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Abstract. We propose a novel service mining framework to personal-
ize services in an IoT based smart home. We describe a new technique
based on the concept of convenience to discover periodic composite IoT
services to suit the smart home occupant’s convenience needs. The key
features of convenience is the ability to model the spatio-temporal aspects
as occupants move in time and space within the smart home. We propose
a novel framework for the transient composition of spatio-temporal IoT
service. We design two strategies to prune non-promising compositions.
Specifically, a significance model is proposed to prune insignificant com-
posite IoT services. We describe a spatio-temporal proximity technique
to prune loosely correlated composite IoT services. A periodic compos-
ite IoT service model is proposed to model the regularity of composite
IoT services occurring at a certain location in a given time interval. The
experimental results on real datasets show the efficiency and effectiveness
of our proposed approach.

Keywords: IoT service · Periodic composite IoT services
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1 Introduction

The Internet is evolving from interconnecting computers to interconnecting
things [1]. The Internet of Things (IoT) paradigm enables physical devices to
connect and exchange information. IoT devices allow objects to be sensed or con-
trolled remotely through the Internet [1]. The key challenge is that IoT devices
are highly heterogeneous in terms of supporting infrastructure ranging from net-
working to programming abstraction [7]. Service-oriented Computing (SOC) is
a promising solution for abstracting things on the Internet as services by hiding
the complex and diverse supporting infrastructure [8]. This abstraction can shift
the focus from dealing with technical details to how services are to be used [6].
We refer services for Internet of Things as IoT services. Daily life things such as
a light is connected to the Internet and is represented as a light service.

An application domain for IoT is the smart home. A smart home can be
considered as any regular home which has been augmented with various types
of IoT services [15]. The purpose of a smart home is to make residents’ life more
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convenient and efficient [17]. Current research mainly focus on basic capabilities
such as communication, computing, sensing and so on, which are indeed funda-
mental research topics [3]. However, these basic capabilities are not enough for
IoT services. They should have more advanced intelligence i.e., the capability
of understanding the physical world. To empower such high-level intelligence
in smart homes, a key task is to discover periodic composition of IoT services
which can represent periodic human activities. Periodic composite IoT services
can be loosely defined as the composite IoT services’ repeating occurrence at cer-
tain locations with regular time intervals. For example, a resident may have the
habit of taking shower around 10 pm. It is of paramount importance to discover
periodic composite IoT services. Periodic composition of IoT services can pro-
vide an insightful and concise explanation of IoT service usage patterns. These
patterns can be used to design intelligent control of IoT services in smart homes
to reduce residents’ interactions with IoT services. Reducing those interactions
provides more convenience for residents. Such periodic composite IoT services
are also useful for human activity prediction. If an IoT service usage fails to
follow its regular periodic composition, it could be a signal of abnormality.

Fig. 1. Examples of periodic composite IoT services

It is challenging to provide convenience by discovering periodic composite
IoT services from IoT service usage history (i.e., IoT service event sequence).
For example, Fig. 1 shows the IoT service usage history (on the left). We can see
that it is difficult to extract periodic composite IoT services (on the right). We
identify three key challenges.

• The set of IoT services are not known, which may be used collectively to
fulfill a daily task. These IoT services are spatio-temporally correlated. We
refer such set of IoT services as composite IoT services.

• There are many opportunities of establishing spatio-temporal relationships
among IoT services, leading to an explosive number of possible composite
IoT services. Many of these composite IoT services may be insignificant and
loosely correlated. As a result, there is a need to prune insignificant and
loosely correlated composite IoT services.
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• The associated time interval and location for the periodic composite IoT
services are not known. The composite IoT service may not occur exactly at
the same time in a particular location. Therefore, there is a need to estimate
the associated time interval and location.

In this paper, we focus on providing convenience by discovering periodic compos-
ite IoT services. At the first stage, we focus on discovering composite IoT services.
Then, we employ significance and proximity strategies to prune insignificant
and loosely correlated composite IoT services. At the third stage, we estimate
associated time interval and location for the candidates generated in the second
stage. Lastly, we measure how much convenience can be obtained by applying
discovered periodic composite IoT services. The key contributions are as follows:
(1) A new IoT service model and a composite IoT service model are proposed
based on spatio-temporal features. (2) A significance model is proposed to prune
insignificant composite IoT services. We also propose a proximity model in terms
of spatial-proximity and temporal-proximity to filter out loosely correlated com-
posite IoT services, (3) A periodic composite IoT service model is proposed to
represent the regularity of composite IoT services occurring at a certain location
in a time interval, (4) A convenience model is proposed to measure the benefits
of applying periodic composite IoT services, and (5) A novel algorithm PCMiner
(i.e., Periodic Composite IoT service Miner) is designed to discover periodic
composite IoT services from event sequences.

