
Constraint-Based Model-Driven Testing
of Web Services for Behavior

Conformance

Chang-ai Sun1(B), Meng Li1, Jingting Jia1, and Jun Han2

1 School of Computer and Communication Engineering, University of Science and
Technology Beijing, Beijing 100083, China

casun@ustb.edu.cn
2 School of Software and Electrical Engineering, Swinburne University of Technology,

Melbourne, VIC 3122, Australia

Abstract. In the current Web Service Description Language (WSDL),
only the interface information of a web service is provided without any
indication on its behavior logic. Naturally, it is difficult for the service user
and developer to achieve a shared understanding of the service behavior
through such a description. A particular challenge is how to make explicit
the various behavior assumptions and restrictions of a service (for the
user), and make sure that the service implementation conforms to them
(for the developer). In order to improve the behavior conformance of ser-
vices, in this paper we propose a constraint-based model-driven testing
approach for web services. In our approach, constraints are introduced in
an extended WSDL, called CxWSDL, to formally and explicitly express
the implicit restrictions and assumptions on the behavior of web services,
and then the predefined constraints are used to derive test cases in a
model-driven manner to test the service implementation’s conformance
to these behavior constraints from the user’s perspective. We have con-
ducted an empirical study with three real-life web services as subject pro-
grams, and the experimental results have shown that our approach can
effectively validate the service’s conformance to the behavior constraints.

Keywords: Web services · Conformance testing
Model-driven testing · Test case generation

1 Introduction

In the context of Service Oriented Architecture, the implementation of web ser-
vices is separated from their interface description. Service users invoke a web ser-
vice only based on its interface description written in WSDL. Since WSDL pro-
vides only the signature information for web service invocations, such as types,
messages, operations and bindings, a service description in WSDL cannot help
consumers to understand the way in which the web service should be invoked
because it does not indicate any restrictions or assumptions on the behavior of
a service.
c© Springer Nature Switzerland AG 2018
C. Pahl et al. (Eds.): ICSOC 2018, LNCS 11236, pp. 543–559, 2018.
https://doi.org/10.1007/978-3-030-03596-9_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03596-9_40&domain=pdf
https://doi.org/10.1007/978-3-030-03596-9_40

544 C. Sun et al.

The behavior expected of a web service is the key to achieve the proper
use of the service. A feasible way of avoiding the potential misuse of a ser-
vice is to enhance the service description with the restrictions and assumptions
that underlie its behavior as intended by the service developer. Furthermore,
such behavior description can also be used to test the service implementation
to ascertain the service’s conformance to the expected behavior. However, this
kind of behavior-related information is neither formally nor explicitly described
in the WSDL description.

In this paper, we propose a constraint-based model-driven testing approach to
improve the understanding and conformance of web service behavior. We lever-
age the description of behavior constraints to establish a bridge between service
developers and service users. Constraints are used to formally and explicitly
describe the implicit behavior restrictions and assumptions on service invoca-
tions and to validate the service implementation’s conformance to them. The
main contributions of this paper are as follows:

1. We summarize a range of common behavior constraints for web services that
are useful for potential violation detection.

2. We design an extended WSDL, called CxWSDL, to incorporate the formal
description of behavior constraints.

3. We develop a model-driven testing technique to validate the service implemen-
tation’s conformance to the behavior constraints. The technique first derives
a service behavior model from the constraint-enriched description of a service
written in CxWSDL. Then, it uses three coverage criteria to generate test
sequences from the behavior model, aimed at exercising the service implemen-
tation’s support for the constraints. Test suites are consequently generated
from the test sequences using a constraint solver, and used to test the web
service from the user’s perspective.

4. We evaluate the effectiveness of the proposed approach with three real-life
web services.

The rest of this paper is organized as follows. Section 2 presents an
overview of our approach. Section 3 summarizes the common behavior con-
straints and presents a formal description for them. Section 4 discusses the
proposed constraint-based model-driven testing technique. Section 5 reports an
empirical evaluation of the proposed approach. Section 6 discusses related work
and the paper is concluded in Sect. 7.

2 Approach Overview

Our approach aims to achieve better understanding and conformance of ser-
vice behavior and has two major aspects. First, we introduce behavior con-
straints to express the implicit restrictions and assumptions expected of a web
service’s implementation. In this regard, we extend WSDL to enable the explicit
description of the various constraints on the invocation of a web service, result-
ing in CxWSDL (W eb ServicesDescriptionLanguagewithConstraints). The

Constraint-Based Model-Driven Testing of Web Services 545

service description written in CxWSDL provides the basis for a shared under-
standing of the service’s behavior constraints between service users and service
developers.

Second, we propose a model driven testing technique that first derives a
Constraint − basedBehaviorModel (CBM) of the service from its extended
description in CxWSDL, then generates test cases from its CBM, and finally
validates the service implementation’s conformation to the constraints by exe-
cuting the generated test cases. The proposed testing framework is shown in
Fig. 1, which consists of five major components:

(1) CxWSDL Parsing, which parses the CxWSDL document provided by the
web service developer to obtain the operations and constraints document
for the web service, the SOAP message environment and the XSD (XML
Structure-definition Document) for invoking these operations.

