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Abstract. With the growing popularity of mobile devices, a new
paradigm called mobile crowdsourcing emerged in the recent years.
Mobile users with restricted computational capability and sensing ability
are now able to conduct complex tasks with the help of other users in
the same mobile crowdsourcing system. In this paper, we consider the
mobile crowdsourcing system model based on the spontaneously-formed
mobile social networks (MSNs). We introduce two crowdsourcing task
scheduling problems under this system model, with one problem aim-
ing to minimize the operating cost of some crowdsourcing tasks and
the other focusing on minimizing the overall completion time of tasks
belonging to the same project. Correspondingly, under offline settings,
we propose an optimal algorithm and an approximation algorithm for
these two problems respectively. The optimality and the approximation
ratio are analyzed accordingly. Based on these two algorithms, we fur-
ther design two online algorithms to deal with the problems under online
settings and their competitive ratios are computed. Finally, we verify the
effectiveness and efficiency of the proposed methods through extensive
numerical experiments on synthetic datasets.
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1 Introduction

With the rapid development of technology nowadays, small-sized portable mobile
devices are prevailing and this enables mobile users to conduct complex tasks
with the embedded powerful mobile sensors. These tasks may include air qual-
ity [4] and urban noise [11] measurement, traffic [6] and road surface [13] mon-
itoring, etc. Since the computational capability and sensing ability of a single
mobile user may not be enough to carry out a large project which consists of
many relatively small and independent tasks, it is necessary to seek the help of
other users and distribute these tasks among them in order to complete the whole
project as efficiently as possible. This forms the idea of mobile crowdsourcing.

Most mobile crowdsourcing activities are carried out in a large mobile crowd-
sourcing system. This kind of crowdsourcing systems usually requires quite a lot
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of human and material resources for management and maintenance. If a requester
just wants to distribute the crowdsourcing tasks through his social relationships
(including families, friends, colleagues, acquaintances, etc.), the requester may
conduct his own crowdsourcing activities by taking the advantage of the exist-
ing mobile social networks (MSNs) to avoid unnecessary overheads and thus save
the budget. This idea seems more appealing than the traditional crowdsourcing
paradigm to those requesters with limited budgets.

In this paper, we mainly focus on the task scheduling problems for MSN-
based mobile crowdsourcing systems. Unlike traditional task scheduling prob-
lems in mobile crowdsourcing, we require the requester and the crowd workers
to actually make person-to-person contacts, which are some probabilistic events
in the mobile social networks, so that crowdsourcing tasks can be sent by the
requester and their feedbacks can be delivered by the crowd workers. Each crowd-
sourcing task requires one contact between the requester and the crowd worker
when it is being distributed and another when its feedback is being delivered.
Our objectives are strongly related to the completion time of each task, which
consists of the time for its distribution, processing, and feedback delivery.

Suppose there is an operating cost related to task si when it is being scheduled
and processed in the mobile crowdsourcing system, and the cost is proportional
to the completion time of si. Then, the cost of si can be denoted as wiCi,
where wi is the proportion of the cost to the task completion time, and Ci is
the actual completion time of si. Our min-WCT problem aims to minimize the
total weighted completion time of all the crowdsourcing tasks, so that the total
cost of conducting the crowdsourcing campaign can be minimized. Meanwhile,
in some scenarios, the crowdsourcing tasks of a requester may be part of a larger
project, and all of them should be completed as soon as possible. Hence, we
introduce the min-MCT problem to minimize the maximum completion time of
all the crowdsourcing tasks (i.e., max Ci) in order to accelerate the progress of
the following stages in the project.

More specifically, the main contributions of this paper include:

1. We introduce two task scheduling problems for crowdsourcing in mobile social
networks and formulate them as the min-WCT problem and the min-MCT
problem respectively.

2. For the min-WCT problem, we propose an optimal offline algorithm named
LWF and give the proof of its optimality. Based on LWF, we design an online
algorithm named CosMOS to deal with min-WCT under online settings and
give the analysis of its competitive ratio.