The rest of the paper is organized as follows. Section 2 formally defines key
concepts. Section 3 details the proposed algorithm PCMiner. Section 4 shows the
experimental results. Section 5 surveys the related work. Section 6 conclude the
paper and highlights some future work.

Fig. 2. (a) An example of a composite IoT service; (b) Time interval relations

Motivating Scenario

We use the smart home as our motivating scenario. Sarah lives alone in a smart
home. We assume everything such as lights, TV, oven, window, and floors are
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connected to the Internet and represented as IoT services. This smart home aims
to improve Sarah’s life convenience. Intuitively, convenience can be interpreted
as a smart home system which is aware of a resident’s potential needs by under-
standing physical environment or situations and respond proactively at the right
time and in the right place. This reduces a resident’s interactions with IoT ser-
vices. Let us imagine an interesting convenient life scenario in Sarah’s home. In a
weekday morning, the clock wakes Sarah up at 8 am. Then the lamp is turned on
automatically. Sarah gets up and prepares stuff for taking a shower. Meanwhile,
the heater in the bathroom starts to heat. When Sarah steps into the bathroom,
it is already warm. While Sarah is taking shower, the music player is playing
her favorite music. At the same time, the kettle in the kitchen starts to work
and the coffee maker starts to make a cup of Mocha coffee. After Sarah finishes
showering and grooming, she goes to the kitchen to prepare for breakfast. When
she is enjoying the breakfast and coffee, the TV is turned on automatically and
displays her favorite sport news. After finishing the breakfast, Sarah goes to
work. The TV and all the lights are turned off automatically.

A fundamental task to provide convenience is to augment IoT services with
capabilities of understanding the periodic usage of composite IoT services. Let
us consider Sarah performs daily activities by interacting with IoT services.
These interactions are recorded as IoT service event sequences shown in Fig. 3.
For example, <E+E−, (60, 75)> denotes the music player is playing music from
time 60 to time 75 and E+ (resp.E−) denotes a turn on (resp. turn off) the music
player event. There exist spatio-temporal relationships among IoT services. For
example, in Day 1, the relationships between the music player service (i.e., E)
and the shower service (i.e., F ) shows that Sarah listens to music while taking a
shower. In this regard, a collection of spatio-temporally correlated IoT services
may represent an activity. We refer to such set of IoT services as composite IoT
services. An example of a composite IoT service is shown in Fig. 2(a).

There are many ways of establishing spatio-temporal relationships among
IoT services. According to Allen’s temporal logic in Fig. 2(b), there are 57 ways
of generating composite IoT services in Day 1 by a brute force approach (i.e.,
C2

6 + C3
6 + C4

6 + C5
6 + C6

6 = 57). Many of them may be insignificant and loosely
correlated. Therefore, we design the significance and proximity strategies to filter
out these insignificant and loosely correlated composite IoT services.

The proximate and significant composite IoT services can represent the res-
ident’s daily activities. The residents usually performs his/her daily activities
periodically in terms of time and location. For example, the resident usually
goes to bed during 11pm to 12pm and wakes up during 8am to 9am. We refer
such repeating composite IoT services at certain location with regular time inter-
vals as periodic composite IoT services. The periodic composite IoT services can
be serve as a knowledge basis for providing convenience. A convenience model
is introduced to quantify how much benefits of applying periodic composite IoT
services. In this paper, we focus on providing convenience by discovering periodic
composite IoT services.
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Fig. 3. An example of service event sequences

2 System Model

We first introduce the notion of IoT services and composite IoT services based on
spatio-temporal features [25]. Then, a significance model and a proximity model
are proposed to prune non-promising composite IoT services. We introduce the
notion of periodic composite IoT service to model the occurrence regularity of
composite IoT services. Lastly, we provide a convenience model to quantify how
much benefits of applying periodic composite IoT services.

2.1 IoT Service Model

Definition 1: IoT Service. An IoT service Si is a tuple Si = <si, Fi, IS,
FS>, where:

• si is a unique service identifier.
• Fi is a set of functions that are offered by Si.
• IS (Initial State) is a tuple <s+i , sti, sli>, where

– s+i is a symbol of IS.
– sti is a start-time of Si.
– sli = <xs, ys> is a start location of Si, where <xs, ys> is a GPS point.

• FS (Final State) is a tuple <s−
i , eti, eli>, where

– s−
i is a symbol of FS.

– eti is an end-time of Si.
– eli = <xe, ye> is an end location of Si, where <xe, ye> is a GPS point.
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We focus on the spatio-temporal features in the remainder of this
paper. Thus, the representation of an IoT service Si is simplified as
<(s+i , sti, sli), (s−

i , eti, eli)>. For example, a light service is represented as
<(light+, 7pm, (1, 2)), (light−, 9pm, (1, 2))> which is described as lighting from
7pm to 9pm in the bedroom where (1, 2) is the GPS point in the bedroom and
7pm (resp. 9pm) is the start time (resp. end time).