(2) Behavior Model Construction, which constructs the web service behavior
model according to the operations and constraints document.

(3) Test Path Generation, which uses three coverage criteria and the web service
behavior model to generate test sequences.

(4) Test Case Generation, which outputs an executable test suite by means of
a constraint solver, taking as input a decision table provided by the web
service developer and the previously generated test sequences.

(5) Test Case Execution, which simulates a client by executing the test cases,
validates the conformance and violations to the constraints, and generates
a test report according to the test results.

Behavior Model
Construction

Test Path
Generation

Test Case
Generation

Test Execution

CxWSDL Parsing

WS Under
Test

WS Under
Test

Test Report

Constraints

Test Sequences

Test Suite

WS-DT

CxWSDL
XSD

Model

Soap Env

Fig. 1. Framework of model-driven testing of web services

546 C. Sun et al.

A tool, called MDGen, has been developed to provide automated support for
the above process. Its details cannot be included due to space limitation.

3 Constraints and Their Formal Description

This section summarizes the different types of behavior constraints and presents
a formal description for them.

3.1 Types of Behavior Constraints

In our approach, constraints are used to explicitly express the behavioral assump-
tions and restrictions behind a service’s implementation, which makes it possible
to achieve a shared understanding between service developers and service users.
That is, the service developer states the assumptions and restrictions in the
description of a service via constraints, while a service user understands the
service behavior via the stated constraints to achieve proper invocation of the
service. From a literature review, we summarize the following common assump-
tions and restrictions, the misunderstanding of which may result in possible
failures of service invocations.

– Time Constraint [16], which is necessary for restricting the service availability,
especially when a service is being modified or in an inactive or maintenance
state. If the access is outside its available period, a service invocation fault
may happen due to the unavailability.

– Region Constraint [16], which restricts the valid range of IP addresses in case
some operations of a service can only be accessed in a specific network.

– Parameter Restriction Constraint [7,18], which specifies the type and range
of an input parameter of an operation.

– Parameter Relation Constraint [8,18], which states a relationship between
the input parameters of different operations. Even if the input parameters
conform to the WSDL type restrictions of the operations, the operation invo-
cations may fail due to a violation of such a relationship constraint between
the operations.

– Sequence Constraint [1,2,4], which can be a Sequential Constraint or a
Repeated Invocation Constraint. The former specifies the order in which oper-
ations need to be performed or invoked for the service to function correctly,
and the latter specifies whether an operation can be invoked repeatedly.

– Invocation Constraint [15], which identifies the other operations called by a
given operation. An operation of a web service can involve another operation
in performing its tasks, and thus it is important to trace and state such
cascading relationships.

Constraint-Based Model-Driven Testing of Web Services 547

3.2 Formal Description of Constraints

We now consider the formal description of the above constraints. Due to the XSD
type system can be used to define the types in a message and restriction defines
the acceptable values for XML elements or attributes, the XSD restriction is well
suited to describing Parameter Restriction Constraint. For description of other
constraints, we introduce specific description constructs and their grammar is
given in the Extended Backus-Naur Form (see Fig. 2).

<Constraint> ::= ‘{’ ((‘“paraRelation”:’ <ValuePR> ‘,’ ‘“ipRegion”:’ <ValueIR> ‘,’ ‘“invokeOp”:’ <ValueIO> ‘,’
‘“preOp”:’ <ValuePO> ‘,’ ‘“Iteration”:’ <ValueI>) | (‘“eTime”:’ <eDate>)) ‘}’

<ValuePR> ::= ‘[’ ‘]’ | ‘[’<ElementsPR>‘]’
<ElementsPR> ::= <Relationship> | <Relationship> ‘,’ <ElementsPR>
<Relationship> ::= ‘“’ <OpName> ‘.’ <OpParameter> <RelationSymbol> <OpName> ‘.’ <OpParameter> ‘”’
<RelationSymbol> ::= ‘=’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’ | ‘!=’
<ValueIR> ::= ‘“’ <IpAdress> ‘-’ <IpAdress> ‘”’
<IpAdress> ::= <IpField>‘.’ <IpField>‘.’ <IpField>‘.’ <IpField>
<IpField> ::= (‘25’[0-5]|‘2’[0-4][0-9]|((‘1’[0-9][0-9])|([1-9]?[0-9])))
<ValueIO> ::= ‘[’ ‘] ’ | ‘[’<ElementsIO>‘]’
<ElementsIO> ::= ‘“’ <OpName>‘”’ | ‘“’ <OpName>‘”’‘,’ <ElementsIO>
<OpName> ::= ([A-Z] | [a-z] | ‘_’ | ‘$’) (([A-Z] | [a-z] | [0-9] | ‘_’ | ‘$’))*
<OpParameter> ::= ([A-Z] | [a-z] | ‘_’ | ‘$’) (([A-Z] | [a-z] | [0-9] | ‘_’ | ‘$’))*
<ValuePO> ::= ‘“’ <Exp>‘”’
<Exp> ::= (‘(’<Exp>‘)*’ | ‘(’<Exp>‘)+’ | ‘(’<Exp>‘)|(’<Exp>‘)’ | ‘(’<OpName>‘)(’<OpName>‘Response_succ)’)*
<ValueI> ::= ‘“true”’ | ‘“false”’
<eDate> ::= ‘“’<DateFormat>‘”’
<DateFormat> ::= the value of Date Class whose Format is yyyy-MM-dd