3. For the min-MCT problem, we propose an offline approximation name LRSTF
and give the analysis of its approximation ratio. Based on LRSTF, we also
design another online algorithm named TiMOS to deal with min-MCT under
online settings and give the analysis of its competitive ratio.

4. We conduct extensive numerical experiments on synthetic datasets to com-
pare our algorithms with some traditional scheduling algorithms. Both the
theoretical analysis and the experimental results validate the effectiveness
and efficiency of our designs.
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The rest of this paper is organized as follows. Section 2 discusses some related
works. Section 3 describes the MSN-based mobile crowdsourcing system model.
In Sect. 4, we formulate the min-WCT problem, and propose an optimal offline
solution named LWF and an online solution named CosMOS. In Sect. 5, we
formulate the min-MCT problem, and introduce an offline approximation named
LRSTF and an online solution named TiMOS. In Sect. 6, we conduct numerical
experiments to evaluate the performance of our designs. Section 7 is the final
conclusion.

2 Related Work

Mobile crowdsourcing is getting more and more research interests in the
recent years. Some of the literatures focus on the framework and application
design [9,18], while others pay more attention to the specific stages in the pro-
cess of mobile crowdsourcing, such as task scheduling [16], incentive mecha-
nisms [5], quality control [17], and security and privacy issues [15]. Generally,
there are three components or participants in a typical mobile crowdsourcing
system (MCS): requesters or crowdsourcers, crowd workers, and crowdsourcing
platform [14]. Specifically, to crowdsource a task, a requester submits the task
to a crowdsourcing platform, and optionally, after receiving the solutions pro-
vided by crowd workers, rates their qualities. Crowd workers choose to work on
those tasks and attempt to submit their solutions as feedback. An intermedia-
tion platform (i.e., crowdsourcing platform) builds a link between the requesters
and workers, which serves as a crowdsourcing enabler and has some rules for
the whole lifecycle of crowdsourcing, such as the skill-set, certification level, due
date, expected outcomes, and payments for the crowd workers.

With the growing popularity of mobile smart devices, the concept of the
mobile social networks (MSNs) gradually comes into our view. As an application
scenario, MSN is widely adopted in all kinds of problems including communi-
cation [19], social community detection [10], etc. Besides, researchers are also
interested in exploring inner features and characteristics regarding MSN itself.
In this paper, we focus on the task scheduling problems in MSN-based mobile
crowdsourcing systems. There have been plenty of previous literatures concern-
ing the topic of task scheduling problems [1–3]. Our problems may be similar to
the traditional scheduling problems on parallel machines, but our system model
includes a probabilistic event which is the person-to-person contact between the
requester and the crowd workers. In order to solve the problems, we have to
make online task scheduling decisions, and this makes our designs more realistic
and applicable under the scenario of crowdsourcing in mobile social networks.

3 System Model

In this section, we introduce the participants in the mobile social network (MSN)
and how they interact with each other under the paradigm of crowdsourcing.
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Here, the mobile social network model in [16] is adopted. Consider a crowd
of mobile users in the network, denoted as U = {u0, u1, . . . , um}. Each of these
mobile users carries a mobile device which supports wireless communication
and possesses certain processing capability to carry out some crowdsourcing
tasks. Two mobile users can communicate with each other only if they get close
enough for Bluetooth to work, or enter the communication range of some access
points respectively to interact indirectly via WiFi. Assume that the connection
duration and bandwidth are enough to satisfy our needs to communicate for the
purpose of crowdsourcing. We further adopt the mobility model in [7], where
the pairwise inter-contact time is exponentially distributed. This means that the
inter-meeting time between any pair of mobile users ui and uj (i �= j) follows the
exponential distribution with parameter λij . This parameter can be estimated
from historical communication records between ui and uj .

Under the paradigm of crowdsourcing, there is a user in the MSN that hopes
to recruit other mobile users to help complete some crowdsourcing tasks. The
user with this kind of need is called the requester, and those who have the poten-
tial to carry out these tasks are called crowd workers. Without loss of generality,
we assume u0 is a requester and the other m users {u1, u2, . . . , um} in the MSN
are crowd workers that are encouraged to participate in the crowdsourcing cam-
paign by some incentive mechanisms. Since crowd workers are not supposed to
communicate with each other, we denote λ0j as λj for simplicity.

