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Abstract. A typical complex event processing (CEP) service is com-
posed by a set of operators organized as a directed acyclic graph. This
kind of service is usually used to handle large amounts of real-time data.
Meanwhile, edge computing has been widely accepted as a new paradigm
to improve the QoS of deployed services by making the services closer
to the data. Thus, the response time, which is a crucial QoS metric for
CEP services, can be significantly reduced by deploying CEP services on
the edge network. However, it is often unlikely for a single node of the
edge network to host all operators of a CEP service due to the limited
computing resources. Therefore, it is desirable for a CEP service to place
its operators on different nodes of the edge network to keep the response
time low, especially when the input rate of the CEP service significantly
increases. In this paper, we reduce the average response time of CEP ser-
vices by deploying the operators on the edge nodes dynamically according
to the predicted response time of CEP services. Specifically, we first pro-
pose a system model to capture the response time of the CEP services,
based on which we formulate the problem of the optimal placement of
CEP operators in the edge network. We then propose an algorithm that
predicts the response time of CEP services and deploys the operators on
the edge nodes with the minimum predicted delay. A simulation-based
evaluation demonstrates that, compared with two state-of-the art algo-
rithms, our algorithm can reduce the total response time by 33% and
45% on average, respectively.
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1 Introduction

Typically, a complex event processing (CEP) service is used to handle large
amounts of real-time data by using a set of operators organized as a directed
acyclic graph called operator graph. In practice, CEP services are usually
deployed on cloud data centers. However, this deployment results in deliver-
ing data from the edge of the network to remote cloud data centers and thus
seriously reduces QoS of CEP services due to the long distance between data
sources and remote cloud data centers, as well as the mass data transmission.

To address this issue, a new paradigm, called edge computing [12], has been
proposed to improve the QoS of deployed services by moving services from cloud
data centers to the edge of network. Consequently, a growing body of work
[2,4,14] focuses on deploying CEP services on the edge network (i.e., nearest to
the user [14]) to improve the QoS of CEP services, e.g., to reduce the response
time. However, due to the limited computing capacity, lots of users queries, and
large amounts of input events, congestion can easily occur at the nearest edge
node and increase the response time of CEP services dramatically. Therefore,
it is important to be aware of the response time of a CEP service during the
placement of its operators on suitable nodes of the edge network to keep the
response time low, especially when the input rate of the CEP service significantly
increases. We use the following example to demonstrate this situation.

Consider the example shown in Fig. 1. This figure depicts the placement of
a CEP service that queries traffic accident events, which are defined as a lane
switch event after a decreased speed event. The CEP service has an operator
graph consisting of a lane operator, a speed operator, and an accident operator.
The edge network contains three edge nodes: v0, v1, and v2. The resources capac-
ity of the nodes v0, v1, and v2 are 1, 2, and 2, respectively. The resources refers
to computing resources, such as CPU, etc. Connected devices deliver and cache
original data to the nearest node v0 in the edge network. An intuitive strategy
of reducing the response time is to deploy operators on the nearest edge node
[14]. As Fig. 1 shows, the lane operator is deployed on the nearest edge node v0.
At this moment, v0 has no resources to host other operators. Thus, the speed
operator and the accident operator are deployed on the edge node v1 which is
the second nearest edge node except v0. However, when the input rate of the
CEP services largely increases, large amounts of data have to be delivered from
the edge node v0 to v1. The congestion will occur and result in increasing the
response time. On the other hand, another placement strategy is to deploy oper-
ators distributed in the edge network to balance the load between edge nodes in
advance [6]; for example, deploying the accident operator to the edge node v2 to
reduce the load of v1. When the input rate is high, this placement can reduce
the response time compared to the first placement. However, when the input
rate remains low, this placement increases the transmission delay between edge
nodes and makes the response time even worse. In this paper, we argue that it
is important to balance the load of different edge nodes during the placement of
CEP operators by being aware of the response time of the operator graphs.
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Fig. 1. Deploy operators of a CEP service that queries accident events on the edge
network.

To achieve this goal, we first propose a combined model including CEP model
and edge model to capture the response time of CEP services. Based on the mod-
els, we predict the delay of these edge nodes according to the monitored informa-
tion. We then prove the optimal operator placement for CEP in edge computing
is NP-hard. Finally, we propose a novel approximation-based algorithm that
deploys the operators on the edge node with the lowest predicted delay. We
generate 100 operator graphs and 30 edge networks for our simulation-based
evaluation. The result demonstrates that our approach is able to maintain low
response time when the input rate of CEP services significantly increases.