Fig. 2. The grammar of CxWSDL

– Constraint identifies behavior constraints, expressed in the form of
JSON attribute-value pairs, including Parameter Relation Constraints (i.e.
paraRelation), Region Constraints (i.e. ipRegion), Invocation Constraints (i.e.
invokeOp), Sequential Constraints (i.e. preOp), Repeated Invocation Con-
straints (i.e. Iteration), and Time Constraints (i.e. eTime).

– ValuePR states the Parameter Relation Constraints, which is a JSON array
consisting of multiple relationships. A relationship between two parameters
consisting of parameter names and relation operators. The relation operators
include =, >, <, >=, <=, and ! =.

– ValueIR states the Region Constraints, normally specifying the address range
from which an operation can be accessed.

– ValueIO states the Invocation Constraints, which is a JSON array of multiple
operation names that identify other operations called by an operation.

– ValuePO states the Sequential Constraints, which defines the sequential
dependencies required for an operation being correctly executed, in a form of
regular expressions, supporting repetition (*, +) and alternation (|).

548 C. Sun et al.

– ValueI states whether an operation can be invoked repeatedly, indicated with
true or false.

– eDate states the available time for a web service in the yyyy-mm-dd form.

To support the deployment of a service whose description is written in
CxWSDL, we utilize the <documentation> element in WSDL, which is a con-
tainer for human readable documentation. Time Constraints are added to the
<documentation> element under the <service> element, and other types of con-
straints are added to the <documentation> element under each <operation> ele-
ment. In this way, an existing container that supports WSDL-based web services
can be directly used to deploy an extended service with behavior constraints in
CxWSDL without any modifications.

4 Constraint-Based Model-Driven Testing of Web
Services

This section presents our approach to detecting invocation violations to service
behavior constraints, which improves the behavior conformance of services in a
service-based system.

4.1 Constraint-Based Behavior Model Generation

In order to detect the improper invocations that violate the behavior constraints,
we uses Model Based Testing (MBT) [12] for test case generation and viola-
tion detection. In particular, we propose the Constraint-based Behavior Model
(CBM) of a web service based on event sequence graph.

Definition 1 (CBM). The Constraint-based Behavior Model is defined as a 4-
tuple CBM = <Ns,D, V,E>, where

– Ns is the name of the model corresponding to a given web service,
– D is the available date of web service,
– V is a finite set of nodes in the CBM , representing the request events (oper-

ation invocations) or response events (responding to the request),
– E is a finite set of edges, representing a directed transfer from one node to

another, i.e. E ⊂ V × V .

Definition 2 (Node). Let V be the node set of a CBM . Each node vi in V =
{ v0, . . . , vn } is represented as a 6-tuple vi = <Nd, Id, C, Pre, Suc, T>, where

– Nd is the name of vi,
– Id is the unique identity of vi,
– C is the set of constraints of vi as defined in Sect. 3,
– Pre is the set of Preceding Nodes of vi,
– Suc is the set of Succeeding Nodes of vi,

Constraint-Based Model-Driven Testing of Web Services 549

– T is the type of vi, where the different node types are: Start (i.e. the entry
of the CBM), Initial (i.e. the initialization of a service invocation process),
End (i.e. the end of the CBM), Request (i.e. a request event), and Response
(i.e. a response event).

Definition 3 (Preceding Node). Let V be the node set of a CBM . We refer
to vi as a Preceding Node of vj (denoted as preNode(vj)), if and only if the
following condition is true: vi ∈ V , vj ∈ V , and (vi, vj) ∈ E.

Definition 4 (Succeeding Node). Let V be the node set of a CBM . We refer
to vi as a Succeeding Node of vj (denoted as sucNode(vj)), if and only if the
following condition is true: vi ∈ V , vj ∈ V , and (vj , vi) ∈ E.

Definition 5 (Edge). Let E be the edge set of a CBM. Each edge ei in E = {
e0, . . . , em } is defined as a 3-tuple ei = <Ne, FR, TO>, where

– Ne is the name of the edge ei,
– FR refers to the identify of the source node of ei,
– TO refers to the identity of the target node of ei.

