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Abstract. A service cloud could improve its QoS (Quality of Service)
by partitioning jobs into multiple tasks and processing those tasks in
parallel. In contrast to processing all jobs with the same degree of par-
allelism (DOP), dividing jobs into different groups and processing them
with varying DOPs may achieve better performance results, especially
focusing on those jobs which have a greater impact on performance of
service clouds. In this paper, we describe a novel differentiated DOP
policy, which divides jobs into several groups identified by jobs’ service
time and sets proper DOPs for different groups of jobs. Then, we pro-
pose a parallel multi-queue and multi-station analytical model for service
clouds with our differentiated DOP policy, to predict important perfor-
mance metrics. Thus this model can guide cloud providers to determine
optimal DOPs and resource allocation schemes for different groups to
improve the total QoS of a service cloud. We also present a new metric,
called Optimized Performance of Groups (OPG), to quantify the level
of performance optimization of every group. The objective is to maxi-
mize the minimum OPG to ensure OPG within a certain range, thereby
enforcing a fair trade-off between all groups. Through extensive experi-
ments, we validate the effectiveness of the proposed differentiated DOP
policy and analytical model.
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1 Introduction

Because of economies of scale and other factors, service clouds usually operate
a large number of resources to provide a wide range of professional services to
users at low prices [5,15]. Thus more and more users are beginning to migrate
their jobs to service clouds. In general, in order to meet requirements of users,
service cloud providers need to provide effective job execution strategies and
resource allocation schemes to accelerate jobs’ execution and thus to improve
QoS (Quality of Service), which is a measurement of the overall performance of a
service cloud and includes response time, waiting time, probability of immediate
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service, and so on [3,9]. Taking a rendering service cloud as an example, after
accepting a batch of rendering jobs submitted by users, it could divide those
jobs into different groups and process them with proper resources and degrees
of parallelism (DOPs) to speed up the processing of the jobs.

Users

Users

 ...  ...

A cloud center

Server pool1

Group N

Group 1

Server poolN

Server pool2

Dividing jobs into several groups 
identified by jobs' service time.

 A server pool would serve a 
group of jobs on a FCFS basis.

Users submit jobs.

Allocating all servers 
into N server pools 
to keep consistent with
the number of groups.

 ...
 ...
 ...

 ...

 ...

 ...

 ...
Group 2

Fig. 1. A motivating example for a service cloud with differentiated DOP policy

A special kind of service cloud which serves pleasingly parallel jobs is consid-
ered in this paper, such as rendering service cloud [17], translating service cloud
[16], designing and manufacturing service cloud [4], and so on [13]. A main char-
acteristic of a pleasingly parallel job is that it can be partitioned into multiple
tasks and these tasks are independent of one another and thus can be served
separately by different servers in parallel without any overhead [6]. In contrast
to processing all jobs with the same DOP, dividing jobs into different groups and
processing them with varying DOPs may achieve better QoS, especially focusing
on jobs that have a greater impact on performance of service clouds. However,
for a service cloud provider, determining proper DOPs and resource allocation
schemes for different groups of jobs to achieve optimal QoS is particulary com-
plicated. This is mainly because of the following three reasons:

– The DOP of jobs can make a big difference in a service cloud’s performance.
A higher DOP could accelerate the processing of jobs, and thus improve the
performance of a service cloud. However, it could cause more servers to be
occupied which leads newly arrived tasks to be blocked.

– When the number of servers is fixed, allocating servers to serve different jobs
can also make a big difference in a service cloud’s performance. For example,
if we allocate more servers for one group of jobs, there may not be enough
severs available for other jobs. It could cause more jobs to wait in the buffer
and increase mean response time of the jobs so that the number of completed
jobs may drop in duration.

– When the optimal performance metrics are pursued, such as mean response
time or mean waiting time of service clouds, the level of performance opti-
mization of some groups of jobs may become ignored. This will lead to an
unfair trade-off between different groups.
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For achieving optimal QoS of service clouds, performance analytical models
are usually established for service clouds, which could guide cloud providers to
determine proper DOPs and resource allocation schemes. For dealing with the
problem of QoS optimization for parallel jobs in service clouds, several studies
have used queuing theories to establish analytical models [7,14,19]. These models
could predict the important performance metrics of service clouds to help cloud
providers improve the QoS of parallel jobs with the same DOP, but they cannot
interpret more complicated situations where jobs have varying DOPs.

