
Constructing and Evaluating an Evolving
Web-API Network for Service Discovery

Olayinka Adeleye1(B), Jian Yu1, Sira Yongchareon1, and Yanbo Han2

1 Department of Computer Science, Auckland University of Technology,
Auckland 1010, New Zealand

{olayinka.adeleye,jian.yu,sira.yongchareon}@aut.ac.nz
2 Beijing Key Laboratory for Large-scale Stream Data Processing,

North China University of Technology, Beijing, China
yhan@ncut.edu.cn

Abstract. Web-APIs enable cross-organizational functionality integra-
tion over the Web and thus are the foundation of modern distributed
service-based systems. However, despite the rapid increase in the num-
ber of Web-APIs available on the Internet, the discovery and uptake
of appropriate Web-APIs by businesses on a Web scale is still a great
challenge. One of the main reasons is that Web-APIs registered on direc-
tories such as ProgrammableWeb.com are in general isolated, as they
are registered by diverse providers independently and progressively. In
this paper, we present a method for analyzing the Web-API ecosystem
and propose a complex-network-based approach for building an evolving
social network for Web APIs. We conduct our analysis in two phases:
First, from the complex network perspective, we investigate mashups and
Web-APIs interactions and analyze the Web-API popularity distribution
using the popular ProgrammbleWeb dataset. Second, we quantitatively
measure the Preferential Attachment mechanism which is a key driver of
an evolving network. Based on our analysis, we propose an approach to
construct an evolving Web-API social network based on the theoretical
procedure of the Barabási-Albert complex network model. Results pre-
sented in this work will not only provide insight into the topology of the
Web-API ecosystems but also serve as a practical guide for designing an
evolving-network-based solution for service discovery.

Keywords: Web APIs · Complex network analysis
Preferential attachment · Evolving networks · ProgrammableWeb

1 Introduction

The emergence of Web 2.0 coupled with the rapid development in Web service
technology has led to a continual increase in the number of Web services and

This work was supported in part by the National Key Technology R&D Program
of China (2017YFC0804406) and the National Natural Science Foundation of China
(61672042).

c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 603–617, 2018.
https://doi.org/10.1007/978-3-030-03596-9_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_44&domain=pdf
https://www.programmableweb.com/
https://doi.org/10.1007/978-3-030-03596-9_44


604 O. Adeleye et al.

their compositions. Nowadays many real-world applications such as online social
media, online shopping, weather forecast, and disaster prevention [14,15] invoke
web services via accessible endpoints to implement their functionalities. Mod-
ern web services with features such as RESTful architecture, JSON data, and/or
JavaScript interface are usually called Web-APIs1 in order to distinguish from
the traditional SOAP-based web services; and multiple Web-APIs can be quickly
composed into a webpage or application called mashup. This shortened software
development life cycle leads to the formation of the so-called Web service ecosys-
tem [5,16], where new services emerge, some old ones perish, and service vendors
and developers collaborate to develop innovative software solutions. A typical
representation of an evolving service ecosystem is ProgrammableWeb2, which
is currently the largest online Web-API directory, with over 19,000 Web-APIs
belonging to more than 400 predefined categories, and over 6,000 mashups as
at May 2018. It also provides information such as date of introduction, profile,
and developers. The perishing of some existing Web-APIs and the emergence of
new ones coupled with their dynamic collaborations drive the evolution of this
service ecosystem over time [12].

For most service ecosystems, one of the main issues is the isolation of Web-
APIs, which limits their discoverability. For instance, in ProgrammableWeb,
Web-APIs have categories, and several Web-APIs can be involved in one mashup,
but there is no direct connection or relationship between two Web-APIs. The
reason behind this is that Web-APIs are usually registered by diverse service
providers independently over time, and the connections or social relationships
between Web-APIs are never directly created.