2.2 Composite IoT Service Model

One IoT service may not accomplish a daily activity. Multiple IoT services may
be composed to fulfill an activity [13]. These IoT services may be used collectively
based on time and location correlations to accomplish a certain daily activity. We
refer such spatio-temporally correlated IoT services as composite IoT services.

Definition 2: Composite IoT Service. A composite IoT service CS is a
collection of IoT services that occur frequently in a particular spatio-temporal
relationships. A composite IoT service is denoted by a tuple CS = <S, sup(S)>
where

• S = {<(s+1 , st1, sl1), (s−
1 , et1, el1)>, ..., <(s+n , stn, sln), (s−

n , etn, eln)>} repre-
sents n component IoT services where <(s+i , sti, sli), (s−

i , eti, eli)> is a com-
ponent IoT service Si as defined in Definition 1 and sti ≤ sti+1 and sti ≤ eti.
An example of a composite IoT service is shown in Fig. 2(a). By ordering
all elements s∗

i (* can be + or −) in S in a non-decreasing order based
on its associated time information sti(or eti), we can transform S into

the following representation S = <Seq, T, L> =

⎧
⎪⎨

⎪⎩

α1 ... αi ... α2n

t1 ... ti ... t2n

l1 ... li ... l2n

⎫
⎪⎬

⎪⎭
,

where Seq = {α1...αi...α2n} is a symbol sequence and αi = s∗
j (* can be

+ or −), T = {t1...ti...t2n} is the time information and ti ≤ ti+1, and
L = {l1...li...l2n} is the location information. For example, the composite
IoT service in Fig. 2(a) can be represented as⎧
⎪⎨

⎪⎩

s+2 s+1 s+3 s−
1 s−

3 s−
2

48 50 58 65 70 75
l2 l1 l3 l1 l3 l2

⎫
⎪⎬

⎪⎭
(i.e., l1 = (1, 2), l2 = (2, 4), l3 = (3, 5))

• sup(S) is the support for S. The support sup is the total number of occurrence
in a database S = <Seq, T, L> and S′ = <Seq′, T ′, L′> be two composite
IoT services. S is referred to as a sub-composite IoT service of S′ , denoted as
S � S′, if Seq = {α1...αi...α2n} is a subsequence of Seq′ = {α′

1...α
′
i...α

′
2m},

denoted as Seq � Seq′ with n ≤ m. Seq � Seq′ is satisfied if there exist
integers 1 ≤ k1 ≤ k2...kn ≤ k2m such that α1 ⊆ α′

k1
, α2 ⊆ α′

k2
, . . . , αn ⊆ α′

kn
.

Given an IoT service event sequence DB, the tuple (sid, S′) (i.e., sid is a
sequence ID and S′ is the composite IoT service) is said to contain a sub-
composite IoT service S if S � S′. The support sup of S in DB, denoted
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as sup(S) is the number of tuples containing S. sup(S) can be formalized as
follows.

sup(S) = |{(sid, S) ∈ DB|S � S′}| (1)

2.3 Significance and Proximity Model for Composite IoT Services

There are many possibilities of establishing spatio-temporal relationships among
IoT services, leading to an explosive generation of composite IoT services. Many
of the composite IoT services are insignificant and loosely correlated. Thus,
there is a need to filter out these non-promising composite IoT services. We
explore this problem from two aspects. On the one hand, those composite IoT
services that occur frequently are more likely to be significant that those occur
less frequently. Thus, we propose a significance model to quantify how much
significance these composite IoT services are from the statistic aspect. On the
other hand, the IoT services that occur proximately in terms of time and location
are more likely to be correlated. For example, from the spatial perspective, the
relationship between the TV and the light in the same dining room may reveal
a high correlation between these two IoT services. However, the co-occurrence
of using TV in the dining room and using the light in the bedroom may merely
be a coincidence. From the temporal perspective, using the TV and the light
in the evening reveal that there may exist a high correlation between the two
IoT services during that time. However, using the TV in the evening and using
the light in the morning may not have any correlation. In this regard, we use
proximity to characterizes correlation strength among component IoT services
in terms of spatial-proximity and temporal-proximity. By spatial-proximity, it
characterizes the location correlation strength among component IoT services.
By temporal-proximity, it characterizes the temporal correlation strength among
component IoT services. The proximity model is adapted from the approach for
measuring spatio-temporal interval data distance [11].