In this paper, for dealing with the problems of QoS optimization of service
clouds serving jobs with varying DOPs, based on queuing theory, we propose
a parallel multi-queue and multi-station analytical model to evaluate service
clouds’ performance. Based on homogeneous Markov chain model, we solve our
analytical model to obtain an approximate estimation of important performance
metrics such as mean service response time, mean waiting time, and so on. As
different sizes of jobs have diverse impacts on performance of service clouds,
we propose a differentiated DOP policy which divides jobs into several groups
identified by jobs’ service time and sets proper DOPs for different groups of jobs,
as shown in Fig. 1. Then, we divide all servers into multiple server pools to remain
consistent with the number of groups and one server pool serves one group of jobs
on a FCFS (First Come First Serve) basis. Thus, based on our analytical model,
we can determine optimal DOPs and resource allocation schemes for different
groups of jobs, and thus improve the QoS of service clouds. We also propose a
metric, called Optimized Performance of Groups (OPG), to quantify the level of
performance optimization of each group, which is the ratio between the response
time a group of jobs has spent in a service cloud without differentiated DOP
policy and the response time this group would have spent in that service cloud
with differentiated DOP policy. The objective is to maximize the minimum OPG
to ensure OPG within a certain range, thereby enforcing a fair trade-off between
all groups. Through extensive simulations based on synthetic data, we validate
the effectiveness of our analytical model and differentiated DOP policy.

The rest of the paper is organized as follows. Section 2 describes our differen-
tiated DOP policy. Section 3 describes our parallel multi-queue and multi-station
model and solves our model to obtain performance metrics for a service cloud.
Section 4 describes our proposed performance metric. Section 5 presents and dis-
cusses analytical results as well as simulation results. We discuss the related
works in Sect. 6. Finally, we state concluding remarks and future work in Sect. 7.

2 Differentiated DOP Policy

Dividing jobs into different groups and processing them with varying DOPs may
achieve better QoS, especially focusing on jobs that have a greater impact on
performance of service clouds. In this paper, we describe a differentiated DOP
policy in order to set proper DOPs for different jobs. Since different sizes of
jobs have a diverse impact on performance, it could improve the QoS of service
clouds obviously if we set a higher DOP for jobs which require longer service
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time. In this work, we divide jobs into N groups which are {group1, group2, . . . ,
groupN} identified by jobs’ service time. There are N +1 points of service time:
{t0, t1, . . . , tN} and t0 < t1, . . . , < tN . If the service time of a job is within the
range of ti−1 to ti, this job will be divided into groupi, so that service time of
jobs in groupi is within the range of ti−1 to ti, for 1 ≤ i ≤ N . Then, we could set
a proper DOP for each group of jobs and use di to denote the DOP of groupi.

We only consider the case of identical servers and allocate c identical servers
contained in a service cloud into N server pools to remain consistent with the
number of groups, which are {pool1, pool2, . . . , poolN}, as shown in Fig. 1. Servers
in a server pool would serve a group of jobs on a FCFS basis, e.g., pooli contains
ci servers that serve jobs from groupi. Therefore, we have:

N∑

i=1

ci = c (1)

In order to achieve specific QoS and save costs, we need to determine optimal
settings, such as resource allocation schemes or DOP settings. Thus, a proper
analytical model is needed to predict the performance metrics with different
resource allocation schemes and DOP settings.

3 Analytical Model Formulation

In this work, based on queuing theory, we propose a parallel multi-queue and
multi-station model to evaluate the performance of service clouds serving jobs
with varying DOPs, as shown in Fig. 2. N queues can be constructed for a service
cloud with differentiated DOP policy, which are {queue1, queue2,. . . , queueN}.
In queuei (1 ≤ i ≤ N), ci servers in server pooli serve jobs from groupi.
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Fig. 2. A parallel multi-queue and multi-station model for jobs with varying DOPs

In order to obtain performance metrics of a service cloud, we need to predict
performance metrics of all queues in that service cloud. For queuei that is any one
of all queues, before jobs are partitioned, we assume that job arrivals follow an
approximate Poisson process with a rate of λi and service time is an approximate
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exponentially distributed with a rate of μi, as is widely assumed in previous
works [20]. This is because if job arrivals follow a Poisson process and service
time is exponentially distributed, analytical results of these jobs can supply
approximate lower bounds in performance prediction for other distributions of
job arrivals, such as random distributions or normal distributions [14].