In this paper, we propose an evolving-complex-network-based approach to
constructing a social network for Web-APIs based on their popularity in the
service ecosystem. To achieve this, we first study the underlying topology of
ProgrammableWeb and analyze the popularity distribution of Web-APIs in the
ecosystem, using the dataset in a period of thirteen years (2005–2017). Then, we
measure the Preferential Attachment (PA) of the ecosystem, which is the key
mechanism that governs the evolution of many existing real world networks [11].
And finally, we incorporate our findings into the construction of an evolving
social network of Web-APIs using the well-established Barabási-Albert model [3]
in complex networks.

The main contribution of this paper includes:

1. We analyzed the popularity distribution of Web-APIs on ProgrammbleWeb
based on mashup-API relationships and measured the PA mechanism which
defines the topology of the ecosystem. To the best of our knowledge, this is
the first time that PA is measured for a service ecosystem.

2. We designed and implemented an evolving social network model for Pro-
grammableWeb Web-APIs which facilitates service discovery and serves as a

1 https://en.wikipedia.org/wiki/Web API. Note that in this paper, we coin “Web” and
“APIs” together as one term “Web-APIs” to emphasize the atomicity of this term.

2 http://www.programmableweb.com.

https://en.wikipedia.org/wiki/Web_API
http://www.programmableweb.com


Constructing and Evaluating Evolving Web-API Network 605

stepping stone for developing advanced evolving network models for service
ecosystems.

The rest of this paper is organized as follows. Section 2 is the background and
related work; Sect. 3 presents the analysis of the ProgrammableWeb ecosystem
and also the analysis results including popularity distribution and PA; In Sect. 4,
we present an approach to the construction of an Web-API evolving network and
discuss its application in service discovery; Finally, Sect. 5 is the conclusion and
future work.

2 Background and Related Work

In this section, we discuss the background of this work and the related work in
complex network analysis, evolving Web service ecosystem analysis, and existing
service social network construction approaches.

Over the years, complex networks have been extensively studied and sev-
eral significant discoveries have been made including the well-acclaimed small-
world networks [24] and scale-free networks [4]. Various mechanisms that gov-
erns a network’s topology and evolution have been investigated and found
ubiquitous among many real world networks. In particular, preferential attach-
ment and growth have garnered special attention in evolving complex networks
research [3,21], not only because they are fundamental to explaining the topo-
logical features observed in many real world networks but also because they
have been empirically validated to be the drivers of many evolving networks.
For instance, the topology of the Internet, the World Wide Web and the citation
network have been investigated using evolving network models and shown to
be fundamentally governed by the PA and growth mechanisms [1–3]. In terms
of evolving network models, the PA and growth driven Barabási-Albert (BA)
model [3] is the foundation of other models such as the fitness-based Bianconi-
Barabási model [6].

There have been a number of studies investigating the evolutionary proper-
ties of service ecosystems and the complementary features of services and their
compositions particularly on ProgrammableWeb. Weiss et al. [25], examined the
structure of the mashup ecosystem using the ProgrammableWeb dataset. The
authors analyzed the relationships of mashups and Web-APIs using a bipartite
graph, and found that while the growth rate of new Web-APIs and mashups
is linear, the distribution of mashups over APIs follows a power-law. Huang
et al. [12] used a network analysis approach to study both the usage patterns
and the evolution traces of Web-APIs in the ProgrammableWeb. The authors
conducted their analysis based on two derived networks: the Composition-Service
network, which is the same bipartite graph of Mashup-APIs used in [25] and the
Service-Service network, which is a network of services that are used together
in the same mashups. The authors found that the service popularity distribu-
tion is highly concentrated, which is consistent with the findings in [25], and
they also found that the reuse rate of services is low and the advanced use of
many services together is still rare, which provides evidence to our motivation



606 O. Adeleye et al.

of building a social network for services/Web-APIs. To better present the Pro-
grammableWeb ecosystem, Lyu et al. [16] used a three-level hierarchical view to
visualize it based on the Mashup-API graph, the tag graph, and domain graph.
Wang et al. [23] also explored ProgrammableWeb data patterns from the user
perspective with a User-API network.