Suppose that the requester u0 has n indivisible crowdsourcing tasks, denoted
as S = {s1, s2, · · · , sn}. The workload of task si ∈ S is represented by its
Required Service Time (RST), denoted as τi. Each crowdsourcing task should
be assigned to only one crowd worker by the requester. The distribution, as well
as the feedback, of each task requires one contact between the designated crowd
worker and the requester. In practice, it is more efficient for the requester to send
a batch of crowdsourcing tasks to a crowd worker at their first contact and receive
the feedbacks whenever they are ready at the time of their following contacts. We
use Λ = {S1, S2, . . . , Sm} to denote an scheduling decision of the n crowdsourcing
tasks to the m crowd workers, where

⋃
Sj∈Λ Sj = S and Sj1 ∩ Sj2 = φ(j1 �= j2).

A crowd worker will process the tasks assigned to him one by one until there
is none left. Thus, the Completion Time (CT) of task si includes three parts:
(a) the time for the requester u0 and the crowd worker uj , to whom we assign
the task si (i.e., si ∈ Sj), to meet for the first time and complete the task
distribution process (this includes the distribution of all the tasks in Sj), (b) the
time for uj to process all the tasks prior to si in Sj and task si itself, and (c)
the time for u0 and uj to meet again after the feedback of si becomes available.

Since we cannot foresee the exact time when the requester and the crowd
workers meet, we define the Expected Meeting Time (EMT), which is 1

λj
under

the assumption of the exponentially distributed inter-meeting time between u0

and uj , to represent the time in part (a) and part (c). Therefore, the completion
time of task si, which is denoted as Ci, consists of two expected meeting time
intervals and the time for the crowd worker uj to process all the tasks prior to
si in Sj and task si itself.
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4 Cost Minimized Scheduling

In this section, we first formulate the cost-related min-WCT problem for crowd-
sourcing task scheduling. Then, we propose an optimal algorithm LWF to solve
the problem under offline settings, followed by the proof of its optimality. Finally,
we give an online algorithm CosMOS based on LWF to solve the problem under
online settings together with the analysis of its competitive ratio.

4.1 Problem Formulation

Consider the system model described in the previous section (Sect. 3). Assume
that all the tasks have the same required service time, i.e., τ1 = τ2 = · · · = τn.
Suppose there is an operating cost related to task si when it is being scheduled
and processed in the crowdsourcing system, and the cost is proportional to the
completion time of task si. Our goal is to minimize the total operating cost of
carrying out all the tasks in S. This is equivalent to the following definition of
the min-WCT problem.

Definition 1 (Minimizing the Weighted Completion Time (min-
WCT)). Given tasks S = {s1, s2, . . . , sn} with the same required service time
(i.e., τ1 = τ2 = · · · = τn) and their corresponding weights W = {w1, w2, . . . , wn},
min-WCT aims to find an scheduling decision Λ = {S1, S2, . . . , Sm} among
crowd workers U = {u1, u2, . . . , um} such that the total weighted completion
time of all the tasks

∑n
i=1 wiCi is minimized.

Denote
∑n

i=1 wiCi as WCT in this section for simplicity.

4.2 Offline Task Scheduling

First, we would like to consider the min-WCT problem under offline settings. In
this scenario, the requester is supposed to make the scheduling decision before
any contacts with the potential crowd workers and stick to this decision through-
out the entire crowdsourcing campaign.

Intuitively, we wish to reduce the completion time for tasks with large weights
so that we can reduce the total weighted completion time significantly. Following
this idea, we design the Largest Weight First (LWF) algorithm (Algorithm 1)
to solve the min-WCT problem under offline settings. The concept of a crowd
worker’s Expected Workload (EW) is defined as follows.

