness
w0, and a share of trapdoor information s0. It takes as input the instance x, a
challenge α, a share of the witness w1, a share of trapdoor information s1, a
value a, ŝ0, ŝ1 (recovered from the third message of the two-com) and does the
following:

1. Compute s = s0 ⊕s1. If ŝ0 = s or ŝ1 = s, output (1, x, w1, s1). Else, continue.
2. Compute w‖r = w0 ⊕ w1. If a �= (r + αw), output ⊥. Else, output

(R(x, w), x, w1, s1).

Protocol:

1. Obtain the first message π1 of two-com from V.
2. Simu chooses r

$← F, and s ← {0, 1}λ. For i ∈ [λ] it does the following:
(a) Choose wi

0 uniformly at random and compute wi
1 := wi

0 ⊕ 0|w|+|r|.
(b) Choose si

0 uniformly at random and compute si
1 := si

0 ⊕ s.
(c) Choose ri

$← {0, 1}∗, compute ̂foff
wi

0,si0
(ri), σi := Com(ri), σ′

i := Com(wi
1)

and σ∗
i := Com(si

1).
Send (̂foff

wi
0,si0

(ri), σi, σ
′
i, σ

∗
i) for each i ∈ [λ] and the message π2 of two-com.

3. If the verifier V aborts or does not send a valid message, then abort and end
the simulation. Otherwise, obtain strings ŝ0 and ŝ1, the third message π3

of two-com from V, together with ch $← {0, 1}λ and α
$← F. Set s = ŝ0, and

rewind the verifier to the end of Step 1.
4. (a) Repeat the following until the verifier sends a valid message for Step 3.

– With s set to ŝ0 as described above, compute and send
(̂foff

wi
0,si0

(ri), σi, σ
′
i, σ

∗
i) for each i ∈ [λ] along with the second mes-

sage π2 of two-com.
On obtaining a valid message from the verifier, parse it as ŝ

(2)
0 , ŝ

(2)
1 . If

s = ŝ
(2)
0 , continue to Step 5, using s as witness. Else, if ŝ1 �= ŝ

(2)
1 , abort

and end the simulation. Else, set s = ŝ1 and go to Step 4b.
(b) Repeat the following until the verifier sends a valid message for Step 3.

– With s set to ŝ1 as described above, compute and send
(̂foff

wi
0,si0

(ri), σi, σ
′
i, σ

∗
i) for each i ∈ [λ] along with the second mes-

sage π2 of two-com.
On obtaining a valid message from the verifier, parse it as ŝ

(3)
0 , ŝ

(3)
1 . If

s = ŝ
(3)
1 , continue to Step 5, using s as witness. Else, abort.

5. Simu sends a = r + αw (in the field F), and for every i ∈ [λ]:
(a) If chi = 0, send wi

0, s
i
0 and decommit σi.

(b) If chi = 1, send ̂fon
wi

0,si0
(x||α||a||ŝ0||ŝ1, w

i
1, s

i
1; ri) and the decommitment

to σ′
i and σ∗

i .

Fig. 4. Simulation strategy for black-box commit-and-prove ZKAoK

Round Optimal Black-Box “Commit-and-Prove” 307

protocol, the probability that the simulated view aborts in these rewindings
at the end of Step 3 is at most p ± negl(λ), where p is the probability that the
verifier aborts after the second message, when interacting with an honest prover.
Conditioned on the verifier not aborting in step 3, the simulator persists after
rewinding until the verifier sends a non-aborting message. Thus, the probability
of abort in the ideal world remains p ± negl(λ).

However, this strategy still suffers from the problem that the simulator may
not be expected polynomial time. This issue, akin to [11] is resolved by ensuring
that the simulator does not run for too long. Specifically, if the adversary did
not abort in Step 3, and the simulator proceeds to the rewinding phase, then
it first estimates the value of p, which is the probability that the verifier V ∗

did not abort given commitments to 0 values. This is done by repeating Steps
2 and 3 of the simulation (with fresh random commitments to all zeroes) until
m = 12λ successful decommits occur (to the same string q that it decommitted
to in the main thread). Then, an estimate ε̃ of p is taken to be m/T , where T
is the overall number of attempts until m successful decommits occured. This
suffices to ensure that the probability that ε̃ is not within a constant factor of p
is at most 2−λ. An exact analyses of the probabilities can be found in Sect. 6.5.3
in [20].