As for the research on constructing service social networks, Fallatah et al. [9]
proposed to add service-service, user-user, and user-service links to build a ser-
vice social network. Based on the network, metrics such as user popularity, ser-
vice market share, and user satisfaction can be measured. Simulation was done
but how to build such network from real-world data was not discussed. Semantic
information mined from service descriptions is a good reference for adding links
among services. Wang et al. [22] used domain knowledge to calculate the degree
of semantic match between any two services and then a threshold can be set to
determine the number of links in the network. Similarly, Feng et al. [10] con-
structed three types of service networks based on the subsume, sequential-total
(the output of service A covers the input of service B), and sequential-part (the
output of service A partially covers the input of service B) semantic relations.
Clearly such networks are static without considering any dynamical properties.
From the evolving network perspective, Chen et al. [7] built a service social
network partially based on the Bianconi-Barabási (BB) model. One limitation
of their work is that the fitness parameter of an existing service node is calcu-
lated dynamically on the arrival of a new service, while the BB model requires
a quenched/fixed fitness value for a node, which makes the closed-form solution
of the BB model not applicable to this network.

3 Analysis and Results

In this section, we investigate the topology and dynamical mechanism of the Pro-
grammbleWeb registry. For the topology, we look at the popularity, or degree
distribution of the Web-APIs based on the mashup-API bipartite graph. We
first discuss data acquisition and processing, then we analyze the data in three
steps: visualization, model fitting, and comparison with existing classical network
models such the Poisson, exponential and log-normal distributions. For dynam-
ical/evolving mechanisms, we investigate and measure preferential attachment.

3.1 Data Acquisition and Processing

We collected the time-stamped raw data, which contains information regard-
ing Web-APIs and mashups from June 2005 to November 2017 in Pro-
grammableWeb. Since the ProgrammableWeb backend database is not publicly
accessible, only its web pages can be employed for collecting the data. We used
data scraping to crawl data from ProgrammableWeb web pages. The web pages
are separated into two categories: Web-APIs and mashups, where every Web-API
has properties including name, description, publication date, and category; sim-
ilarly, each mashup also contains the above metadata plus the list of Web-APIs



Constructing and Evaluating Evolving Web-API Network 607

Table 1. Summarize features of the programmableweb dataset

Number of Web APIs acquired 16,138

Number of Mashups acquired 5,883

Average number of Web APIs invoked by Mashups 2.1

Number of Mashups with less than 2 services 241

Number of Web APIs invoked in at least one Mashup 1,525

Table 2. Top 5 most consumed Web-APIs

Web APIs Number of links

GoogleMap 2,072

Twitter 663

Youtube 557

Flickr 484

Facebook 377

invoked within it. Table 1 gives an overview of the ProgrammableWeb dataset.
After pre-processing and removing redundant mashup points, we have 16,138
Web APIs and 5,883 Mashups for our analysis.

3.2 Affiliation Network of Web-APIs and Mashups

To extract the popularity distribution of Web-APIs in ProgrammableWeb, we
model the ecosystem in the form of an affiliation network that depicts the invo-
cation relation between mashups and Web-APIs. As shown in Fig. 1, technically,
the network is a bipartite graph, where the edges indicate which Web-APIs are
invoked by which mashups: G = (M �A,E) where M is the set of Mashups and
A is the set of Web-APIs, and for any edge (m,a) ∈ E,m ∈ M and a ∈ A.

Although there are over 16,000 Web-APIs in ProgrammableWeb, only 1,525
of them appear in one or more mashups. We found that the Google Map Web-API
takes a center stage in the affiliation network, attracting 2,072 edges/mashup-
consumption, which account for about 35 percent of the total mashups in the
ecosystem. As shown in Table 2, Popular social media Web-APIs such as Twit-
ter, Youtube, Flickr, and Facebook also appear 663, 557, 484, and 377 times
respectively in the network. We also found that less than 7% of the Web-APIs
involved in the network are consumed more than 100 times, and over 47% of the
Web-APIs are used less than 4 times.

The complete affiliation network is visualized using the Force-Atlas 2 layout
in Gephi3 as shown in Fig. 2. The hubs as listed in Table 2 are clearly visible in
the figure as disks with Google-Maps API being the largest one sitting at the
bottom.