Definition 2 (Expected Workload (EW)). The expected workload EWj of
a crowd worker uj consists of three parts: (a) the expected meeting time for uj

and the requester u0 to meet for the first time and complete the task distribution
process, (b) the total required service time of all the tasks assigned to uj, i.e.,
the tasks in Sj, and (c) the expected meeting time for uj and u0 to meet again
and deliver the feedback of the tasks. Furthermore, we define EWj = 2

λj
if no

task is assigned to uj and Sj is empty.
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Algorithm 1: The LWF Algorithm
Input: S = {s1, s2, . . . , sn : τ1 = τ2 = · · · = τn},

W = {w1, w2, . . . , wn : w1 ≥ w2 ≥ · · · ≥ wn},
U = {u1, u2, . . . , um : λ1, λ2, . . . , λm}

Output: ΛLWF = {S1, S2, . . . , Sm}
1 for j ← 1 to m do
2 Sj ← φ;
3 EWj ← 2

λj
;

4 for i ← 1 to n do
5 jmin ← arg min{EWk | uk ∈ U};
6 Sjmin ← Sjmin ∪ {si};
7 EWjmin ← EWjmin + τi;

8 return ΛLWF = {S1, S2, . . . , Sm};

The Optimality. We briefly describe the proof of its optimality as follows.
Assume Λopt = {S∗

1 , S∗
2 , . . . , S∗

m} is the optimal scheduling decision for the min-
WCT problem under offline settings.

Lemma 1. For any S∗
j ∈ Λopt, a task sjp ∈ S∗

j with a larger weight wjp is
processed prior to the processing of another task sjq ∈ S∗

j \{sjp} with a smaller
weight wjq (ties may be broken arbitrarily).

According to Lemma 1, we can conclude that in order to achieve the optimal
solution, tasks assigned to the same crowd worker must be processed in a non-
increasing order according to their weights by this worker.

Lemma 2. Suppose that we have somehow determined an scheduling decision
for {s1, s2, . . . , si−1} and this partial scheduling shall not be further changed,
which means all the other tasks must be scheduled behind them, the optimal
solution to the min-WCT problem under this condition must assign task si to
the crowd worker with the currently smallest expected workload, denoted as uj.

Then, we are ready to prove the optimality of the LWF algorithm as follows.

Theorem 1. As for the min-WCT problem, the LWF algorithm achieves the
optimal solution by assigning the task with the largest weight to the crowd worker
with the currently smallest expected workload in each round until all tasks in S
have been assigned.

Proof. We prove this theorem by induction. The base case where no task has
been assigned is trivial. For the inductive step, assume we can obtain the opti-
mal scheduling decision for tasks in {s1, s2, . . . , sk−1}(1 ≤ k ≤ n) by the LWF
algorithm. Then, according to Lemmas 1 and 2, we can also obtain the opti-
mal scheduling decision for tasks in {s1, s2, . . . , sk} through another round of
scheduling by the LWF algorithm. Finally, we can obtain the optimal scheduling
decision for all the tasks in S = {s1, s2, . . . , sn} from the output of the LWF
algorithm. This finishes the proof of Theorem 1.
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4.3 Online Task Scheduling

Next, we would like to consider the min-WCT problem under online settings. In
this scenario, the requester does not need to make the final scheduling decision at
first. Instead, he can adjust his decision with the progress of the crowdsourcing
campaign. Since the requester gets a better knowledge of the crowd whenever he
meets a crowd worker, he can make the scheduling decision regarding this crowd
worker at the time of their first contact to improve the final result.

We build the Cost Minimized Online Scheduing (CosMOS) algorithm (Algo-
rithm2) based on our previous design. In the CosMOS algorithm, we make the
scheduling decision regarding each crowd worker at the time of his first con-
tact with the requester. When u0 meets uj , we determine a partial scheduling
decision of Sj = {sj1 , sj2 , . . . , sjk} and make it final. We denote the process of
determining Sj as decision step DSj in the CosMOS algorithm.