This paper makes the following three contributions: (1) We propose a system
model to capture the response time of CEP services, and formulate a novel opti-
mization problem, that is, to find an optimal placement of CEP operators in the
edge network such that the response time of the CEP services is minimized. (2)
We prove the optimal operator placement problem for CEP in edge computing
is NP-hard. (3) We propose a novel response time aware operator placement
algorithm that keeps the average response time of the operator graphs low.

The rest of the paper is structured as follows. Section 2 reviews related
work. Section 3 describes the system models and problem formulation. Section 4
presents our response time aware operator placement algorithm. Section 5 reports
the evaluation results, and finally, Sect. 6 concludes the paper.
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2 Related Work

Operator placement problem has been widely studied in the last decades. The
basic form of the operator placement problem is stated as: given a network of N
nodes with some or all of them generating data processed by an operator, place
the operator in the network so as to reduce the network traffic [16]. Several
placement algorithms [2,10,11,16] have been proposed. These algorithms are
characterized by different assumptions and optimization goals. Pietzuch et al.
[10] design a stream-based overlay network for operator placement in distributed
stream-processing (DSP) systems that minimizes the network usage of a query,
while keeping the query delay low and picking nodes with adequate bandwidth.
However, their operator model is not organized as operator graphs. Rizou et al.
[11] present a distributed placement algorithm that minimizes the bandwidth-
delay product of data streams between operators. However, their approach does
not take the resources of the nodes into consider. Tziritas et al. [16] propose an
approach enabling both single and group operator migrations using evictions of
hosted operators. Although this work takes resources of nodes in the network
into consider, it focuses on how to migrate operators to improve a placement of
operators. Cardellini et al. [2] propose a general formulation of DSP placement
in distributed network. This work focuses on the scenes that data sources are
distributed in large scale network and do not take the input rate of CEP service
into consideration. In contrast, we focus on deploying CEP services to process
data near an edge node to infer meaningful events, especially when the input
rate of CEP services significantly increases.

Edge computing is the computational infrastructures that make services
closer to the end users [12]. The same concept is also called as cloudlet [13]
or fog computing [1]. Taneja et al. [15] conduct experiments to demonstrate
that edge computing can effectively improve its QoS. Hong et al. [4] proposed
an opportunistic spatio-temporal CEP hosted by edge computing. As far as we
know, this is the earliest work to deploy CEP on edge computing. How to offload
applications to edge nodes [8,18] is another research interest that quite close to
the operator placement problem in edge computing. The goal of this work is
to minimize the cost of a user. However, our goal is to minimize the average
response time of the CEP services queries. Saurez et al. [14] propose an incre-
mental deployment approach to greedily deploy operators on the nearest edge
node. However, they all do not consider the change of the input rate. Jia et al.
propose an user to edge computing allocation in wireless metropolitan area net-
works [5] and a load balance approach to finding an optimal redirection of tasks
between edge nodes [6]. However, the task model of this work has no graph struc-
ture. Our work is designed for CEP operator graphs whose input rate change
according to the data sources.

3 Models and Problem Formulation

In this section, we first discuss our CEP model and edge computing model. Then
we use these models to calculate the response time of CEP services, to give the
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Table 1. Main notation adopted in the paper

Symbol Description

Gedge = (Vedge, Eedge) The edge network Gedge consists of the edge nodes Vedge

and the connections between edge nodes Eedge

vi The ith edge node in Vedge

(vi, vj) The connection between the edge nodes vi and vj

c(vi) The resources capacity of the edge node vi

λ(vi) The execution rate of the edge node vi

w(vi, vj) The transmission rate between edge nodes vi and vj

Gcep = (Ω, L) An operator graph consists of the operators Ω and the
event streams L

c(ωi) The resources requirement of the operator ωi

Tr(X) The response time of the operator graph according to a
placement X

Tp The end-to-end delay of a path

X(ωi) = vu Deploy the operator ωi on the edge node vu

θt The thread of response time to redeploy operator graphs

Δt The time interval of replacement judgement

operator placement problem statement, and to prove this problem is NP-hard.
Table 1 summarizes the symbols that are used in this paper.

3.1 CEP Model

We assume that Ncep CEP services queries are sent to an edge node. A CEP
service can be represented as an operator graph Gcep = (Ω, L). Ω denotes the set
of operators. L denotes the event streams between the data sources, the opera-
tors, and the consumer. Each operator ωi ∈ Ω has the attributes c(ωi), denoting
the amount of resources required for the operator ωi execution. The resources
required to execute an operator include CPU, memory, etc. We simplified these
resource models as unit resources, like other works [2,6].