3 https://gephi.org/.

https://gephi.org/


608 O. Adeleye et al.

Fig. 1. Illustration of the Mashup-
API bipartite graph

Fig. 2. Visualization of the Mashup-API affili-
ation network

3.3 Web-API Nodes Degree Distribution

An integral part of analyzing the topology of a network is the plotting and fitting
of its degree distribution p(k). Networks with long-tailed degree distribution
that follows a power-law are known to exhibit the scale-free topology. Most
real networks such as the internet, WWW and the citation network are scale-
free networks [3]. On the other hand, networks with exponentially-decaying-tail
degree distribution are collectively referred to as exponential Networks.

Plotting. To gain insight into the popularity of Web-APIs, we plot the degree
distribution of the 1,525 Web-APIs based on their degrees in the affiliation net-
work. As shown in Fig. 3, both the PDF (Probability Density Function) in log-log
scale, linear binning, and the CCDF (Complementary Cumulative Distribution
Function) in log-log scale are plotted.

In Fig. 3a, the small degree region demonstrates a log-linear relation between
p(k) and k (log p(k) ∼ −γ log k, or p(k) ∼ k−γ), which is a typical feature of the
scale-free network; while a plateau is formed at the large k region as typically
we have only one copy of each large-degree node and this plateau affects our
ability to estimate the degree exponent γ [3]. One way to extract information
from the tail of the distribution is to use the CCDF (Fig. 3b), which enhances
the statistical significance of the large-degree region, and if p(k) follows the
power-law, then the CCDF is also power-law: P (k) ∼ k−γ+1.

Fitting. In order to determine the best fit for the Web-API degree dataset, we
first fit the data to four classical models including Power-law, Exponential, Log-
normal, and Poisson. Figure 4 shows the result of the fitting when kmin = 4. We
can see that both the power-law and the log-normal offer a good fit to the data,
while the exponential and the Poisson fit poorly to the data.



Constructing and Evaluating Evolving Web-API Network 609

Fig. 3. Degree distribution plot of the Web-APIs nodes in the affiliation network 3a
shows the Log-log plot (linear-binning) of the Web-APIs degree distribution 3b shows
the CCDF plot of the degree distribution in log-log scale.

Table 3. Plausibility of fitting Power-law, Log-normal, Exponential, and Poisson mod-
els to the Web-API degree data

Parameter Power-Law Exponential Log-normal Poisson

γ 2.200837 - - -

p-value 0.783 0.000 0.667 0.000

To quantitatively measure the plausibility of each distribution, next we con-
ducted a goodness-of-fit test based on the Kolmogorov-Smirnov (KS) distance
which measures the difference between the model and the empirical data, and
a p-value ∈ [0, 1] is calculated to measure the model plausibility. The closer p
is to 1, the more likely that the difference between the model and the empirical
data is attributed to statistical fluctuations alone. If p is very small, the model
is not a good fit to the empirical data [3].

Table 3 shows the resultant p-values for each distribution. Clearly, power-law
is the most plausible fit (p-value = 0.783) and next to it is log-normal (0.667);
for both exponential and Poisson, the p-value is zero.

Exponent Estimating. In the above, we have justified that the power-law
model provides the best fit to our data, next we use MLE (Maximum Likelihood
Estimation) to estimate the scaling parameter/degree exponent γ [17]:

γ̂ = 1 + n

[
n∑

i=1

ln
ki

kmin

]−1

(1)

where ki, i = 1 . . . n are the observed values of k such that ki ≥ kmin, kmin

represents the minimum degree of node in the network.



610 O. Adeleye et al.

Fig. 4. Fitting Power-law (PL), Log-normal, Exponential, and Poisson models to the
Web-API degree data

The assumption for estimating the parameter is that γ > 1, since the case of
γ ≤ 1 does not exist in real world [8].