Definition 3: Significance. Significance is used for evaluating statistic impor-
tance of CS. Given a composite IoT service CS = <S, sup>, its significance is
formalized as:

significance(S) =

√
expect(S)

sup(S) − expect(S)
(2)

where expect(S) is the expected number of occurrence in a DB. To estimate
expect(S), we adapt the statics model proposed in [14] by considering IoT ser-
vices’ various usage frequency across different regions in smart homes [16]. In
practice, IoT services’ usage frequency may vary across different regions in smart
homes. For example, if a resident spends most of his/her time in their living room
during the day and only goes to their bedroom for sleeping, then IoT services in
the living room will be used more frequently than those in the bedroom. Thus,
composite IoT services for sleeping may be ignored when searching for frequent
composite IoT services.
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Given a composite IoT service CS whose symbol sequence is Seq =
{s∗

1...s
∗
i ...s

∗
m}, suppose that Seq is a possible outcome drawn from the sym-

bol set A = {a1...ai...an} with P (ai) following Bernoulli distribution such that∑n
i=1 P (ai) = 1. Given a DB and a region set R = {r1, ..., rk}, DBri

records
IoT service event sequences occurring at region ri. Num(ai)DBri

is the num-
ber of the event ai occurrence in database DBri

. P (ai) can be estimated by
Num(ai)DBri∑

aj∈A Num(aj)DBri

. Therefore, the occurrence probability P (S) and expect(S)

can be formalized as follows.

P (S) =
∏

∀s+
i ∈Seq

P (s∗
i ) (3)

expect(S) = P (S) · |DBri
| (4)

where |DBri
| is number of IoT service events in region ri. Note that we only

count P (s∗
i ) once because each s∗

i has two points (i.e., s+i and s−
i ).

Definition 4: Proximity. Given a composite IoT service CS = <S, sup>

where S is in the form S = <Seq, T, L> =

⎧
⎪⎨

⎪⎩

α1 ... αi ... α2n

t1 ... ti ... t2n

l1 ... li ... l2n

⎫
⎪⎬

⎪⎭
, its prox-

imity function is defined as follows.

U = w1 · spatial proximity + w2 · temporal proximity (5)

where wi(i = 1, 2) is a weight such that wi ∈ [0, 1] and w1 + w2 = 1. The
spatial proximity and temporal proximity are formalized as follows.

• Spatial proximity : The spatial proximity measures the average location prox-
imity of all composite IoT service instances. The spatial proximity for a
composite IoT service instance is first formalized in Eq. (6). Then the average
spatial proximity for the composite IoT service is formalized in Eq. (7).

Spa =
n∑

i=1

1
|xi − xi+1| + |yi − yi+1| (6)

spatial proximity =

∑sup
j=1 Spaj

sup
(7)

where n is the total number of component IoT services, li = <xi, yi> and
li+1 = <xi+1, yi+1> are two locations for two consecutive component IoT
services, and sup is the support for the composite IoT service. For example,
for the composite IoT service in Fig. 2(a), its spatial proximity score is Spa =

1
|l2−l1| + 1

|l1−l3| = 1
|2−1|+|4−2| + 1

|1−3|+|2−5| = 0.53. In this paper, we use
Manhattan distance proposed in [12] to measure the proximity because it is
computing efficient.
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• Temporal proximity : The temporal proximity measures the average temporal
proximity of all composite IoT service instances. We adapt the technique of
evaluating the distance between time-interval based data in [11]. For each
component IoT service instance Si = {(s+i , sti, sli), (s−

i , eti, eli)}, we utilize a
function fi with respect to t to map the temporal aspect of Si. fi is formalized
as follows.

fi(t) =

{
1, t ∈ [sti, eti]
0, otherwise

(8)

Then we have a set of functions {f1, f2, ...fn} corresponding to the composite
IoT service instance. The temporal proximity for the composite IoT service
instance is calculated by Eq. (9). The average temporal proximity is calculated
by Eq. (10).

Temp =

∫ t2n

t1

∑n
i=1 fi(t) dt

(t2n − t1) · n
(9)

temporal proximity =

∑sup
j=1 Tempj

sup
(10)

where t1 and t2n are the first and the last time information of CS,
respectively, and n is the number of component IoT services. For exam-
ple, the temporal proximity score of the composite IoT service {<stove,
[18:00, 19:00]>, <washing machine, [18:40, 19:20 ]>} can be calculated as
(18:40−18:00)+(19:00−18:40)·2+(19:20−19:00)

(19:20−18:00)·2 = 0.625. This composite IoT service
can be interpreted as when the resident is cooking, he/she is also doing laun-
dry. Another composite IoT service is {<stove, [18:00, 19:00]>, <fan, [18:00,
19:00]>} and its temporal proximity score is 1. Thus the latter composite IoT
service is considered to be more temporally proximate than the former.