Finally, we can switch the simulator to using the trapdoor witness in the
three-round WI sub-protocol. More formally, we consider an intermediate hybrid
Hyb1, where the simulator follows the strategy above but continues to use the
real witness in the WI argument.

Claim. Hyb1 is computationally indistinguishable from the ideal world.

Proof. To prove that Hyb1 and the ideal world are computationally indistin-
guishable, we build the following reduction R to the witness indistinguishability
of the underlying protocol. The reduction R first completes the experiment by
rewinding the adversary using the [11] strategy described above to extract the
value s = ŝ0 or ŝ1. Next, the reduction rewinds back to the beginning of Step 2,
and commits to s. It obtains the first message of the (delayed-input) WI argu-
ment externally, giving it both witnesses w, s. In the third round, it computes
a = rα+w externally and obtains the WI argument externally proving at either
a = rα + w or s = ŝ0 or s = ŝ1.

Note that if w is used as witness, this corresponds to Hyb1. If s is used as
witness, the only difference between this and the simulation strategy is that
the simulator computes a completely at random, instead of computing it as
a = rα + w. These are perfectly indistinguishable because r completely hides
w. Thus, any adversary that distinguishes Hyb1 from the ideal world breaks the
witness indistinguishability of two-com.

6 Extractable and Equivocal Commitments

We describe direct applications of our black-box commit-and-prove protocols to
four round black-box extractable and equivocal commitments.

308 D. Khurana et al.

Extractable Commitments. The construction of black-box commit-and-prove ZK,
given in Fig. 3, is already an extractable commitment to the witness w (proved
in Lemma 4). The hiding of the extractable commitment scheme follows from

Input: The committer C has an input m ∈ {0, 1}.
Definition of f : The function f has hardwired a share of the witness w0, and a
share of trapdoor information s0. It takes as input a challenge α, a share of the
witness w1, a share of trapdoor information s1, a value a, ŝ0, ŝ1 (recovered from
the third message of the two-com) and does the following:

1. Compute s = s0 ⊕ s1. If ŝ0 = s or ŝ1 = s, output (1, w1, s1, a). Else, continue.
2. Compute m0‖m1‖r = w0 ⊕w1. If a �= (r+α(m0‖m1)), output ⊥. Else, output

((m0
?= m1), w1, s1, a).

Commit Phase:

1. R picks strings ŝ0, ŝ1
$← {0, 1}2λ and sends the first message π1 of

two-com(ŝ0, ŝ1).
2. C chooses r

$← F, and s ← {0, 1}λ. For i ∈ [λ] it does the following:
(a) Choose wi

0 uniformly at random and compute wi
1 := wi

0 ⊕ (m‖m‖r).
(b) Choose si

0 uniformly at random and compute si
1 := si

0 ⊕ s.
(c) Choose ri

$← {0, 1}∗, set ̂foff
wi

0,si0
(ri), σi := Com(ri), σ′

i := Com(wi
1), σ∗

i :=

Com(si
1).

Send (̂foff
wi

0,si0
(ri), σi, σ

′
i, σ

∗
i) for each i ∈ [λ] along with the second message π2

of two-com.

Decommit Phase:

1. R sends the strings ŝ0 and ŝ1, the third message π3 of two-com to P, together
with ch $← {0, 1}λ and α

$← F \ {0}8.
2. C sends a = r + α(m‖m) (in the field F), and does the following for every

i ∈ [λ]:
(a) If chi = 0, send wi

0, s
i
0 and decommit σi.

(b) If chi = 1, send ̂fon
wi

0,si0
(α||a||ŝ0||ŝ1, w

i
1, s

i
1; ri) and the decommitment to σ′

i

and σ∗
i .