When kmin = 1, the appropriate estimator for γ was given as:

ζ ′(γ̂)
ζ(γ̂)

= − 1
n

n∑
i=1

ln ki (2)

where ζ(γ̂) is the Riemann Zeta function.
Otherwise, when kmin > 1, the appropriate estimator for γ is:

ζ ′(γ̂, kmin)
ζ(γ̂, kmin)

= − 1
n

n∑
i=1

ln ki (3)

Using the method described in [8], which is also based on the KS distance,
we can find the optimal kmin with respect to each data point and select the
value that gives the minimal KS distance between the CCDF of our data and
the fitted model. The resultant γ value for the CCDF is around 2.2 (or the γ
value for the PDF is 3.2), which is close to that of the Internet (γ = 3.42) [3].

3.4 Measuring Preferential Attachment

Real-world networks reach their current size by adding new nodes to the network
progressively, and a common phenomenon occurs, where new nodes tend to con-
nect to existing nodes with high degree. This phenomenon is called Preferential
Attachment (PA) [4]. If the probability that a newly arrive node connects to an
existing node i is proportional to the degree of that node ki, or

Π(ki) =
ki∑

j

kj
(4)



Constructing and Evaluating Evolving Web-API Network 611

Table 4. Preferential attachment measurement

Node span α (Newman) α (PAFit)

10 0.97 ± 0.05 1.09 ± 0.06

20 0.96 ± 0.05 1.08 ± 0.06

50 0.95 ± 0.07 1.06 ± 0.07

100 0.94 ± 0.06 1.05 ± 0.08

Monthly 0.96 ± 0.09 1.03 ± 0.09

then we call it linear-PA. The combination of growth and linear-PA play a critical
role in shaping a network’s topology and are responsible for the emergence of
the scale-free property [3].

We can use the exponent α to classify different types of PA

Π(k) ∼ kα (5)

if α is 1, then PA is linear; if α is less than 1, then PA is sub-linear; otherwise
PA is super-linear [3].

We aim to detect the presence of PA in the Web-API node set of the affiliation
network of ProgammableWeb and also measure its α value. To do so, we can
examine the degree increase of a node i between a fixed span Δt: Δki = ki(t +
Δt) − ki(t). For example, if Δt = 5, ki(t + Δt) is the degree of node i after five
new nodes joined the affiliation network. The relative change Δki/Δt should
follow

Δki

Δt
∼ Π(ki) (6)

Actually, to reduce the noise we can measure the cumulative preferential attach-
ment:

π(k) =
k∑

ki=0

Π(ki) (7)

We employ both the PAFit method [20] and Newmans’s method [18] to esti-
mate PA. As we can see in Table 4, Node Spans 10, 20, 50, 100, and monthly all
output consistent results of α ≈ 1, which demonstrates the existence of linear-
PA, or scale-free property, of Web-APIs in the ProgrammableWeb affiliation
network.

4 Constructing an Evolving Web-API Network

In this section, we propose a complex-network-based approach to constructing
an evolving social network for Web-APIs. We first discuss the limitation of the
projection-based approach that projects the affiliation network to an one-mode
API-API network; then, we present the evolving network model, and the strategy
and procedure we use to construct the social network for ProgrammableWeb
APIs; then we discuss the topological property of the constructed network; and
finally we discuss an application of the constructed network in service discovery.



612 O. Adeleye et al.

4.1 Limitation of the Projection-Based Approach

In order to build a social network for service ecosystems such as Pro-
grammableWeb, a simple approach is directly applying one-mode projection to
mashup-API affiliation network to derive an API-API network. This approach
has been used in [13,16]. Figure 5 illustrates how to project an affiliation network
onto an one-mode API-API network.

The limitation of this approach is apparent: Only Web-APIs used in mashups
(suppose every mashup contains at least two Web-APIs) will appear on the pro-
jected network. For example, the ProgrammableWeb affiliation network contains
only 1,525 Web-APIs, which is less than 10% of the total 16,138 Web-APIs on
the registry. Furthermore, the popularity/number-of-links of a Web-API node
on the projected network is discounted as there are mashups that use only one
Web-API, and such links are not counted in the projected network (for example
the link between M5 and A6 in Fig. 5).