As discussed above, before jobs are partitioned, it can be concluded that
queuei can be modeled as an M/M/ci queuing system. However, after jobs are
partitioned into tasks, the actual probability distribution of service time would
not follow the original distribution. As tasks will occupy more servers, the num-
ber of busy servers is different from the number of jobs in service clouds. Thus,
we need to carefully establish a parallel multi-station analytical model for queuei

serving the tasks partitioned from the original jobs, which is an important part
of the parallel multi-queue and multi-station model.

3.1 Multi-station Model for Queuei

Based on M/M/ci queuing model of queuei, we describe a parallel multi-station
model for queuei, as shown in Fig. 2. In this work, a partition method is designed
to help us establish a multi-station model for queuei. All ci servers contained
in queuei are divided into di stations of servers, which are {Ci1, Ci2, . . . , Cid}.
We use cij (j ∈ {1, . . . , di}) to denote the number of servers contained in the
station Cij . Here when dividing servers into multiple stations, a main principle
we use is to equally divide all servers into di stations. Therefore, each server
station consists of the same number of servers, which means ci1 = ci2 = . . . =
cid = �ci/di�. At each station, tasks will be served on a FCFS basis by one of
the servers in that station. If at least one server is idle in each server station at
the time when a job arrives, tasks of this job will get into service immediately.
If all servers are busy at the time when a job arrives, the job will wait in the
buffer. We assume that the buffer size of a service cloud is unlimited, so that
jobs won’t be lost. Based on our partition method, we describe how to obtain
the relevant parameters of tasks in every station.

If a system could be modeled as an M/M/c queuing system and jobs in this
system could be equally partitioned into k (k > 0) tasks, as the property of expo-
nential distribution, the service time of tasks is also exponentially distributed
[2]. However, its base has changed, and the mean service time of the tasks is
1/k of the mean job service time. In our analytical model, before entering into
servers, each job is equally partitioned into di tasks which have the same service
time. Then by dividing all servers equally into di stations, after an arriving job
is equally split into di tasks, each task could be assigned to one of the di sta-
tions individually and no two stations could accept a same task. Thus all the
stations have the same workload to serve and since they have the same num-
ber of servers with the same processing capability, they would achieve the same
performance metrics in processing these tasks. Based on the above description,
we can conclude that the service time in each server station is an independent
identically distributed (IID) random variable having negative exponential dis-
tributions, with mean service time of 1/(diμi). The arrival of each job is the
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same as its tasks. So task arrivals follow a Poisson process, which means the
task interarrival time is exponentially distributed with a rate of λi, the same as
the primitive job. The traffic intensity ρi denotes the average proportion of time
for which each of the servers is occupied. Thus, the traffic intensity of one server
station could be defined as ρi = λi/(ci1diμi), where for practical reasons, it is
known that ρi < 1.

As discussed above, we can establish an M/M/ci1 queuing system for each
station. All di stations have the same processing capability and the same work-
load, so that the performance metric of one station can represent the performance
of other stations as well as queuei. Thus we can analyze the server station Ci1 to
obtain its performance metrics through the proposed analytical model and then
conclude performance metrics of the whole queuei from that.

In order to construct the analytical functions to calculate the important
performance metrics, we need to calculate the steady-state probabilities of the
number of tasks in the M/M/ci1 queuing system of server station Ci1, which
can be figured out by using a homogeneous Markov chain.

Underlying Markov Model. In this work, we establish a homogeneous
Markov chain for server station Ci1 to calculate the important performance
metrics. We model the number of tasks in server station Ci1 (both those in ser-
vice and those queued but not yet served) at the moments immediately before
a new task arrival as a Markov point. Then by enumerating these instances as
{0, 1, 2, . . . , n−1, n}, we can obtain a homogeneous Markov chain. Therefore, we
can calculate the steady-state probabilities of the number of tasks in the queuing
system to obtain the performance metrics of this server station.