We propose Algorithm 1 to construct a CBM from a CxWSDL document. It
has the following major steps:

– Initialization (lines 1–5): Initialize the Behavior Model, G, set its name prop-
erty and Time Constraints, and add the Start, Initial, and End nodes to
G.

– Add nodes into the model (lines 6–15): Parse the CxWSDL document to
identify the set of the operations of the web service under test. For each
operation, add the Request and Response nodes to G and associate each node
with the constraint properties.

– Build sequence relation of nodes (lines 16–25): Set the sequence relation of
nodes according to the sequence-related constraints.

– Add edges (lines 26–30): For each node in the model, add an edge between
the node and each of its Succeeding Nodes to the set of edges of G.

Note that the sequence-related constraints determine the behavior model’s
structure, which will be used to generate the test sequences (see Sect. 4.2). The
non-sequence-related constraints are associated with the model’s nodes, and will
be used to generate test cases (see Sect. 4.3).

4.2 Test Sequence Generation

Test sequences can be generated from the service behavior model and they are
classified into two types, namely Constraint comPliant Sequences (CPSs for
short) and Constraint conFlicting Sequences (CFSs for short).

Definition 6 (Constraint Compliant Sequence). Let V and E be the node and
edge sets of a CBM, respectively. A sequence of nodes <v0, . . . , vk> is called a
Constraint Compliant Sequence (CPS), if (vi, vi + 1) ∈ E for i = 0, . . . , k − 1,
and v0 is the CBM’s Start node and vk is the CBM’s End node.

550 C. Sun et al.

Algorithm 1. Behavior Model Construction
Input:

CxWSDL document
Output:

G: Constraint-based Behavior Model ;
1: Parse CxWSDL to get service name (sn), valid time (vt), and operation set

(OpSet);
2: Initialize G, set G.V ← ∅ and G.E ← ∅;
3: Let G.Sn ← sn and G.D ← vt;
4: Add a Start node start, an Initial node init, and an End node end to G.V ;
5: Let start ← preNode(init) and init ← sucNode(start);
6: for each operation op in OpSet do
7: Add Request node req, set its attributes and constraints ;
8: Add all Response nodes to resSet, set their attributes and constraints ;
9: for each node res in resSet do

10: res ← preNode(req), req ← sucNode(res);
11: if Iteration = true then
12: req ← preNode(res), res ← sucNode(req);
13: end if
14: end for
15: end for
16: for each node n in G.V do
17: if n.T = Request then
18: if preOp = null then
19: init ← preNode(n), n ← sucNode(init);
20: else
21: Parse the preOp constraint;
22: Set the preceding and succeeding correlation between nodes;
23: end if
24: end if
25: end for
26: for each node n in G.V do
27: for each fnode in n.Suc do
28: Add < n, fnode > to G.E and set its attributes;
29: end for
30: end for

Definition 7 (Constraint Conflicting Sequence). Let V and E be the node and
edge sets of a CBM, respectively. A sequence of nodes <v0, . . . , vk> is called a
Constraint Conflicting Sequence (CFS), if there exists a (vi, vi + 1) /∈ E, for i
= 0, . . . , k − 1.

For a large-scale application, there may be many services that collaborate
with each other and thus a large number of operations are included in such ser-
vices. It is impractical or even impossible to test all the possible event sequences
or paths. Thus, we define three coverage criteria to control the number of the
generated test sequences.

Constraint-Based Model-Driven Testing of Web Services 551

– Request Node Coverage, which requires that all nodes whose type is Request
be covered at least once.

– Response Node Coverage, which requires that all nodes whose type is Response
be covered at least once.

– Edge Coverage, which requires that all edges should be covered at least once.

As to the generation of CPSs, we employ an open source testing tool, Graph-
Walker [11]. GraphWalker provides a general model traversal strategy support-
ing the generation of test sequences that execute each of the elements in a given
model. As to the generation of CFSs, we first parse the Sequential Constraint
and Repeated Invocation Constraint, and then generate the sequence that violates
these Sequence Constraints. If there is a Sequence Constraint for an operation,
a CFS test sequence is generated for this operation. If the Repeated Invocation
Constraint is false, we generate a sequence that invokes an operation repeatedly.
If an operation has a Sequential Constraint, we generate a sequence that invokes
the operation without including any preceding operations.

We propose Algorithm 2 for generating test sequences from a service’s CBM,
which has five major steps:

– Initialization (lines 1–2): Initialize the Constraint Compliant Sequence set
(Tss), the Constraint Conflicting Sequence set (cTss), the initial test
sequence set (initTss), and the set of elements (eleCoverSet), and set the
coverage criterion.

– Set Coverage Criterion (lines 3–12): Based on the selected coverage criterion,
traverse G to obtain the set of elements (eleCoverSet) to be covered.

– Generate CPSs (lines 13–16): For each element ele in eleCoverSet, use
GraphWalker to generate initial CPSs test sequences (initTss).

– Remove Redundant Sequences (lines 17–25): For initTss, delete the redun-
dant sequences and obtain the final CPS test sequences tss.