Algorithm 2: The CosMOS Algorithm
Input: S = {s1, s2, . . . , sn : τ1 = τ2 = · · · = τn},

W = {w1, w2, . . . , wn : w1 ≥ w2 ≥ · · · ≥ wn},
U = {u1, u2, . . . , um : λ1, λ2, . . . , λm}

Output: ΛCosMOS = {S1, S2, . . . , Sm}
1 when u0 meets uj do
2 Sj ← φ;
3 EWj ← 1

λj
;

4 foreach k such that uk ∈ U\{uj} do
5 Sk ← φ;
6 EWk ← 2

λk
;

7 foreach i such that si ∈ S (in an increasing order of i) do
8 kmin ← arg min{EWk | uk ∈ U};
9 Skmin ← Skmin ∪ {si};

10 EWkmin ← EWkmin + τi;

11 S ← S\Sj ;
12 U ← U\{uj};

13 return ΛCosMOS = {S1, S2, . . . , Sm};

Performance Analysis. Without loss of generality, we assume that the
requester u0 meets the crowd workers in the order of u1, u2, . . . , um. Assume that
after decision step DSj , the total weighted completion time is WCTj . Obviously,
WCTCosMOS = WCTm. Furthermore, let WCT0 = WCTLWF.

Theorem 2. WCTLWF = WCT0 ≥ WCT1 ≥ · · · ≥ WCTm = WCTCosMOS.

Proof. In any decision step DSj(1 ≤ j ≤ m), we will not change the scheduling
of any of the tasks in

⋃
1≤i≤j−1 Si, and the total weighted completion time of
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these tasks remains unchanged before and after the decision step. As for the
remaining tasks, we can prove that the modified LWF algorithm achieves the
optimal solution under the condition that u0 has met uj by duplicating the proof
of the optimality of our LWF algorithm. Therefore, we have WCTj−1 ≥ WCTj ,
and this finishes the proof of Theorem2.

Now, we give the competitive ratio of the CosMOS algorithm as follows.

Theorem 3. Assume someone can foresee the mobilities of all the crowd work-
ers, so that he knows exactly at what time each meeting between the requester
and the crowd workers will happen. Based on this knowledge, he can give an
optimal online task scheduling decision, denoted as ΛOPT = {S∗

1 , S∗
2 , . . . , S∗

m}.
Then, we have

WCTCosMOS

WCTOPT
≤ 1 +

wmax

∑m
j=1

2
λj

wminτmin
.

Proof. First, we can give WCTOPT as follows.

WCTOPT =
m∑

j=1

∑

sjk
∈S∗

j

wjk(tj + t′j + Tjk + τjk).

If we adopt the scheduling decision of ΛOPT in the offline version of min-WCT
and denote it as Λ′, then we have

WCT ′ =
m∑

j=1

∑

sjk
∈S∗

j

wjk(
2
λj

+ Tjk + τjk)

= WCTOPT +
m∑

j=1

∑

sjk
∈S∗

j

wjk(
2
λj

− tj − t′j)

≤ WCTOPT +
m∑

j=1

∑

sjk
∈S∗

j

wjk · 2
λj

.

Since ΛLWF is the optimal scheduling for the offline version of min-WCT,
then we have WCTLWF ≤ WCT ′. Combined with Theorem2, we can get

WCTCosMOS ≤ WCTLWF ≤ WCT ′ ≤ WCTOPT +
m∑

j=1

∑

sjk
∈S∗

j

wjk · 2
λj

.

The lower bound of WCTOPT should be n · wmin · τmin, and this gives us

WCTCosMOS

WCTOPT
≤ 1 +

∑m
j=1

∑
sjk

∈S∗
j

wjk · 2
λj

WCTOPT

≤ 1 +
wmax

∑m
j=1

2
λj

wminτmin
.

Thus, Theorem 3 holds.
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5 Time Minimized Scheduing

In this section, we first formulate the time-related min-MCT problem for task
scheduling in mobile crowdsourcing systems. Then, we propose an approximation
algorithm LRSTF to solve the problem under offline settings, followed by the
performance analysis regarding its approximation ratio. Finally, we give an online
algorithm TiMOS based on LRSTF to solve the problem under online settings
together with the analysis of its competitive ratio.