4.2 Network Model and Construction Strategy

As discussed in Sect. 3.4, the combination of growth and PA are the two generic
mechanisms that drive many real-world networks, and we have validated the
presence of both growth and PA in the ProgrammableWeb affiliation network.
Based on that, we aim to build a growing/evolving network of Web-APIs that
preserve both the topology properties of affiliation network and the popularity
information of the Web-API nodes, while including all the Web-APIs in the
ecosystems.

We base our model on the Barabási-Albert evolving network model [3]. For
the growth aspect, it involves continuous addition of new nodes (Web-APIs) into
the network, therefore increasing the number of nodes in the network through-
out its life span. To do so, first, we initialize the network, starting with fully
connected m0 number of nodes. At every time step, we add a new node with m
links.

To incorporate PA, we dynamically estimate the probability that a link of
the new node connects to an existing node i depends on its degree ki using the
linear-PA equation (Eq. 4) described in Subsect. 3.4.

Figure 6 illustrate the network’s growth and PA mechanism (assuming m0 =
4,m = 1): at time 0, four fully connected nodes form the initial network; at time
1, Node 5 joins the network; based on linear-PA, as Node 1–4 each has the same
degree, each of them has the same probability to attract Node 5 to connect to it,
which is 3/12, or 1/4; at time 2, based on linear-PA, the probabilities for node
1–5 to attract the new node are [3/K, 3/K, 4/K, 3/K, 1/K] where K = 13 is
the total degree of the network and the numerator is the degree of each existing
node.

Based on the growth and the linear-PA, older nodes always have better chance
to attract links than newer nodes as they have better degree/popularity. Specific
to ProgrammableWeb, to preserve the popularity information in the affiliation
network, we need to define a strategy on when a Web-API joins the growing



Constructing and Evaluating Evolving Web-API Network 613

Fig. 5. Affiliation network projection Fig. 6. Illustration of Web-API net-
work growth procedure

network; i.e., we need to sort the full list of Web-APIs and put them onto the
network one-by-one (or step-by-step) based on their position in the sorted list.
A simple strategy is stated below:

– First, We sort the Web-API nodes based on their degree (or popularity) in
the affiliation network in a descending order so that higher-degree nodes are
in the front to produce L1;

– Then, for Web-APIs that do not appear in the affiliation network we sort
them based on their date of publication/birth in an ascending order so that
older nodes are in the front to produce L2;
(it is worth noting that date-of-birth is also used in [19] as a measure of
popularity.)

– Finally, we just append L2 in the end of L1 and put the node into the network
one-by-one based on their order in the list.

The complete network construction procedure is described below:

Procedure
Input Parameters (N : number of nodes, m0: number of initial nodes, m: number
of links added at each time step)

1. Creating node list: Sort Web-APIs nodes based on popularity and date-of-
birth;

2. Initializing network: Start with a fully connected m0 number of most popular
nodes;

3. Growth: At each time step, a new node with m number of links is added
and connected to m number of already existing nodes in the network, where
m ≤ m0;



614 O. Adeleye et al.

Fig. 7. Overview of the Web-API
network

Fig. 8. Degree distribution of the Web-API
Network; from bottom to top: m = 1 (red),
m = 3 (grey), m = 5 (green) and m = 7 (yel-
low). (Color figure online)

4. Preferential attachment: With probability Π(ki), the new node connects to
an already existing node i with degree (ki). Probability Π(ki) is estimated
dynamically based on Eq. (5).

5. After all N nodes join the network, we obtain the popularity-based, evolving
Web-API network.

An overview of the constructed ProgrammableWeb API network containing
all its Web-APIs is shown in Fig. 7, with popular nodes labelled. Next, we analyze
the topological property of this network.

4.3 Topological Properties of the Web-API Network

In this subsection, we discuss three main topological property of the constructed
Web-API network in terms of degree distribution, network diameter, and clus-
tering coefficient.

Degree Distribution. Figure 8 shows the degree distribution (log-binning)
with N = 16138, m0 = 4, and m = 1(red, γ = 2.782), m = 3 (grey, γ = 2.823),
m = 5 (green, γ = 3.05) and m = 7 (yellow, γ = 3.002).