When the steady-state system stays at state n, we use Pn (0 ≤ n) to denote
the probability of having n tasks in the system immediately before a new task
arrives. The balance equations can be established as:

diμiP1 = λiP0 (2)

(n + 1)diμiPn+1 + λiPn−1 = (λi + ndiμi)Pn (1 ≤ n ≤ ci1) (3)

ci1diμiPn+1 + λiPn−1 = (λi + ci1diμi)Pn (ci1 < n) (4)

The normalization equation of the transition probability matrix P is:

∞∑

j=0

Pj = 1 (5)

As we have defined above, the traffic intensity for Ci1 server station is:

ρi = λi/(ci1diμi) (ρi < 1) (6)
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Using recurrence relations to solve differential equation (2) (3) (4) via (5)
(6), in which Pn can be deduced from Pn−1 that we have known, we can obtain
the steady-state probability as:

P0 = [
ci1−1∑

k=0

1
k!

(
λi

diμi
)k +

1
ci1! × (1 − ρi)

(
λi

diμi
)ci1 ]−1 (7)

Pn =

{
1
n! (

λi

diμi
)nP0 (n ≤ ci1)

1
ci1!×ci1n−ci1 ( λi

diμi
)nP0 (ci1 < n)

(8)

Calculating Performance Metrics for Queuei . Once we have obtained the
steady-state probabilities, which are the basis of steady-state queuing service sys-
tem, we can use them to construct analytical functions to calculate the important
performance metrics concerning Ci1 server station. As previously discussed, the
performance metrics of one server station can be taken as the performance met-
rics of queuei. Now we illustrate how to calculate the following five important
performance metrics, which are the mean number of tasks queued in the buffer,
the mean number of tasks in queuing system, mean response time, mean waiting
time, and the probability of immediate service.

We use Lqi to denote the expectations of the mean number of jobs queued
in the buffer of queuei, which is the waiting queue length. Therefore:

Lqi =
∞∑

n=ci1+1

(n − ci1)Pn (9)

We use Lsi to denote the expectations of the mean number of all jobs cur-
rently in queuei (including both jobs being served in servers and jobs waiting in
the buffer). Therefore:

Lsi =
λi

diμi
+ Lqi (10)

We use Wsi to denote mean response time of queuei, which is the sum of
jobs’ service time and jobs’ waiting time. We have discussed that the average
number of all jobs in the system is Lsi, thus according to Little’s Law [8]:

Wsi =
Lsi

λi
(11)

As is known, when a job arrives, if all servers are busy, the job will wait in
the buffer until it can be served by an idle server. Thus, according to Little’s
Law, the average waiting time can be calculated as:

Wqi =
Lqi

λi
(12)

At the time when a new job arrives, if there is no job waiting in the buffer and
at least one server out of a station is idle, the new job will be served immediately.
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Thus the probability of immediate service PIi can be calculated as:

PIi =
ci1−1∑

n=0

Pn (13)

3.2 Calculating the Performance Metrics for a Service Cloud

Once the performance metrics of queuei are obtained, we can use them to calcu-
late the performance metrics concerning a service cloud, which are the mean of
all jobs’ performance value. Using Ws to denote mean response time of a service
cloud and Qi (i ∈ {1, . . . , N}) to denote the number of jobs contained in queuei.
Mean response time of a service cloud can be calculated as:

Ws =
∑N

i=1 Qi · Wsi∑N
i=1 Qi

(14)

Using Wq to denote mean waiting time of a service cloud and Wqi to denote
mean waiting time of queuei, mean waiting time of a service cloud can be cal-
culated as:

Wq =
∑N

i=1 Qi · Wqi∑N
i=1 Qi

(15)

Using PI to denote the probability of immediate service of a service cloud
and PIi to denote the probability of immediate service of queuei, the probability
of immediate service of a service cloud can be calculated as:

PI =
∑N

i=1 Qi · PIi∑N
i=1 Qi

(16)

Based on the analytical results, we can determine proper DOP settings and
resource allocation schemes to achieve the optimal mean response time, mean
waiting time and the probability of immediate service, and thus to improve the
QoS of service clouds.