2.4 Periodic Composite IoT Service Model

In this section, we introduce the novel notion of periodic composite IoT service
to model the regularity of repeating composite IoT services.

Definition 5: Periodic composite IoT service. A periodic composite IoT
service PC is defined as the repeating composite IoT services at certain locations
with regular time intervals. It is denoted by a tuple PC = <CS, T, L, P> where

• CS is a composite IoT service.
• T = <Ts, Te> is a representative time interval associated with CS, where

Ts and Te are the start time and end time of CS, respectively. Sup-
pose all start time and end time of CS in DB constitutes the set τ =
{<st1, et1>,<st2, et2>...<stm, etm>}. We need to find the representative
time interval <Ts, Te> which minimizes the dissimilarity between the instance
<sti, eti>. We define the dissimilarity dis between two time intervals.

dis = |Ts − sti| + |Te − eti| (11)
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Thus, the total dissimilarity between <Ts, Te> and τ can be defined by
Eq. (12).

Dis(T, τ) =
m∑

i=1

|Ts − sti| + |Te − eti| (12)

To minimize Dis(T, τ), Eq. (12) can be transformed into two known min-
imization problems, that is, find Ts and Te to minimize

∑m
i=1 |Ts − sti|

and
∑m

i=1 |Te − eti|, respectively. Ts is the median of the start time set
{st1, st2...stm} and Te is the median of the end time set {et1, et2...etm}. The
proof can be found in [19].

• L is the region location of CS such as the bedroom and the bathroom.
• P is the probability of CS occurring around time interval T at location L.

Suppose the time information of a CS instance is <stj , etj>. The CS is said
to occur around time interval T if their dissimilarity dis is no more than a
tolerance threshold ζ, that is, |Ts − stj | + |Te − etj | ≤ ζ. P can be formalized
as follows.

P =
Num

TNum
(13)

where Num is the number of CS occurrence around time interval T at location
L. TNum is the total number of CS occurrence in the database.

2.5 Convenience Model

The discovered periodic composite IoT services can be served as knowledge basis
for building an intelligent system to provide convenience for the residents. By
convenience, it is interpreted as the benefits of applying periodic composite IoT
services via reducing residents’ interactions with IoT services. The convenience
can be quantified as follows.

Definition 6: Convenience. Given an IoT service event sequence {<(a+
1 , st1,

sl1), (a−
1 , et1, el1)> . . . <(a+

n , stn, sln), (a−
n , stn, sln)>} during the time period

[st1, etn], suppose this sequence is initialized from a set of periodic composite
services { PC1, PC2 . . . PCm}. According to the representative time informa-
tion of the PCm, we can roughly estimate the next PCm+1 occurrence. The IoT
service events involved in PCm+1 is { b1, b2...bm }. Suppose the actual event
set occurs next is { c1, c2 . . . ck }. Therefore, the amount of convenience can be
quantified by Eq. (14).

convenience =
|{b1, b2...bm} ∩ {c1, c2...ck}|

|{c1, c2...ck}| (14)

where |{c1, c2...ck}| is the number of events and |{b1, b2...bm} ∩ {c1, c2...ck}| is
the number of correctly estimated events.
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3 Discovering Periodic Composite IoT Service Approach

We develop the algorithm PCMiner to efficiently discover periodic composite
IoT services from IoT service event sequences. Algorithm 1 shows the details of
PCMiner. The algorithm consists of four phases. The mining process starts with
dividing the search space. Then PCMiner searches all composite IoT services in a
determined space. Third, PCMiner applies the significance and proximity strate-
gies to remove non-promising composite IoT services. Finally, PCMiner collects
time information and location information for candidates generated in the third
phase. Based on these information, time period and location corresponding to
the candidates are estimated which leads to generating a set of periodic compos-
ite IoT services. For the sake of consistency with the terms from data analysis
techniques, we use event patterns to refer to composite IoT services occurring
in service event sequences. We use the running example in Fig. 3 to illustrate the
process of PCMiner shown in Fig. 4.

Fig. 4. The Process of PCMiner

Phase I: Dividing Search Space. The layout of a smart home consists of multiple
regions such as a bedroom and a kitchen. Each IoT service event is associated
with a region. For example, turn on the lamp event occurs in the bedroom. Given
a region set r = {r1, r2...rn}, we divide the database DB into multiple smaller
databases DBri

. Each DBri
records IoT service event sequences occurring in
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the region ri. In later phases, the discovering process performs on each sub-
databases. For the purpose of illustrating PCMiner, we assume all IoT service
event sequences in the running example shown in Fig. 3 are from the same region
and constitute a sub-database.

Phase II: Searching Event Patterns. PCMiner employs a divide-and-conquer,
pattern-growth principle from Prefixspan [23] as follows: event sequence
databases are recursively projected into a set of smaller projected databases based
on the current event patterns. Event patterns are then grown by searching the
smaller projected databases.