For example, in Fig. 1, Ω contains the speed operator ωspeed, the lane operator
ωlane, and the accident operator ωaccident. L contains (source, ωspeed), (source,
ωlane), (ωspeed, ωaccident), (ωlane, ωaccident), and (ωaccident, user). c(ωspeed),
c(ωlane), and c(ωaccident) are all one-resource units.

3.2 Edge Computing Model

Edge nodes are represented as vertexes Vedge. The network connections between
edge nodes are represented as Eedge. The edge network are represented as Gedge

= (Vedge, Eedge). Every node vi in the edge network has two attributes: (1)
c(vi), the amount of resources available in the edge node vi; (2) λ(vi), the events
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execution rate of the edge node vi. Every network connection (vi, vj) has the
attribute w(vi, vj), the transmission rate between the edge nodes vi and vj .

When a user sends a query to the nearest edge node for computing resources,
the edge node manages the placement of the operator graph. This edge node is
called as manage edge node. The manage edge node monitors the information
of the nearby edge nodes within H hops. These nearby edge nodes are called
candidate edge nodes. The operators can be placed on either the manage edge
node or candidate edge nodes. Thus, the size of the edge network is limited by
the number of hops H. H becomes larger when the operators have no suitable
edge nodes to be placed.

3.3 Response Time

The response time of an operator graph Gcep can be calculated as:

Tr(Gcep) = max
p∈πGcep

Tp (1)

where max
p∈πGcep

Tp means the worst end-to-end delay from a data source to the

consumer. Tp denotes the delay of a path in the operator graph Gcep. The path p
can be represented as (ωp1 , ωp2 , . . . , ωpnp

), where np denotes the number of oper-
ators in p. These operators are deployed on the edge nodes (vp1 , vp2 , . . . , vpnp

).
For example, in Fig. 2, the end-to-end delay of path1 is the worst. Thus, the

response time of operator graph G0 is Tr(G0) that equals to 120 ms. path1 is
(source, ωspeed, ωaccident, user). In Fig. 1(a), X(path1) = (v0, v1, v1, v0).

For Tp, we have:

Tp =
np−1∑

i=0

d(vpi
, vpi+1) +

np∑

i=0

TE(ωi) +
np∑

i=0

Tq(ωi) (2)

where d(vpi
, vpi+1) denotes the transmission delay between the edge nodes vpi

and vpi+1 . TE(ωi) denotes the processing delay of events in the operator ωi.
Tq(ωi) denotes the queuing delay of events in the operator ωi. In addition to
the above three delays, there is also the propagation delay. However, in the edge
network, the propagation delay, which is too low, can be ignored.

The transmission delay d(vpi
, vpi+1) can be calculated as:

d(vpi
, vpi+1) =

sz

w(vpi
, vpi+1)

(3)

where sz is the size of an event packet.
The processing delay of events in the operator ωi can be calculated as:

TE(ωi) =
1

λ(vpi)
(4)

where the average event process rate of vpi
is λ(vpi

) events per second (eps).
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The queuing delay mainly depends on the congestion level of the router. The
event rate from vpi

to vpi+1 can be represented as r(pi, pi+1) eps. The number
of channel between edge node vpi

and vpi+1 is n(vpi
, vpi+1). The queuing delay

of an operator ωi in a period t is calculated as:

Tq(ωi) =

⎧
⎨

⎩

t×sz×r(pi,pi+1)
w(vpi

,vpi+1 )
, if Ec(pi) > 1

Ec(pi)
w(vpi

,vpi+1 )−r(pi,pi+1)
+ 1

w(vpi
,vpi+1 )

, if Ec(pi) <= 1
(5)

Ec(pi) = Ec(n(vpi
, vpi+1),

sz × r(pi, pi+1)
w(vpi

, vpi+1)
) (6)

Ec(n, u) =
un

n!
un

n! + (1 − u/n)
∑n−1

k
uk

k!

(7)

Equation 7 is known as Erlang’s C formula to calculate the queuing delay [7].
If the bandwidth is larger than the event rate in the connection, the queuing

time is calculated as Erlang’s C formula. Otherwise, the queuing time is calcu-
lated as Nt

w(vpi
,vpi+1 )

, Nt = t × sz × r(pi, pi+1). Nt is the size of the data sent
to the queue in a period t. To avoid frequent replacements caused by excessive
changes in the input rate of operator graphs, we calculate the average event rate
in the last ten seconds as r(pi,pi+1).