4 The Proposed Performance Metric

However, when optimal performance metrics are pursued, such as mean response
time or mean waiting time of service clouds, the level of performance optimiza-
tion of some groups may be ignored. This will lead to an unfair trade-off between
different groups. Therefore, we propose a new metric, called Optimized Perfor-
mance of Groups (OPG), which is the ratio between the response time a group
of jobs has spent in a service cloud without differentiated DOP policy and the
response time this group would have spent in that service cloud with differenti-
ated DOP policy. Using Wspi to denote the response time that groupi has spent
in a service cloud without differentiated DOP policy and Wsdi to denote the
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response time that groupi of the jobs would have spent in a service cloud with
differentiated DOP policy. Hence, OPGi can be formulated as follows:

OPGi =
Wspi

Wsdi
(17)

The metric OPGi is used to evaluate the level of performance optimization of
groupi. OPGi is within the range of (0, +∞), and the lower it is, the worse level
of performance optimization the groupi has. If the minimum OPG of all groups
is less than a certain value which is a lower bound of the level of performance
optimization, we need to improve the OPG of the group which has the minimum
OPG of all groups by determining a higher DOP or allocating more servers to this
group. Our final objective is to maximize the minimum OPGi to ensure OPGi

within a certain range, thereby enforcing a fair trade-off between all groups when
mean response time of all jobs are optimized.

5 Experimental Evaluation

In order to evaluate the effectiveness of our proposed differentiated DOP policy
and analytical model, we have built a discrete event simulator of the cloud server
system and conducted extensive experiments based on synthetic data extracted
from real-world rendering jobs.

5.1 Simulation Methodology and Parameter Settings

There are four main purposes of our experimental simulations. First, the effec-
tiveness of our proposed differentiated DOP policy is validated by comparing it
to the performance of a service cloud without the policy. Second, the effective-
ness of our proposed analytical model is validated by investigating whether the
performance metrics predicted by the analytical model are close to the simu-
lation results. Third, we examine how the parameter settings, such as different
combinations of DOP settings or resource allocation schemes, can improve the
QoS of a service cloud. Finally, we investigate whether the minimum OPG of all
experiments is higher than the lower bound of the level of performance optimiza-
tion and if not, we had better maximize the minimum OPGi of that experiment
by increasing the DOP or allocating more servers to groupi to enforce a fair
trade-off between all groups. For these aims, we built a simulator, in which we
can change the number of servers, resource allocation schemes and DOPs.

In all of the simulations, the number of jobs used in each simulation is above
10000, and the testing time is more than 168 h (7 days). The service time of all
jobs is collected from our working rendering service platform, which is within
the range of [70 min, 130 min). Jobs are assigned into three groups identified by
jobs’ service time. Jobs’ service time of group1 is within the range of [70 min,
90 min) and mean service time is 80 min. Jobs’ service time of group2 is within the
range of [90 min, 110 min) and mean service time is 100 min. Jobs’ service time of
group3 is within the range of [110 min, 130 min] and mean service time is 120 min.
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The jobs’ service time of all groups is approximate exponentially distributed.
Considering the characteristics of real-world rendering job arrivals, we assume
that job arrivals of all groups follow an approximate Poisson process and the
mean job interarrival time of group1, group2 and group3 are 1.5 min, 1.4 min
and 1.35 min respectively. Then, we could set a DOP for each group. Besides, we
assume that the lower bound of the level of performance optimization is 0.9. Jobs
in service clouds won’t be lost as buffer size without limit. These settings are in
reasonable sizes considering the real-world rendering service cloud and they are
kept the same for all of the simulations. For other parameters concerning each
simulation, we will explain them in the respective subsections.

5.2 Effect of Resource Allocation on Performance

Table 1. Resource allocation schemes

Experiment number NoS in group1 NoS in group2 NoS in group3 All servers

Experiment 1 58 76 106 240

Experiment 2 58 84 98 240

Experiment 3 62 80 98 240

Experiment 4 62 84 94 240

Experiment 5 66 76 98 240

Experiment 6 66 80 94 240

In this subsection, we investigate the influence of different resource allocation
schemes on a service cloud’s performance. Cloud providers need to determine how
to allocate servers to serve different groups to achieve an optimal performance
of a service cloud. For this aim, we randomly select six experiments, which have
different resource allocation schemes for three groups, and investigate which
scheme has better mean response time, mean waiting time or OPG. Experiment
settings are introduced in Table 1. Besides, we use ‘NoS’ to denote the number
of servers.