– Generate CFSs (lines 26–36): Generate the CFS test sequence set cTss.

4.3 Test Case Generation

We first use the constraint solver tool Z3 to generate the combinations of input
parameter values that satisfy the constraints involved in each test sequence,
then incorporate such parameter values into corresponding SOAP messages,
and finally generate the executable test cases.

The executable test cases on each test sequence are derived from the behavior
model and the decision table for the operations of a web service. The Decision
Table (DT) is a triple DT = <C,E,R>, where the Conditions part (C) specifies
a set of constraints on the input parameters that can be evaluated to true or false,
the Events part (E) contains a set of response events related to the Response
type nodes, the Rules part (R) denotes a specific value of any combination of the
conditions and their corresponding execution events. For a parking fee service
PFC, for example, R3 in Table 1 means that if the login License input parameter
to operation login satisfies a regular expression (i.e., MATCH (login License,

552 C. Sun et al.

Algorithm 2. Test Sequence Generation
Input:

G: Constraint-based Behavior Model ;
gf : a graphml file;

Output:
Tss: a CPS set ;
cTss: a CFS Set ;

1: Let initTss ← ∅, Tss ← ∅, cTss ← ∅, and eleCoverSet ← ∅;
2: Set a Coverage Criterion cc;
3: if cc = Request Node Coverage then
4: Parse G to get ReqNodeSet whose element is a Request node;
5: eleCoverSet ← ReqNodeSet;
6: else if cc = Response Node Coverage then
7: Parse G to get ResNodeSet whose element is a Response node;
8: eleCoverSet ← ResNodeSet;
9: else

10: Parse G to get EdgeSet whose element is an Edge;
11: eleCoverSet ← EdgeSet;
12: end if
13: for each element ele in eleCoverSet do
14: Generate test sequence ts which covers ele;
15: Add ts to initTss;
16: end for
17: while eleCoverSet != ∅ do
18: Get the maximum length ts in initTss;
19: Get the element set eleTCoverSet which ts covers;
20: if eleTCoverSet != ∅ then
21: eleCoverSet ← eleCoverSet - eleTCoverSet;
22: initTss ← initTss - ts;
23: Tss ← Tss + ts;
24: end if
25: end while
26: Parse G to get ReqNodeSet whose element is a Request node;
27: for each node n in ReqNodeSet do
28: if n.Iteration = false then
29: Generate test sequence ts which repeated calls to n;
30: Add ts to cTss;
31: end if
32: if n.preOp != null then
33: Generate test sequence ts which directly calls to n;
34: Add ts to cTss;
35: end if
36: end for

[BJ][A-Y][0-9]{5}) and the login loginTime input parameter is between 0 and
24, then the response event is loginResponse succ. Thus, each rule of the DT
defines a pre-condition of a Response node. Table 1 shows an example DT for
the operation login of PFC, which has three rules, namely R1, R2, and R3.

Constraint-Based Model-Driven Testing of Web Services 553

Table 1. Decision Table for a login operation

Rules

R1 R2 R3

Conditions MATCH(login License, [BJ][A-Y][0-9]{5}) == true F T T

0 <= login loginTime <= 24 T F T

Events loginResponse succ
√

loginResponse fail
√ √

We traverse all the nodes of a test sequence to get their associated con-
straints. For the Request node, we obtain the related input parameter name and
type from CBM and convert these constraints into variable definitions of Z3.
For the Response node, we first parse the decision table for the node, select the
appropriate rule where the event is the target node. Then, we convert those con-
ditions to assert commands of Z3. For example, the loginResponse fail node
has two rules (i.e. R1 and R2 in Table 1). We then run the constraint solver
script to get the solution (combinations of input parameter values) that satis-
fies the constraints mentioned above. Finally, we combine the parameter value
combinations with the test sequences to form the executable test cases.

The above process only considers which element should be covered, with-
out taking into account the state of the transferred data when the element is
executed. Therefore, we propose a set of test suite generation strategies based
on these coverage criteria with or without considering the node state in the
test sequence, namely: ReqN-S and ReqN-NS representing Request Node Cover-
age with and without considering the state of node, respectively; ResN-S and
ResN-NS representing Response Node Coverage with and without considering
the state of node, respectively; E-S and E-NS representing Edge Coverage with
and without considering the state of node, respectively.

4.4 Test Execution

We execute the service under test with the generated test cases wrapped in SOAP
messages. In our experiment, these SOAP messages are coded into a client script.
During the execution, we monitor the invocations of the service operations from
the client script and determine whether an invocation violates the constraints.
If a violation is detected, we record the type of constraint violated by the test
case. Finally, we check whether such violations are as intended by the test cases.

5 Evaluation

5.1 Research Questions

In this study, we aim to answer the following research questions:

554 C. Sun et al.

RQ1 Can CxWSDL effectively describe all the presented behavior constraints?
To answer this question, we examine possible underlying restrictions
and assumption in the experimental web services and evaluate whether
CxWSDL is able to describe them.