Check Phase: The receiver accepts the commitment if the following checks pass:

– For every i ∈ [λ]:
1. If chi = 0, check if the received wi

0, s
i
0 are embedded in the circuit ̂foff

wi
0,si0

computed using randomness ri. Also check that the decommitment infor-
mation to σi is correct.

2. If chi = 1, run the evaluator for the garbled circuit by providing
with ̂fon

wi
0,si0

and ̂foff
wi

0,si0
as inputs and accept if the evaluation outputs

(1, wi
1, s

i
1, a) where wi

1 and si
1 are obtained from the decommitment to σ′

i

and σ∗
i .

Fig. 5. Black box equivocal commitment

Round Optimal Black-Box “Commit-and-Prove” 309

the computational hiding of the commitment and the zero-knowledge property
of the protocol proven in Lemma5.

Equivocal Commitments. We give a construction of equivocal bit commitments
in Fig. 5. This can be extended to an equivocal string commitments by commit-
ting to every bit using the protocol in Fig. 5. Our construction of equivocal bit
commitment is standard: commit to two bits m0 and m1, and prove in zero-
knowledge (via our round-optimal black-box commit-and-prove strategy) that
m0 = m1.

Lemma 6. The protocol in Fig. 5 is an equivocal commitment scheme.

Proof. The (computational) binding property of the scheme follows by the bind-
ing property of commit-and-prove ZK. The hiding of the equivocal commitment
scheme follows directly based on the computational hiding of Com (since the ZK
proofs are not even completed in the commit phase).

The equivocal property is the most interesting, we now describe how this
follows by simulating the zero-knowledge proof and generating a commitment to
m0 �= m1. That is, we consider an intermediate hybrid Hyb1 where the challenger
commits to m0 = m1 (just as in the real experiment), but starts simulating the
underlying proof. This is indistinguishable from the real experiment by simula-
tion security of the commit-and-prove protocol.

In the next hybrid, the challenger continues to simulate the ZK proof but
sets m0 �= m1. This remains indistinguishable by the computational hiding of
com. Note that the challenger can freely equivocate in this experiment. This
completes our proof of security.

A Robust Randomized Encodings

We reiterate (a simplified variant of) the construction of online-offline robust
randomized encodings from [21]. While they describe a complex protocol that
uses adaptive garbled circuits in order to provide improved efficiency, in this
paper we present a simplication of the scheme that does not rely on adaptive
garbling.

The randomized encoding of function f consists of two functions ̂foff , ̂fon

and makes use of two components.

– Let Eqcom denote a non-interactive equivocal commitment scheme for string
commitments, for which a commitment transcript can be opened in two
modes. In binding mode, the opening must remain statistically binding
against any malicious committer. In equivocal mode, a commitment tran-
script can be equivocated freely by a simulator.
Such a scheme can be constructed using any non-interactive statistically bind-
ing commitment scheme, where the (honest) commitment algorithm requires
committing to each bit of the string twice. In an equivocal mode, the commit-
ter is only required to reveal, for every bit in the string, one randomly chosen

310 D. Khurana et al.

commitment to the bit. While generating an opening in the equivocal mode,
a simulator can commit to two different values for every bit of the string and
use these to freely equivocate.

– A garbling scheme for circuits, with its algorithms denoted by Yao.Garble and
Yao.labels.

Using this scheme, the construction of online-offline randomized encodings
(which follows the ideas in [21]) is as follows:

– ̂foff(r) generates a commitment to a Yao’s garbled circuit for the func-
tion f , using scheme Eqcom. The output of this phase is Eqcom.Commit
(Yao.Garble(f ; r)).

– ̂fon(r) consists of the decommitment information (in equivocal mode) for
the garbled circuit, that is, this phase outputs y = Eqcom.EquivOpen(̂foff(r))
that was generated in the offline phase. Additionally, given an input x, ̂fon(r)
consists of the wire-labels for this input corresponding to Yao’s garbled circuit,
that is, it also outputs Yao.labels(x; r).