5.1 Problem Formulation

In some cases, the crowdsourcing tasks of a requester may be part of a larger
project, and all of them should be completed as soon as possible. Hence, we
introduce the min-MCT problem to minimize the maximum completion time of
all these tasks in order to accelerate the progress of the following stages in the
project. In this problem, crowdsourcing tasks now have different values of the
required service time and there is no weight related to any of these tasks. Our
goal is equivalent to minimizing the completion time of the latest completed
task. The problem is formally defined as follows.

Definition 3 (Minimizing the Maximum Completion Time (min-
MCT)). Given tasks S = {s1, s2, . . . , sn} with required service time τi related
to task si, min-MCT aims to find an scheduling decision Λ = {S1, S2, . . . , Sm}
among crowd workers U = {u1, u2, . . . , um} such that the maximum completion
time of all the tasks max

1≤i≤n
Ci is minimized.

Denote max
1≤i≤n

Ci as MCT in this section for simplicity.

The NP-Hardness. Consider a special case of the min-MCT problem, in which
there may exist one requester and two crowd workers in the mobile crowdsourcing
system. The expected inter-meeting time between the requester and any one of
the crowd workers is assumed to be zero. In this case, the min-MCT problem is
equivalent to the PARTITION problem, which is traditionally considered to be
NP-hard according to [8]. Therefore, the general case of the min-MCT problem
is also NP-hard.

5.2 Offline Task Scheduling

The observation we have on the min-MCT problem is that we should leave the
tasks with relatively short required service time to the end of our scheduling pro-
cess so that the expected workloads of all the workers can be balanced and the
maximum completion time of all the tasks can be reduced. Unfortunately, this
idea only leads to an approximation rather than an optimal solution, which we
denote as the Longest Required Service Time First (LRSTF) algorithm (Algo-
rithm3). We claim that its approximation ratio is (32 − 1

2m ) and omit its detailed
proof due to limited space.
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Algorithm 3: The LRSTF Algorithm
Input: S = {s1, s2, . . . , sn : τ1 ≥ τ2 ≥ · · · ≥ τn},

U = {u1, u2, . . . , um : λ1, λ2, . . . , λm}
Output: ΛLRSTF = {S1, S2, . . . , Sm}

1 for j ← 1 to m do
2 Sj ← φ;
3 EWj ← 2

λj
;

4 for i ← 1 to n do
5 jmin ← arg min{EWk | uk ∈ U};
6 Sjmin ← Sjmin ∪ {si};
7 EWjmin ← EWjmin + τi;

8 return ΛLRSTF = {S1, S2, . . . , Sm};

5.3 Online Task Scheduling

Similar to our design of the CosMOS algorithm, we build the Time Minimized
Online Scheduing (TiMOS) algorithm (Algorithm4) based on the LRSTF algo-
rithm. In the TiMOS algorithm, we make the scheduling decision regarding each
crowd worker at the time of his first contact with the requester. When u0 meets
uj , we determine a partial scheduling decision of Sj = {sj1 , sj2 , . . . , sjk} and
make it final. We also denote the process of determining Sj as decision step DSj

in the TiMOS algorithm.

Algorithm 4: The TiMOS Algorithm
Input: S = {s1, s2, . . . , sn : τ1 ≥ τ2 ≥ · · · ≥ τn},

U = {u1, u2, . . . , um : λ1, λ2, . . . , λm}
Output: ΛTiMOS = {S1, S2, . . . , Sm}

1 when u0 meets uj do
2 Sj ← φ;
3 EWj ← 1

λj
;

4 foreach k such that uk ∈ U\{uj} do
5 Sk ← φ;
6 EWk ← 2

λk
;

7 foreach i such that si ∈ S (in an increasing order of i) do
8 kmin ← arg min{EWk | uk ∈ U};
9 Skmin ← Skmin ∪ {si};