RQ2 Can the proposed behavior constraint-based testing technique validate the
behavior conformance of web services from a user perspective?
To answer this question, we evaluate whether our approach can effectively
detect service invocations that violate the behavior constraints during exe-
cution as intended by the test cases, by comparing the expected and actual
invocation violations.

RQ3 What is the difference between the test suites generated using different
coverage criteria in terms of violation detection effectiveness?
To answer this question, we evaluate whether the test suites generated
using different coverage criteria show different detection effectiveness of
invocation violations.

5.2 Subject Programs

We choose three web services to evaluate the effectiveness of our technique. Park-
ing Fee Calculation (PFC) calculates the parking fee according to the vehicle
type (e.g. motorcycle, van, coupe), the parking day (whether weekend or work-
day), the parking time, and whether using a discount coupon. Expense Reim-
bursement System (EXP) assists the sales director of a firm in determining the
fee to be charged to each senior sales manager or sales manager for any exces-
sive mileage in the use of the company car, and in processing reimbursement
requests regarding various kinds of expenses such as airfare, hotel accommoda-
tion, meals, and phone calls. PostalMethods (PostalWS) provides the service of
mailing documents such as letters, invoices, notices, and contracts.

PostalWS is a real-world web service provided by PostalMethods.com
(http://www.postalmethods.com/), while PFC and EXP are two web services
developed based on real-world business specifications. In order to illustrate the
diversity of constraints, we derived another variant for each of PFC and EXP,
denoted as PFC2 and EXP 2, respectively. PFC2 considers an additional Time
Constraint, and EXP 2 excludes the Region Constraint.

5.3 Result and Analysis

Following the process of specifying behavior constraints in CxWSDL, deriving
behavior model, generating and executing test cases using MDGen, we have
tested each of the subject web services and collected experimental data relevant
to the three research questions. Due to space limitation, further details of the
experiments can not be included in the paper.

http://www.postalmethods.com/

Constraint-Based Model-Driven Testing of Web Services 555

Table 2. Summary of violation detection effectiveness

Services Coverage strategy

ReqN-S ReqN-NS ResN-S ResN-NS E-S E-NS

V TS V TS V TS V TS V TS V TS

PFC 73 109 3 4 82 118 5 6 82 118 5 6

PFC2 109 109 4 4 118 118 6 6 118 118 6 6

EXP 21 21 3 3 41 41 6 6 209 209 6 6

EXP 2 1 21 0 3 21 41 3 6 25 209 3 6

PosatlWS 7 26 5 12 85 102 13 20 85 152 13 23

(1) Expressive power of CxWSDL for behavior constraints descrip-
tion. We have analyzed each operation for PFC, PFC2, EXP, EXP 2 and
PostalWS, obtained the behavioral constraints of these experimental ser-
vices. The different types of behavior constraints for the different experi-
mental services are shown in the second column in Table 3.
We can see that the subject services cover all the six types of behavioral con-
straints discussed in Sect. 3. Furthermore, all these constraints are described
in CxWSDL documents, which can be deployed and accessed in the same
way as a WSDL document. In summary, the result shows that CxWSDL
can adequately express the service behavior constraints proposed in this
paper.

(2) Behavior conformance. After generating the behavior model and test
sequences for each subject service, we generate test cases using six test
case generation strategies. Each strategy and the number of test cases in
the associated test suites are shown in Table 2. The test suites contain both
constraint-conforming and constraint-violation test cases, where V refers to
the number of test cases that detected violations and TS refers to the total
number of test cases. In our experiment, once the CxWSDL document is
obtained, it is easy to generate the CBM and test suite automatically using
MDGen. The results show that our approach can detect all the improper
invocations and can correctly locate the violations as determined by the
types of service constraints being violated, as shown in Table 3.

(3) Effectiveness of different coverage criteria. Table 3 shows the violation
detection effectiveness of the different coverage strategies. The number of
related test cases generated using different coverage criteria are given in
the third to eighth columns. The results show that the Response Node and
Edge coverage criteria can cover more types of behavior constraints than
the Request Node coverage criterion.

556 C. Sun et al.

Table 3. Distribution of detected violation by different test case generation strategies

Services Constraints Coverage strategy

ReqN-S ReqN-NS ResN-S ResN-NS E-S E-NS

PFC paraRestriction 0 0 7 1 7 1

preOp 36 1 36 1 36 1

Iteration 37 2 37 2 37 2

paraRelation 0 0 2 1 2 1

PFC2 eT ime 108 3 110 4 110 4

paraRestriction 0 0 7 1 7 1

Iteration 1 1 1 1 1 1

EXP paraRestriction 0 0 20 3 20 3

invokeOp 12 1 3 1 9 1

ipRegion 9 2 18 2 180 2

EXP 2 paraRestriction 0 0 20 3 20 3

invokeOp 1 0 1 0 5 0

PosatlWS paraRestriction 0 0 52 7 52 7

preOp 7 4 7 4 7 4

Iteration 0 1 2 1 2 1

paraRelation 0 0 24 1 24 1

6 Related Work

Many research efforts have been made to address the challenging issues of web
services testing. We describe closely related work from the perspective of exten-
sions to WSDL and model-based testing techniques.