Recall that robustness requires that, for a correctly computed ̂foff(r) (that
is, when the commitment to Yao’s garbled circuit are generated honestly and the
Eqcom.Commit value is correctly generated), there should not exist any (mali-
ciously computed) string ̂fon such that (̂foff , ̂fon) generates an output outside the
range of f . This is guaranteed by the perfect correctness of Yao’s garbling scheme.
We refer the reader to [21] for more details and for schemes with improved
efficiency.

References

1. Afshar, A., Hu, Z., Mohassel, P., Rosulek, M.: How to efficiently evaluate RAM
programs with malicious security. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 702–729. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46800-5 27

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. In: 45th FOCS,
pp. 166–175. IEEE Computer Society Press, Rome, Italy, 17–19 October 2004
(2004)

3. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. In: 20th Annual IEEE Conference on Com-
putational Complexity (CCC 2005), 11–15 June 2005, San Jose, CA, USA, pp.
260–274 (2005), https://doi.org/10.1109/CCC.2005.9

4. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu,
T., Danezis, G., Gligor, V.D. (eds.) ACM CCS 2012, pp. 784–796. ACM Press,
Raleigh, NC, USA, 16–18 October 2012 (2012)

5. Bellare, M., Jakobsson, M., Yung, M.: Round-optimal zero-knowledge arguments
based on any one-way function. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 280–305. Springer, Heidelberg (1997). https://doi.org/10.1007/3-
540-69053-0 20

https://doi.org/10.1007/978-3-662-46800-5_27
https://doi.org/10.1007/978-3-662-46800-5_27
https://doi.org/10.1109/CCC.2005.9
https://doi.org/10.1007/3-540-69053-0_20
https://doi.org/10.1007/3-540-69053-0_20

Round Optimal Black-Box “Commit-and-Prove” 311

6. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503.
ACM Press, Montréal, Québec, Canada, 19–21 May 2002 (2002)

7. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, black-box construc-
tions of adaptively secure protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol.
5444, pp. 387–402. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00457-5 23

8. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999). https://doi.org/
10.1137/S0097539792230010

9. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
22nd ACM STOC, pp. 416–426. ACM Press, Baltimore, MD, USA, 14–16 May
1990 (1990)

10. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 16

11. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptol. 9(3), 167–190 (1996)

12. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems.
SIAM J. Comput. 25, 169–192 (1990)

13. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, New York City, 25–27 May 1987 (1987)

14. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304. ACM Press,
Providence, RI, USA, 6–8 May 1985 (1985)

15. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 695–704. ACM Press, San
Jose, CA, USA, 6–8 June 2011 (2011)

16. Goyal, V., Lee, C., Ostrovsky, R., Visconti, I.: Constructing non-malleable commit-
ments: a black-box approach. In: 53rd Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2012, New Brunswick, NJ, USA, 20–23 October 2012,
pp. 51–60. IEEE Computer Society (2012). https://doi.org/10.1109/FOCS.2012.
47

17. Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-box zero
knowledge. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 515–524. ACM Press,
New York, 31 May–3 Jun 2014 (2014)

18. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
Wichs, D., Mansour, Y. (eds.) Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21
June 2016, pp. 1128–1141. ACM (2016). https://doi.org/10.1145/2897518.2897657

19. Haitner, I.: Semi-honest to malicious oblivious transfer—the black-box way. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78524-8 23

20. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques and Con-
structions. Information Security and Cryptography, Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14303-8

https://doi.org/10.1007/978-3-642-00457-5_23
https://doi.org/10.1007/978-3-642-00457-5_23
https://doi.org/10.1137/S0097539792230010
https://doi.org/10.1137/S0097539792230010
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1109/FOCS.2012.47
https://doi.org/10.1109/FOCS.2012.47
https://doi.org/10.1145/2897518.2897657
https://doi.org/10.1007/978-3-540-78524-8_23
https://doi.org/10.1007/978-3-642-14303-8

312 D. Khurana et al.

21. Hazay, C., Venkitasubramaniam, M.: On the power of secure two-party compu-
tation. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
397–429. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 14

22. Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using sym-
metric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8043, pp. 18–35. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40084-1 2

23. Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.: Amortizing
garbled circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8617, pp. 458–475. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44381-1 26

24. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, 12–14 November 2000, Redondo
Beach, California, USA, pp. 294–304. IEEE Computer Society (2000). https://doi.
org/10.1109/SFCS.2000.892118

25. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: Kleinberg, J.M. (ed.) Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, Seattle, WA, USA, 21–23 May 2006,
pp. 99–108. ACM (2006). https://doi.org/10.1145/1132516.1132531

26. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 23

27. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) Proceedings of the
39th Annual ACM Symposium on Theory of Computing, San Diego, California,
USA, 11–13 June 2007, pp. 21–30. ACM (2007). https://doi.org/10.1145/1250790.
1250794

28. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
- efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

29. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8 21

30. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 1

31. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4 4

32. Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious
transfer. J. Cryptol. 25(4), 680–722 (2012)

33. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 22

https://doi.org/10.1007/978-3-662-53008-5_14
https://doi.org/10.1007/978-3-662-53008-5_14
https://doi.org/10.1007/978-3-642-40084-1_2
https://doi.org/10.1007/978-3-642-40084-1_2
https://doi.org/10.1007/978-3-662-44381-1_26
https://doi.org/10.1007/978-3-662-44381-1_26
https://doi.org/10.1109/SFCS.2000.892118
https://doi.org/10.1109/SFCS.2000.892118
https://doi.org/10.1145/1132516.1132531
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1007/978-3-642-20465-4_23
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/978-3-642-40084-1_1
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-642-00457-5_22

Round Optimal Black-Box “Commit-and-Prove” 313

34. Ostrovsky, R., Richelson, S., Scafuro, A.: Round-optimal black-box two-party
computation. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 339–358. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 17

35. Ostrovsky, R., Scafuro, A., Venkitasubramanian, M.: Resettably sound zero-
knowledge arguments from OWFs - the (semi) black-box way. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 345–374. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-46494-6 15

36. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 24

37. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarith-
mic round-complexity. In: 43rd FOCS, pp. 366–375. IEEE Computer Society Press,
Vancouver, British Columbia, Canada, 16–19 November 2002 (2002)

38. Rosen, A.: A note on constant-round zero-knowledge proofs for NP. In: Naor,
M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 191–202. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24638-1 11

39. Rosulek, M.: Must you know the code of f to securely compute f ? In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 87–104. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 7

40. shelat, A., Shen, C.: Two-output secure computation with malicious adversaries. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 386–405. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 22

41. Woodruff, D.P.: Revisiting the efficiency of malicious two-party computation. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 79–96. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-72540-4 5

42. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, Toronto, Ontario, Canada,
27–29 October 1986 (1986)

https://doi.org/10.1007/978-3-662-48000-7_17
https://doi.org/10.1007/978-3-662-48000-7_17
https://doi.org/10.1007/978-3-662-46494-6_15
https://doi.org/10.1007/978-3-642-00457-5_24
https://doi.org/10.1007/978-3-540-24638-1_11
https://doi.org/10.1007/978-3-642-32009-5_7
https://doi.org/10.1007/978-3-642-20465-4_22
https://doi.org/10.1007/978-3-540-72540-4_5

	Round Optimal Black-Box ``Commit-and-Prove''
	1 Introduction
	1.1 Commit-and-Prove Functionalities
	1.2 Our Results
	1.3 Related Works

	2 Our Techniques
	3 Preliminaries
	3.1 Commitment Schemes
	3.2 Commit-and-Prove Protocols
	3.3 Robust Offline/Online Randomized Encoding

	4 Three-Round Black-Box Commit-and-Prove WIPoK
	4.1 Construction
	4.2 Black-Box One-Binding Commitment to Two Strings

	5 Four-Round Black-Box Commit-and-Prove Zero-Knowledge
	5.1 Construction
	5.2 Proof of Security

	6 Extractable and Equivocal Commitments
	References