Definition 7: Projected database. Let p be an event pattern in a database
DB. The p-projected database, denoted as DB|p, is the collection of suffixes of
event sequences in DB with regard to the prefix p.

The searching process consists of three sub-phases. PCMiner first finds the
set of 1-length event patterns. Then, PCMiner constructs projected databases
for each 1-length event pattern generated in the phase one. Third, the event
patterns are grown by searching their corresponding projected databases. Each
of these sub-phases is detailed as follows.
1. Find the set of 1-length event patterns L1. Given a database as shown in
Fig. 3, PCMiner first scans the database to count the number of each event
pairs and discards those events whose support is less than the minimum support
threshold. If the minsup threshold is 2, all discovered 1-length event patterns
whose support is not less than 2 constitute the 1-length event pattern set L1.
For example, in Fig. 4, (A+A−): 3 denotes the event pattern and its associated
support count.
2. Construct projected databases for each 1-length event pattern. Let L1 =
{α1

1, α
1
2...α

1
n} be the set of 1-length event patterns. For each α1

i , a correspond-
ing projected database DB|α1

i
is created. DB|α1

i
is a collection of suffix event

sequences with regard to the prefix α1
i .

3. k-length event pattern α is grown to the (k+ 1)-length event pattern α′ through
searching the projected database DB|α corresponding to α (k ≥ 1). For a prefix
α, PCMiner scans its projected database DB|α once to find the set of local
frequent event pairs {e1, e2 . . . en} and discards infrequent ones. Note that since
event pairs are counted, these single events in the projected database will not be
counted again. Frequent event pairs ei are appended to the prefix α, generating
the new frequent event pattern α′ with the length increased by 1. Therefore, the
set of (k + 1)-length event patterns prefixed with α are generated.

We illustrate the process of finding event patterns prefixed with (A+A−). By
scanning the (A+A−) projected database DB|(A+A−), its local frequent event
pairs are (B+B−: 3), (C+C−: 3), (E+E−: 2), and (F+F−: 3). Thus, the set
of all 2-length event patterns L2 prefixed with (A+A−) are found, and they
are: (A+A−B+B−: 3), (A+A−C+C−: 3), (A+A−E+E−: 2), and (A+A−F+F−:
3). Recursively, all 2-length event patterns are used to find 3-length event
patterns by constructing and searching their projected databases. By project-
ing (A+A−B+B−), we find frequent event pairs from its projected database
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which are (C+C−: 3), (E+E−: 2), and (F+F−: 3). By appending these fre-
quent event pairs to the prefix (A+A−B+B−), we have 3-length event patterns
(A+A−B+C+C−B−: 3), (A+A−B+B−E+E−: 2), and (A+A−B+B−F+F−: 3).
Similarly, we find (A+A−C+C−E+E−: 2) and (A+A−C+C−F+F−: 3) prefixed
with (A+A−C+C−), and (A+A−E+F+F−E−: 2) prefixed with (A+A−E+E−).
We find L4 and L5 in the same approach.

Phase III: Calculate Significance and Proximity for Event Patterns. For each
event pattern generated in phase II, we collect the time information and
location information from the event sequences. Based on these informa-
tion, we calculate the statistic significance for each event pattern by Def-
inition 3. We also discard insignificant ones if its significance is less than
the significance threshold minsig. Given proximity threshold minpro, we
calculate average proximity for each event pattern by Definition 4 and fil-
ter out those patterns whose proximity are less than minpro. For the run-
ning example, if the weight for spatial proximity and temporal proximity
is set to be 0 and 1, respectively, the proximity of all 2-length event
patterns are Prox(A+A−B+B−) = 0.418, Prox(A+A−C+C−) = 0.358,
Prox(A+A−E+E−) = 0.098, Prox(A+A−F+F−) = 0.082, Prox(B+C+C−

B−) = 0.906, Prox(B+B−E+E−) = 0.224, Prox(B+B−F+F−) = 0.215, Prox
(C+C−E+E−) = 0.209, Prox(C+C−F+F−) = 0.199, Prox(E+F+F−E−) =
0.879. If the minpro is set to be 0.3, event patterns whose proximity is less than
0.3 are filtered out. The ultimate outcomes of our example are <E+F+F−E−>
and <A+A−B+C+C−B−> and their respective proximity are 0.879 and 0.494.

Phase IV: Generating Periodic Event Patterns. After performing phase III, we
obtain significant and proximate event patterns. Based on the time and loca-
tion information collected in phase III, the algorithm estimates the time period,
location, and probability for each event pattern by Definition 5. The outcomes
of this phase is a set of event patterns associated with time intervals, location,
and a probability (i.e., periodic composite IoT services).