Response time, waiting time and the minimum OPG are shown in Table 2. It
shows that the resulting mean response time and mean waiting time of all jobs
are different with the change of resource allocation schemes. A service cloud
would get an optimal response time and waiting time when 62 servers are allo-
cated to serve group1, 80 servers are allocated to serve group2 and 98 servers
are allocated to serve group3. We find that compared with other experiments,
groups in experiment 3 don’t have higher traffic intensity. We could observe that
allocating fewer servers to serve the group in which jobs require shorter service
time would lead to a poor result, as the change of NoS has a greater influence
in traffic intensity of that group.

Table 2 also shows that the simulation results are less than the analytical
results when the traffic intensity is bigger. This is mainly because the following
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Table 2. Effect of resource allocation on performance

Experiments Method Response time Waiting time The minimum OPG

1 Simulation 55.41 5.25 0.87

Analytical 57.36 7.35

2 Simulation 53.54 3.37 0.87

Analytical 55.50 5.50

3 Simulation 52.50 2.32 0.96

Analytical 54.05 4.05

4 Simulation 54.35 4.18 0.91

Analytical 56.29 6.29

5 Simulation 53.22 3.06 0.91

Analytical 55.91 5.91

6 Simulation 53.30 3.14 0.91

Analytical 56.45 6.45

two reasons. First, queuing theory has assumed that the jobs’ service time is
within the range of [0, +∞). In reality, the jobs’ service time of one group is
within the certain range, e.g., jobs’ service time of group1 is within the range of
[70 min, 90 min). Obviously, the jobs in each group don’t contain the jobs with a
service time that exceeds the upper limit or that is under the lower limit, which
has a significant impact on performance. Second, as the service time of all jobs is
collected from real-world working rendering service platform, jobs’ service time
in each group is not completely following exponential distribution. So analytical
results and simulation results show little difference, which is less than 10 min.
More importantly, our analytical model can accurately indicate the trend of
performance change and its results can supply approximate lower bounds in all
situations. Thus, we can conclude that the analytical model could help us to
determine proper resource allocation schemes to achieve optimal QoS of service
clouds.

The resulting minimum OPG of all experiments is also detailed in Table 2.
OPG of experiments 1 and 2 are less than 0.9. In this situation, we had better
allocate more servers to the group which has the minimum OPG to ensure a fair
trade-off between all groups.

5.3 Effect of DOP on Performance

In this subsection, we investigate the influence of different combinations of DOP
settings on response time and the immediate service rate. We also investigate
the minimum OPG of every experiment to ensure a fair trade-off between all
groups. 240 servers contained in a service cloud are allocated to three groups.
Considering the same traffic intensity, we allocate 60 servers to serve group1,
80 servers to serve group2 and 100 servers to serve group3. In all cases, the
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traffic intensity is reasonably set as ρ = 0.88. We then select 8 experiments,
that contain different combinations of DOP settings. Experiment settings are
introduced in Table 3. Experiment 1 and 5 are comparative experiments which
won’t use our differentiated DOP policy. Then we compare the performance
metrics of experiment 2, 3, and 4 with experiment 1. We also compare the
performance metrics of experiment 6, 7, and 8 with experiment 5.

Table 3. Experiment settings with varying DOPs and their minimum OPG

Experiments DOP of
group1

DOP of
group2

DOP of
group3

The minimum OPG

1 2 2 2

2 2 2 5 0.93

3 2 5 2 0.93

4 5 2 2 0.97

5 4 4 4

6 2 4 10 0.47

7 4 4 10 0.85

8 4 5 10 0.85

The minimum OPG of all experiments is shown in Table 3. The OPG of
experiment 6 is 0.47, which means at least one group’ performance is seriously
worse than before. Thus, even if mean response time of all jobs is better than
before, this parameter setting is not recommended. In this situation, we had
better set a higher DOP to the group, which has the minimum OPG in all
groups, to ensure a fair trade-off between all groups.
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The resulting response time is shown in Fig. 3. It can be noted that in contrast
to processing all jobs with the same DOP, dividing jobs into different groups
and processing them with varying DOPs has diverse service response time. As
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different groups of jobs have different influences on performance, we find that
setting a higher DOP to a group that requires longer service time could achieve
optimal performance, which proves the validity of our differentiated DOP policy.

Comparing with experiment 5, experiment 6 has poor performance results
which include mean response time and the minimum OPG. Thus, we need to set
a higher DOP for the group that has the minimum OPG of all groups to opti-
mize mean response time, as shown in experiment 7 or 8. Therefore, analytical
model could be helpful in setting DOPs for different groups to achieve optimal
performance.