Theoretically, we can use the continuum theory [3] to estimate the degree
exponent of the degree distribution

p(k) ≈ 2m1/βk−γ (8)

where β = 1/2 is the dynamical exponent and γ = 1/β + 1 = 3.



Constructing and Evaluating Evolving Web-API Network 615

So the constructed Web-API network is a scale-free network with degree
exponent γ ≈ 3.

Network Diameter. Network diameter d is the maximum of the shortest dis-
tances between any two nodes. If a network’s diameter is proportional to lnN ,
then it is a small-world network [24]. Theoretically, the expected value of the
diameter of the Web-API network is [3]:

〈
d
〉 ∼ ln N

ln lnN
(9)

If we plug in N = 16138, we get
〈
d
〉 ≈ 4.27. For m = 5 and m = 7, the actual

diameters are 6 and 5 respectively, which are consistent with the expected value.
As d grows slower than lnN , the Web-API network is ultra-small.

Clustering Coefficient. A clustering coefficient measures the density of links
in a node’s immediate neighborhood, and the average clustering coefficient of
a network can be obtained by averaging over all its nodes. Theoretically, the
average clustering coefficient of the Web-API network is [3]:

〈
C

〉 ∼
(
InN

)2
N

(10)

If we plug in N = 16138, we get
〈
C

〉 ≈ 0.006. For m = 5 and m = 7, the
actual clustering coefficient are 0.005 and 0.007 respectively, which are consistent
with the theoretical value.

4.4 Applying Web-API Network in Service Discovery

In this section, we discuss one application of the Web-API network in service
discovery. Consider a new service consumer, who wants to leverage different Web-
APIs from different domains (say Dictionary, Translation and Social) to create
a mashup that allows users to find the meaning of a word in English, translate
to French and post it on social media. In order to navigate through the Web-
API network and discover require Web-APIs, a link-as-you-go approach [7] can
be used. As illustrated in Fig. 9, the user can zoom-in to the network, starting
from Twitter API and then navigate through by following social links to discover
Oxford dictionary (OX) and then Google Translate (GT) API. Such user activity
pattern is very similar to surfing the WWW; just in our case the user is surfing
the service network.



616 O. Adeleye et al.

Fig. 9. Web APIs Discovery with link-as-you-go approach.

5 Conclusion and Future Work

In this paper, we propose an evolving-network-based approach for construct-
ing a social network for Web-APIs based on their popularity in the service
ecosystem. We achieve this by first studying the underlying topology of the Pro-
grammableWeb service ecosystem from the complex network perspective and
analyze the popularity distribution and preferential attachment of Web-APIs
in the ecosystem; then, we incorporate our findings into the construction of an
evolving social network of Web-APIs using the well-established Barabási-Albert
model. In the future we want to do further research in the following directions:
(1) As the construction strategy of the network is purely based on node popu-
larity, we plan to investigate other strategies that consider factors such as node
fitness and similarity; (2) The clustering coefficient of the constructed network
is low compared to real-world networks; we plan to investigate strategies that
can build better clustered networks.

References

1. Albert, R., Jeong, H., Barabási, A.-L.: Internet: diameter of the world-wide web.
Nature 401(6749), 130 (1999)

2. Barabási, A.-L.: Network science: luck or reason. Nature 489(7417), 507 (2012)
3. Barabási, A.-L.: Network Science. Cambridge University Press, Cambridge (2016)
4. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science

286(5439), 509–512 (1999)
5. Barros, A.P., Dumas, M.: The rise of web service ecosystems. IT Prof. 8(5), 31–37

(2006)
6. Bianconi, G., Barabási, A.-L.: Competition and multiscaling in evolving networks.