4 Experimental Results

We systematically evaluate the approach proposed in this paper. The language
used is Java and the experiments are performed on a 1.6 GHz AMD processor
and 2 GB RAM under Windows 7. We evaluate the proposed approach using
three real datasets, namely, Data1, Data2, Data3. Specifically, Data1 and Data2
are from CASAS datasets, which are collected in smart home environment [18].
For location information, we refer to the layout of sensors attached on objects
for grouping objects into corresponding locations. Data1 and Data2 are in the
format of <date, time stamp, sensor ID, on/off> (e.g., <2008-02-27, 12:46:37,
M13, OFF >). Data3 is collected from a single apartment for two weeks [10].
The Data3 are in the format of <id, start time, end time, location> (e.g., <light,
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Algorithm 1. PCMiner algorithm
Input: A spatio-temporal database (DB), region set r = {r1, r2...rn}, support threshold (minsup),

significance threshold (minsig), proximity threshold (minpro), weight of the spatial proximity
(w1), and weight of the temporal proximity (w2).

Output: A set of event patterns, a set of periodic event patterns.

Procedure Divide Search Space (DB, r)
1: transform DB into |r| numbers of sub-databases based on r;
2: return DBri

;

Procedure Search Event Pattern (DBri
, minsup)

3: L1 = find 1-length pattern(DBri
, minsup );

4: Prefixspan(α, l, DBri
|α)//α is an event pattern, l is the length of α (l ≥ 1), DBri

|α is the
α-projected database.

5: Scan DBri
|α once, find the set of local frequent events {e1,e2...en};

6: for each frequent event ei do
7: α′ = α+ei; //append ei to α to form the new event pattern α′ .
8: for each α′ do
9: add α′ to the event pattern set patternset;
10: construct α′-projected database DBri

|α′ , and call Prefixspan (α′, l + 1, DBri
|α′ );

11: return patternset;

Procedure Compute Significance Proximity (patternset, minsig, minpro, w1, w2);
12: for each pattern α in patternset do
13: computeSignificance(α, minsig); // Calculate significance for each pattern by Definition 3 and

discard those patterns whose significance are less than minsig.
14: computeProximity ( α, w1, w2, minpro);// Calculate proximity for each pattern by Definition

4 and discard those patterns whose proximity are less than minpro.
15: return patternset′;

Procedure Generate Periodic Event Patterns (patternset′, DBri
);

16: for each pattern α in patternset′ do
17: find associated time and location information from DBri

;

18: estimate the time interval T , location L, and probability P for α by Definition 5;
19: return <α, T, L, P>;

7:00, 8:00, bedroom>). In addition, all datasets are annotated with correspond-
ing daily activities. There are 5 and 8 activities in Data1 and Data2, respec-
tively. For Data3, 23 activities are recorded and annotated. We conduct four
sets of experiments. The first set is to evaluate the performance and scalabil-
ity of PCMiner. The second set is to evaluate the effectiveness of the pruning
strategies (i.e., significance and proximity). The third set is to evaluate the appli-
cability of the proposed approach by showing the discovered periodic composite
IoT services from real datasets. The fourth set is to measure the convenience by
applying the discovered periodic composite IoT services.

The first set of experiments is conducted on a dataset which is a combination
of three datasets i.e., Data1, Data2, and Data3. We vary the support threshold
sup from 4% to 10%. Figure 5(a) shows the execution time of PCMiner decreases
by increasing the support threshold. Figure 5(b) illustrates that the number of
discovered event patterns decreases by increasing the support.

In the second set of experiments, we assess the effectiveness of significance
and proximity in pruning non-promising event patterns. Similar to our previ-
ous experiment, we use the combined dataset. We set the significance to be
0.01. We test the effectiveness of significance in reducing insignificant IoT ser-
vice event patterns while varying different support threshold. Figure 6(a) depicts
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Fig. 5. Performance and scalability of PCMiner

the number of discovered patterns and significant patterns at different support
threshold. The results show that the significance strategy performs effectively
in pruning insignificant event patterns, which is an expected results. For exam-
ple, the significance strategy can prune event patterns from 2954 to 1108 at the
5% support threshold. In addition, we test the effectiveness of proximity strat-
egy in filtering out loosely correlated event patterns. Since the GPS point of each
service in not available in the datasets, we set the weight of spatial proximity to
be 0 and the weight of temporal proximity to be 1. We set the proximity to be
0.39. Figure 6(b) illustrates the number of discovered event patterns and prox-
imate event patterns at different support threshold. The results show that the
proximity strategy is effective. For example, the proximity strategy can prune
loosely correlated event patterns from 2954 to 1705 at the 5% support threshold.
These are expected results because the significance and proximity strategies
enable PCMiner to filter out non-promising event patterns in each iteration and
the search scope is shrunk for the next iteration.