6.1 Extensions to WSDL

A service description contains basic information as well as additional infor-
mation, such as exceptions, operational semantics, and contractual conditions.
Researchers have proposed extensions to WSDL with various purposes, such as
testing and behavioral modeling.

For testing web services, Tsai et al. [15] proposed four types of extensions to
WSDL (input-output dependency, invocation sequence, hierarchical functional
description, and concurrent sequence specification) to support the description of
dependencies. Similarly, Sneed et al. [14] extended WSDL with the pre-condition
assertions, and Jiang et al. [8] extended WSDL using Design-by-Contract for
precisely locating faults when the web service does not meet its requirements.

For modeling service behaviors, Sheng et al. [13] extended WSDL with
Semantic Markup for Web Service (OWL-S) and Web Service Semantics
(WSDL-S) to support the description of service behaviors. Bertolino et al. [3]

Constraint-Based Model-Driven Testing of Web Services 557

extended WSDL with Protocol State Machine to describe the prescribed ordering
of operation invocations. Heckel et al. [6] extended WSDL with graph transfor-
mation rules to support the modeling of both the service’s behavior and the
client’s requirements.

In this work, we have extended WSDL with constraints to support the
description of restrictions or assumptions of service behaviors, and a formal
language is provided for expressing common constraints. Such an extension pro-
vides the basis for testing the conformance of web services to their behavior
constraints from a user perspective.

6.2 Model-Driven Testing of Web Services

Various models have been proposed for testing web services or their composites,
such as Finite State Machine (FSM) [5,9,10], Event Sequence Graph (ESG) [1,
4], and Unified Modeling Language (UML) [17,19].

Keum et al. [9] proposed to model web service behaviors with Extended Finite
State Machine (EFSM) and generate test cases from the EFSM model to achieve
a better test coverage. Endo et al. [5] proposed a model-based testing process for
service-oriented applications, and FSM was used to model and support test case
generation. Similarly, Kiran et al. [10] proposed an FSM model-based approach
to testing composite services, which focuses on the test coverage required for
testing the component services individually and their compositions.

Endo et al. [4] proposed an integrated testing strategy for web services, which
first used ESG to model web services under test, then generated test cases from
the ESG model, finally conducted a coverage analysis after the test case exe-
cution. Belli et al. [1] proposed a model-based approach to testing composite
services, in which message exchanges in a web service were viewed as events
modeled using ESG. These techniques mainly focus on structural testing of web
services or their compositions without considering internal constraints on the
invoked services.

Wu et al. [17] proposed a combination of EFSM and UML sequence diagram,
called EFSM-SeTM, from which various coverage criteria are defined to test all
possible scenarios. Similarly, Zhang et al. [19] proposed an extended UML activ-
ity diagram to model the behavior of BPEL service compositions, and defined
coverage criteria on the model. These techniques focus on coverage testing of
composite services, while ignoring behavior conformance of component web ser-
vices.

In this work, we have proposed a model-driven approach to testing web ser-
vices’ conformance via behavior constraints from a user’s perspective. The service
behavior is modeled using ESG derived from constraints expressed in CxWSDL,
and test cases are generated from the behavior model with respect to coverage
criteria. Unlike the existing model-based testing approaches that mainly focus on
test coverage of web services or their compositions, our approach focuses on the
behavior conformance of web services, and connects the description of behavior
constraints to service executions with executable test cases.

558 C. Sun et al.

7 Conclusion

In this paper, we have proposed a constraint-based model-driven testing app-
roach for testing the behavior conformance of web services. Our approach lever-
ages constraints to provide more accurate descriptions of the behavior logic of
web services and consequently enhances the testing of services through such
behavior-based test case generation and execution. Experimental results have
shown that our approach can effectively generate test cases and detect the ser-
vice invocations that violate the service behavior constraints.

In future work, we plan to consider further types of constraints and carry
out evaluations with more complex real-life web services.

Acknowledgment. This work is supported by the Beijing Natural Science Founda-
tion of China under Grant No. 4162040, the National Natural Science Foundation of
China under Grant No. 61872039, the Aeronautical Science Foundation of China under
Grant No. 2016ZD74004, the Fundamental Research Funds for the Central Universities
under Grant No. FRF-GF-17-B29, and China Postdoctoral Science Foundation under
Grant No. 2017M620617.