10 EWkmin ← EWkmin + τi;

11 S ← S\Sj ;
12 U ← U\{uj};

13 return ΛTiMOS = {S1, S2, . . . , Sm};
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Performance Analysis. Without loss of generality, we assume that the
requester u0 meets the crowd workers in the order of u1, u2, . . . , um. First, we
need to calculate the difference between the solution given by LRSTF and the
optimal offline solution in each decision step. Assume that Λ

(j)
opt is the optimal

offline solution in decision step DSj , and Λ
(j)
LRSTF is the solution given by the

LRSTF algorithm. Obviously, ΛTiMOS is Λ
(m)
LRSTF, and we define Λ

(0)
LRSTF to be

ΛLRSTF. Then we have the following theorem.

Theorem 4. MCT
(j)
opt ≤ MCT

(j)
LRSTF ≤ MCT

(j)
opt + τmax.

Proof. First, since Λ
(j)
opt is the optimal offline solution in decision step DSj , we

have MCT
(j)
opt ≤ MCT

(j)
LRSTF. Combining the two inequalities below,

MCT
(j)
LRSTF ≤ τn(1 − 1

m
) +

∑n
i=1 τi +

∑m
j=1

2
λj

m

MCT
(j)
opt ≥

∑n
i=1 τi +

∑m
j=1

2
λj

m

we can get that

MCT
(j)
LRSTF ≤ MCT

(j)
opt + τn(1 − 1

m
) ≤ MCT

(j)
opt + τmax.

This finishes the proof of this theorem.

Similar to Theorem 2, we directly give the following theorem regarding Λ
(j)
opt.

Theorem 5. MCT
(0)
opt ≥ MCT

(1)
opt ≥ · · · ≥ MCT

(m)
opt .

Now, we can compute the competitive ratio of the TiMOS algorithm.

Theorem 6. Assume someone can foresee the mobilities of all the crowd work-
ers, so that he knows exactly at what time each meeting between the requester
and the crowd workers will happen. Based on this knowledge, he can give an
optimal online task scheduling decision, denoted as ΛOPT = {S∗

1 , S∗
2 , . . . , S∗

m}.
Then, we have

MCTTiMOS

MCTOPT
≤ 2 +

2
λminτmax

.

Proof. First, we can give MCTOPT as follows.

MCTOPT = max
S∗
j ∈ΛOPT

⎧
⎨

⎩
tj + t′j +

∑

sjk
∈S∗

j

τjk

⎫
⎬

⎭
.



328 J. Fan et al.

If we adopt the scheduling decision of ΛOPT in the offline version of min-MCT
and denote it as Λ′, then we have

MCT ′ = max
S∗
j ∈Λ′

⎧
⎨

⎩

2
λj

+
∑

sjk
∈S∗

j

τjk

⎫
⎬

⎭

≤ MCTOPT + max
{

2
λj

− tj − t′j

}

≤ MCTOPT +
2

λmin
.

Since Λ
(0)
OPT is the optimal scheduling for the offline version of min-MCT, we

have MCT
(0)
OPT ≤ MCT ′. Combined with Theorems 4 and 5, we can get

MCTTiMOS = MCT
(m)
LRSTF ≤ MCT

(m)
opt +τmax ≤ MCT

(0)
opt+τmax ≤ MCT ′+τmax.

Therefore, we have

MCTTiMOS ≤ MCTOPT +
2

λmin
+ τmax,

and further considering the fact that MCTOPT ≥ τmax, we have

MCTTiMOS

MCTOPT
≤ 1 +

2
λmin

+ τmax

τmax
= 2 +

2
λminτmax

.

Thus, Theorem 6 holds.

6 Evaluation

In this section, we carry out extensive numerical experiments to evaluate the
performances of the proposed algorithms.

6.1 Algorithms in Comparison

The first scheduling algorithm we would like to compare with is the Water Filling
(WF) algorithm described in [12] in the context of mobile computing. More
specifically, the WF algorithm assigns tasks to the earliest idle worker in their
initial order, which is also called the natural order or the list order.