Fig. 6. Effectiveness of significance and proximity strategies



Convenience-Based Periodic Composition of IoT Services 675

We perform the third set of experiments on Data3 to evaluate the applicabil-
ity of our proposed approach. Table 1 shows the primary discovered composite
IoT services. Some of the composite IoT services are indeed difficult to be dis-
covered because they are less frequent. For example, the “lawn work” and “going
out for entertainment” compositions occur only once during two weeks. Next,
we check the discovered periodic compositions. Ideally, we want to associate one
time interval with a composition. However, we discover that some IoT service
compositions may associate multiple time intervals. For example, the “taking
medication” service composition occurs in the morning and in the evening. This
is a very practical issue. In this experiment, we group the discovered composition
instances using a preliminary technique, that is, two time intervals are grouped
together if they overlap. The tolerance threshold ζ is set to be 2 h. We can see
from Table 1 that the resident performs some activities regularly. For example,
one of the striking periodic activities is the “preparing breakfast”. There is 75%
chance that he/she will “prepare breakfast” during 5:16 and 6:51.

We conduct the fourth set of experiments on Data3 to measure how much
convenience can be obtained by applying the discovered results in Table 1. We
showcase some preliminary results. For example, based on the representative
time, the “preparing breakfast” is likely to be followed by “watching TV” and
“watching TV” is likely to be followed by “going out for shopping”. Given the
“preparing breakfast” activity on 4/22/2003, we can obtain 50% convenience.

Table 1. Primary discovered periodic composite IoT services from Data3

Periodic composite IoT servicesRepresentative time intervals, location, probability

Taking medication (1:54–2:00, in the kitchen, 0.5), (19:23–19:38, in the kitchen, 0.29)

Preparing breakfast (5:45–6:20, in the kitchen, 0.75)

Preparing lunch (11:15–12:05, in the kitchen, 0.64)

Preparing dinner (18:15–18:48, in the kitchen, 0.5)

Going out for shopping (7:52–8:05, in the hallway, 0.67)

Watching TV (7:00–7:23, in the living room, 0.27), (14:27–15:22, in the living room, 0.33)

5 Related Work

A Web service mining framework is proposed to discover interesting composite
services from available services [4]. This framework models Web services using
ontologies and an efficient algorithm is proposed to discover composite services.
In [24], a graphic model is proposed to represent the dependency among ser-
vices. A general service mining framework is proposed based on an ontology
service model [5]. Service relationships are established via ontology attributes.
A Correlation Degree method is presented to evaluate the correlation strength
among services. Most of existing work consider service relationships based on
their input/output correlations, pre/post condition correlations etc. However,
in the context of IoT, spatio-temporal relationships among IoT services are
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implicit and subtle. In [12], an efficient algorithm CoPMiner is developed to
mine the temporal relationships among appliances in the smart home environ-
ment. The key idea of CoPMiner is to transform interval-based event sequences
into endpoint based sequences. It also reformulates the problem of discovering
temporal patterns among appliances as discovering frequent patterns from end-
point sequences. Location information regarding appliances is utilized to filter
out insignificant temporal patterns. However, temporal distance is not consid-
ered in [12], which may result in undesirable frequent temporal patterns. In [9],
an efficient algorithm IEMiner is proposed to discover temporal patterns for
classification. In [2], a novel graph-based approach is proposed to capture the
subtle relationships among things based on things’ usage time, location, and
users’ social network information. The Random Walk with Restart method is
applied to discover things relationships.

There are many research on human activity discovery. In [16], an efficient
algorithm COM is proposed to discover human activity pattens from sensor
event data. These patterns are used to build a HMM model for recognizing
human activities. In [20], a probabilistic and Markov chain approach is pro-
posed to discover complex human activity patterns. These patterns associated
with context information are used to recognize activities. A general framework
is proposed to address the problem of complex activity prediction by mining
temporal sequence patterns from video [21]. A probabilistic suffix tree model is
introduced to model activities. There have been little research into the human
activity recognition which considers the periodic feature. For example, [22] dis-
covers periodic activities from trajectory data such as staying in the office during
daytime and staying at home in the evening.

6 Conclusion and Future Work

We addressed the problem of discovering periodic composite IoT services to
provide personalized convenience to residents. An IoT service model and a com-
posite IoT service model are proposed in terms of spatio-temporal aspects. The
experimental results show our proposed significance and proximity strategies are
effective in pruning non-promising composite IoT services. The periodic compos-
ite IoT service model is introduced and is applied to provide convenience. We
introduce a new algorithm PCMiner to discover periodic composite IoT services.
Future work includes improving the performance of PCMiner. Furthermore, we
will apply the discovered periodic composite IoT services to build an intelligent
system for providing convenience.
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