References

1. Belli, F., Endo, A.T., Linschulte, M., Simao, A.: A holistic approach to model-based
testing of web service compositions. Softw.: Pract. Exp. 44(2), 201–234 (2014)

2. Belli, F., Linschulte, M.: Event-driven modeling and testing of web services. In:
Proceedings of the 32nd IEEE International Computer Software and Applications
Conference, pp. 1168–1173. IEEE CS (2008)

3. Bertolino, A., Polini, A.: The audition framework for testing web services interop-
erability. In: Proceedings of the 31st International Conference on Software Engi-
neering and Advanced Applications, pp. 134–142. IEEE CS (2005)

4. Endo, A.T., Linschulte, M., Simao, A.D.S., Souza, S.R.S.: Event-and coverage-
based testing of web services. In: Proceedings of the 4th International Conference
on Secure Software Integration and Reliability Improvement Companion, pp. 62–
69. IEEE CS (2010)

5. Endo, A.T., Simao, A.: Model-based testing of service-oriented applications via
state models. In: Proceedings of the 8th IEEE International Conference on Services
Computing, pp. 432–439. IEEE CS (2011)

6. Heckel, R., Mariani, L.: Automatic conformance testing of web services. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 34–48. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31984-9 4

7. Hou, K.J., Bai, X.Y., Lu, H., Li, S.F., Zhou, L.Z.: Web service test data generation
using interface semantic contract. J. Softw. 24(9), 2020–2041 (2013). (in Chinese)

8. Jiang, Y., Xin, G.M., Shan, J.H., Xie, B.: Research on a testing technology based
on design-by-contract. J. Softw. 15, 130–137 (2004). (in Chinese)

9. Keum, C.S., Kang, S., Ko, I.-Y., Baik, J., Choi, Y.-I.: Generating test cases for web
services using extended finite state machine. In: Uyar, M.Ü., Duale, A.Y., Fecko,
M.A. (eds.) TestCom 2006. LNCS, vol. 3964, pp. 103–117. Springer, Heidelberg
(2006). https://doi.org/10.1007/11754008 7

https://doi.org/10.1007/978-3-540-31984-9_4
https://doi.org/10.1007/11754008_7

Constraint-Based Model-Driven Testing of Web Services 559

10. Kiran, M., Simons, A.J.H.: Model-based testing for composite web services in cloud
brokerage scenarios. In: Ortiz, G., Tran, C. (eds.) ESOCC 2014. CCIS, vol. 508, pp.
190–205. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14886-1 18

11. Kristian, K.: Graphwalker (2017). http://graphwalker.github.io
12. Micskei, Z.: Model-based testing (MBT) (2017). http://mit.bme.hu/∼micskeiz/

pages/mbt.html
13. Sheng, Q.Z., Maamar, Z., Yao, L., Szabo, C., Bourne, S.: Behavior modeling and

automated verification of web services. Inf. Sci. 258(3), 416–433 (2014)
14. Sneed, H.M., Huang, S.: WSDLTest - a tool for testing web services. In: Proceedings

of the 8th IEEE International Workshop on Web Site Evolution, pp. 14–21. IEEE
CS (2006)

15. Tsai, W.T., Paul, R., Wang, Y., Fan, C., Wang, D.: Extending WSDL to facilitate
web services testing. In: Proceedings of the 7th IEEE International Symposium on
High-Assurance Systems Engineering (HASE 2002), pp. 171–172. IEEE CS (2002)

16. Wang, P.W., Ding, Z.J., Jiang, C.J., Zhou, M.C.: Constraint-aware approach to
web service composition. IEEE Trans. Syst. Man Cybern. Syst. 44(6), 770–784
(2017)

17. Wu, C.S., Huang, C.H.: The web services composition testing based on extended
finite state machine and UML model. In: Proceedings of the 5th International
Conference on Service Science and Innovation, pp. 215–222. IEEE CS (2013)

18. Xu, L., Chen, L., Xu, B.W.: Testing web services based on user requirements. J.
Softw. 36(6), 1029–1040 (2011)

19. Zhang, G., Mei, R., Zhang, J.: A business process of web services testing method
based on UML 2.0 activity diagram. In: Proceedings of the Workshop on Intelligent
Information Technology Application, pp. 59–65. IEEE CS (2007)

https://doi.org/10.1007/978-3-319-14886-1_18
http://graphwalker.github.io
http://mit.bme.hu/~micskeiz/pages/mbt.html
http://mit.bme.hu/~micskeiz/pages/mbt.html

	Constraint-Based Model-Driven Testing of Web Services for Behavior Conformance
	1 Introduction
	2 Approach Overview
	3 Constraints and Their Formal Description
	3.1 Types of Behavior Constraints
	3.2 Formal Description of Constraints

	4 Constraint-Based Model-Driven Testing of Web Services
	4.1 Constraint-Based Behavior Model Generation
	4.2 Test Sequence Generation
	4.3 Test Case Generation
	4.4 Test Execution

	5 Evaluation
	5.1 Research Questions
	5.2 Subject Programs
	5.3 Result and Analysis

	6 Related Work
	6.1 Extensions to WSDL
	6.2 Model-Driven Testing of Web Services

	7 Conclusion
	References