The probability of immediate service is shown in Fig. 4. In contrast to treating
all jobs with the same DOP, treating jobs with varying DOPs produces an inferior
immediate service rate. With the increasing of DOP, immediate service rate of
all jobs decrease rapidly. Thus, when pursuing optimal immediate service rate,
DOP should be limited.

Figures 3 and 4 also show that analysis results given by our proposed analyt-
ical model are close to simulation results and the results can supply approximate
lower bounds in all situations. Thus, the analytical functions are valid for esti-
mating response time and the probability of immediate service. Finally, we can
conclude that the analytical model could help us to determine proper DOPs for
different group to achieve optimal QoS of service clouds.

6 Related Work

With the rapid development of cloud computing technologies, there are more
and more researchers focusing on optimizing QoS of a cloud center by estab-
lishing analytical models. Performance analysis generally focuses on evaluating
a system’s key performance metrics such as response time, throughput, and so
on [18].

In [9,20], the cloud center is modeled as a queuing system with single task
arrival and finite buffer capacity. For evaluating the performance of cloud com-
puting, these analytical models obtain accurate estimations of the complete prob-
ability distribution of response time and other important performance indicators.
Based on these accurate estimations, cloud providers could determine proper
buffer space for different classes of tasks to avoid sudden long delay.

[11] and [10] propose analytical performance models that address the com-
plexity of cloud centers. It has been assumed that a cloud center has a number
of servers and each server has been configured as a number of virtual machines
(VMs). They obtain a detailed assessment of cloud center performance. Sev-
eral performance metrics are defined and evaluated to analyze the behavior of a
cloud data center: utilization, availability, waiting time, and responsiveness [1].
A resiliency analysis is also provided to take into account load bursts. However,
these analytical models cannot work well with parallel jobs.

In [12], the analysis model has been extended to a system where jobs consist
of multiple tasks that have general independent service time distributions. The
model could account for the deterioration of performance due to the workload
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at each node. In [2], the authors propose a mathematical model to predict the
performance of parallel jobs based on a queuing system. This model has a good
accuracy in predicting execution time and waiting time. In [19], the researchers
focuses on the jobs that may consist of multiple tasks with each task requiring a
VM for its execution. It has derived job blocking probabilities and distribution of
the utilization of resources as a function of the traffic load under various scenarios
for systems with both homogenous and heterogeneous VMs. In a previous study,
we have proposed an approximate analytical model for cloud computing centers
serving parallelizable jobs using M/M/c/r queuing systems [14]. This model has
a good accuracy in predicting metrics of parallelizable jobs with the same DOP.
The above models concern parallel jobs, but they didn’t consider the problem of
differentiated processing of jobs.

As discussed above, current performance analysis models cannot deal with
the situations of service clouds serving parallel jobs with varying DOPs. Our
approach can establish an analytical model for jobs with varying DOPs. Using
this model, we can obtain an accurate estimation of the complete probability
distribution of response time, waiting time and probability of immediate service,
which could guide cloud providers to determine optimal DOPs and resource
allocation schemes to achieve specific QoS of service clouds.

7 Conclusions and Future Work

Dividing jobs into different groups and processing them with varying DOPs could
achieve better performance results, especially focusing on jobs that have a greater
impact on performance of service clouds. In this paper, for a service cloud that
serves pleasingly parallel jobs, we propose a differentiated DOP policy, which
divides jobs into several groups identified by jobs’ service time and sets proper
DOPs for different groups of jobs. Then, we propose a parallel multi-queue and
multi-station analytical model for a service cloud with our proposed policy to
predict performance metrics. This model could help us make optimized decisions
in determining DOPs and resource allocation schemes for different groups of jobs,
and thus to improve the QoS of a service cloud. Besides, we present a metric
named OPG, which quantifies the level of performance optimization of every
group. The objective is to maximize the minimum OPG, thereby enforcing a fair
trade-off between all groups. Through extensive experiments based on synthetic
data extracted from real-world rendering jobs, we validate the effectiveness of
our differentiated DOP policy and analytical model.

For the future work, we plan to extend our research to QoS optimization of
service clouds which contain composite parallelizable services. Besides, we also
plan to further validate our approach by collecting workload traces from more
real-world cloud systems.
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