EPL (Europhys. Lett.) 54(4), 436 (2001)



Constructing and Evaluating Evolving Web-API Network 617

7. Chen, W., Paik, I., Hung, P.C.K.: Constructing a global social service network for
better quality of web service discovery. IEEE Trans. Serv. Comput. 8(2), 284–298
(2015)

8. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical
data. SIAM Rev. 51(4), 661–703 (2009)

9. Fallatah, H., Bentahar, J., Asl, E.K.: Social network-based framework for web
services discovery. In: 2014 International Conference on Future Internet of Things
and Cloud (FiCloud), pp. 159–166. IEEE (2014)

10. Feng, Z., Lan, B., Zhang, Z., Chen, S.: A study of semantic web services network.
Comput. J. 58(6), 1293–1305 (2015)

11. Hébert-Dufresne, L., Allard, A., Marceau, V., Noël, P.-A., Dubé, L.J.: Structural
preferential attachment: network organization beyond the link. Phys. Rev. Lett.
107(15), 158702 (2011)

12. Huang, K., Fan, Y., Tan, W.: An empirical study of programmable web: a network
analysis on a service-mashup system. In: 2012 IEEE 19th International Conference
on Web Services, Honolulu, HI, USA, 24–29 June 2012, pp. 552–559 (2012)

13. Huang, K., Fan, Y., Tan, W.: Recommendation in an evolving service ecosystem
based on network prediction. IEEE Trans. Autom. Sci. Eng. 11(3), 906–920 (2014)

14. Kavitha, R., Anuvelavan, S.: Weather master: mobile application of cyclone disaster
refinement forecast system in location based on gis using geo-algorithm. Int. J. Sci.
Eng. Res. 6, 88–93 (2015)

15. Lee, J., Niko, D.L., Hwang, H., Park, M., Kim, C.: A GIS-based design for a smart-
phone disaster information service application. In: 2011 First ACIS/JNU Interna-
tional Conference on Computers, Networks, Systems and Industrial Engineering
(CNSI), pp. 338–341. IEEE (2011)

16. Lyu, S., Liu, J., Tang, M., Kang, G., Cao, B., Duan, Y.: Three-level views of
the web service network: an empirical study based on programmableweb. In: 2014
IEEE International Congress on Big Data (BigData Congress), pp. 374–381. IEEE
(2014)

17. Muniruzzaman, A.N.M.: On measures of location and dispersion and tests of
hypotheses in a pare to population. Calcutta Stat. Assoc. Bull. 7(3), 115–123
(1957)

18. Newman, M.E.J.: Clustering and preferential attachment in growing networks.
Phys. Rev. E 64(2), 025102 (2001)

19. Papadopoulos, F., Kitsak, M., Serrano, M.Á., Boguná, M., Krioukov, D.: Popular-
ity versus similarity in growing networks. Nature 489(7417), 537 (2012)

20. Pham, T., Sheridan, P., Shimodaira, H.: PAFit: a statistical method for measuring
preferential attachment in temporal complex networks. PloS one 10(9), e0137796
(2015)

21. Pham, T., Sheridan, P., Shimodaira, H.: Joint estimation of preferential attachment
and node fitness in growing complex networks. Sci. Rep. 6, 32558 (2016)

22. Wang, H., Feng, Z., Chen, S., Xu, J., Sui, Y.: Constructing service network via
classification and annotation. In: 2010 Fifth IEEE International Symposium on
Service Oriented System Engineering (SOSE), pp. 69–73. IEEE (2010)

23. Wang, J., Chen, H., Zhang, Y.: Mining user behavior pattern in mashup commu-
nity. In: IEEE International Conference on Information Reuse and Integration, IRI
2009, pp. 126–131. IEEE (2009)

24. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature
393(6684), 440 (1998)

25. Weiss, M., Gangadharan, G.R.: Modeling the mashup ecosystem: structure and
growth. R&D Manag. 40(1), 40–49 (2010)


	Constructing and Evaluating an Evolving Web-API Network for Service Discovery
	1 Introduction
	2 Background and Related Work
	3 Analysis and Results
	3.1 Data Acquisition and Processing
	3.2 Affiliation Network of Web-APIs and Mashups
	3.3 Web-API Nodes Degree Distribution
	3.4 Measuring Preferential Attachment

	4 Constructing an Evolving Web-API Network
	4.1 Limitation of the Projection-Based Approach
	4.2 Network Model and Construction Strategy
	4.3 Topological Properties of the Web-API Network
	4.4 Applying Web-API Network in Service Discovery

	5 Conclusion and Future Work
	References