For the min-WCT problem, we also implement the Smallest Weight First
(SWF) algorithm to assign tasks in a reverse order of the LWF algorithm. For
the min-MCT problem, we compare our design with another algorithm called
the Shortest Required Service Time First (SRSTF) algorithm to assign tasks in
a reverse order of the LRSTF algorithm. The SRSTF algorithm is the optimal
algorithm when we consider the problem of reducing the average completion
time of all the tasks, and its optimality is proved in [16].
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6.2 Simulation Results

Figure 1 shows the simulation results when we change the number of crowd work-
ers, the average inter-meeting time between the requester and crowd workers,
the number of tasks and the average workload of tasks respectively. Given the
same conditions, LWF can always deliver a better result than WF or SWF.
Meanwhile, SWF performs even worse than WF.

Fig. 1. Performance comparisons for min-WCT on synthetic datasets

Figure 2 shows the simulation result when we change the number of crowd
workers, the average inter-meeting time between the requester and crowd work-
ers, the number of tasks and the average workload of tasks respectively. Given
the same conditions, LRSTF can always deliver a better result than WF or
SRSTF. Meanwhile, SRSTF performs almost as badly as WF.

7 Conclusion

In this paper, we discuss two problems regarding task scheduling for crowdsourc-
ing in mobile social networks. The first one is the min-WCT problem, which aims
to minimize the total weighted completion time of some crowdsourcing tasks. We
propose an optimal algorithm named LWF to solve this problem under offline
settings and give the proof of its optimality. Based on this optimal offline algo-
rithm, we further design an online algorithm named CosMOS to deal with the
min-WCT problem under online settings. By computing the competitive ratio,



330 J. Fan et al.

Fig. 2. Performance comparisons for min-MCT on synthetic datasets

we find that CosMOS can achieve near-optimal performance under certain cir-
cumstances. The other problem in discussion is the min-MCT problem, which
focuses on minimizing the maximum completion time among the tasks belong-
ing to the same project. Since the offline version of this problem is proved to
be NP-hard, we propose an approximation algorithm named LRSTF to solve
it and the approximation ratio is analyzed. Similarly, we design another online
algorithm named TiMOS to deal with the online version of the min-MCT prob-
lem and its difference with the optimal solution is bounded by a fixed value. At
last, we conduct extensive simulations on synthetic datasets to demonstrate the
performance of our algorithms. Both the theoretical analysis and the simulation
results validate the effectiveness and efficiency of our designs.

Acknowledgements. This work is supported by the National Key R&D Program
of China (2018YFB1004703), the National Natural Science Foundation of China
(61872238, 61672353), the Shanghai Science and Technology Fund (17510740200), the
CCF-Tencent Open Research Fund (RAGR20170114), and Huawei Innovation Research
Program (HO2018085286).

References

1. Allahverdi, A., Ng, C.T., Cheng, T.C.E., Kovalyov, M.Y.: A survey of scheduling
problems with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008)

2. Bridi, T., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: A constraint
programming scheduler for heterogeneous high-performance computing machines.
IEEE Trans. Parallel Distrib. Syst. (TPDS) 27(10), 2781–2794 (2016)



Crowdsourcing Task Scheduling in Mobile Social Networks 331

3. Ding, J., Song, S., Zhang, R., Chiong, R., Wu, C.: Parallel machine schedul-
ing under time-of-use electricity prices: new models and optimization approaches.
IEEE Trans. Autom. Sci. Eng. 13(2), 1138–1154 (2016)

4. Dutta, P., et al.: Common sense: participatory urban sensing using a network of
handheld air quality monitors. In: ACM International Conference on Embedded
Networked Sensor Systems (SenSys), pp. 349–350 (2009)

5. Fan, Y., Sun, H., Liu, X.: Poster: TRIM: a truthful incentive mechanism for
dynamic and heterogeneous tasks in mobile crowdsensing. In: ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking (MobiCom), pp. 272–274
(2015)

6. Farkas, K., Nagy, A.Z., Tomas, T., Szabó, R.: Participatory sensing based real-time
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