Initially, when an operator ωi has not been decided where to be deployed, the
transmission delay is calculated as sz

w̄ , where w̄ denotes the average transmission
rate of the connections in the edge network. The execution time is calculated as
1
λ̄
, where λ̄ denotes the average event process rate of edge nodes.

3.4 Operator Placement Problem in Edge Computing

When the manage edge node receives a CEP service query, the operator graph is
pushed into an operator-graphs-queue Q = {Gcep(1), . . . , Gcep(Ncep)}. Optimal
operator placement problem in edge computing consists in determining a suitable
mapping between operators Ω and edge nodes Vedge to minimize the average
response time of operator graphs. For every operator ωi, we can get an edge
node vu that place ωi on vu, to minimize the average response time Tr(Q):

Tr(Q) =
∑Ncep

k=1 Tr(Gcep(k))
Ncep

(8)

and to satisfy:

∀vu ∈ Vedge, c(vu) ≥
|Ω|∑

i=1

((X(ωi) == vu)?c(ωi) : 0) (9)

Then, we prove this optimal problem is a NP-hard problem.

Theorem 1. Optimal operator placement problem for CEP in edge computing
is an NP-hard problem.
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Fig. 2. Algorithm 1 preferentially deploys the speed operator.

Proof. First, we prove the decision problem of the optimal operator placement
problem is NP-hard. The decision problem is stated as: Ncep operator graphs
containing |Ω| operators and an edge network, can the operator graphs have a
feasible placement? In the special case: the input rate of Ncep operator graphs
are the same; the edge network has only two edge nodes, Vedge = {vi,vj}, with
capacity c(vi) = c(vj) = (

∑|Ω|
k=1 c(ωk))/2; w(vi, vj) is infinite, λ(vi) = λ(vj).

The resulting problem is the Partition problem [3] which is known to be NP-
hard. Finally, because the special case is NP-hard, the general decision problem
is NP-hard as well. The optimization problem is at least as hard as the decision
problem. Thus, optimal operator placement problem for CEP in edge computing
is an NP-hard problem.

Thus, if P �= NP, optimal operator placement problem for CEP in edge com-
puting cannot be solved in polynomial time. Thus, we propose an approximation-
based algorithm to solve this problem.

4 Algorithm

In this section, we propose a novel algorithm that balances the response time of
different paths to achieve the minimum average response time of operator graphs
(Eq. 8). The basic idea is to predict the end-to-end delay of all paths, and then
improve the placement of the path with the worst end-to-end delay, which can
directly improve the response time of the operator graph. The algorithm deploys
the operator logically closest to data source in the path on the edge node with
the minimum delay.

4.1 Response Time Aware Operator Placement Algorithm

The response time of the operator graphs is calculated by Eq. 1. Algorithm 1
first calculates the response time of different paths in an operator graph, and
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Algorithm 1. Response Time Aware Operator Placement
Input: Q = (Gcep(1),Gcep(2),. . . ,Gcep(Ncep)),Gedge

Output: X(Q)

1: //initial parameters
2: for all i = 1 → Ncep do
3: Get all paths p[i][] in Gcep(i) //the operators in p is in the order of from the

user to the data source
4: Np(i) = total number of paths in Gcep(i)
5: end for
6: X = ∅
7: for i = 1 → Ncep do
8: for j = 1 → Np(i) do
9: In[i][j] = Gcep(i).Source ;

10: end for
11: end for
12:
13: // make placement decision for every operator
14: while ∃ X(ω ∈ Ω) == ∅ do
15: gi = the index of the operator graph with the max response time;
16: pi = the index of the path with the max response time in Gcep(i)
17: ωsrc = In[gi][pi] //the operator whose output is the input of ωtar

18: ωtar = (p[gi][pi]).top //the operator connecting to the output stream of ωsrc

19: vtar = the edge node with the minimum delay to ωsrc

20: if vtar == ∅ then //cannot find an edge node that has resources
21: H = H + 1 ;
22: Restart Algorithm.
23: else
24: X(ωtar) = vtar // place ωtar on vtar
25: In[gi][pi] = ωtar //update input streams
26: p.erase(ωtar) //ωtar has been deployed
27: c(vtar) = c(vtar) - c(ωtar) //calculate new capacity of vtar
28: end if
29: end while
30: return X

then improves the placement of the path with the largest end-to-end delay. We
first find the operator graph gi with the maximum response time (line 15) and
the path pi with the maximum end-to-end delay in gi (line 16). The end-to-end
delay of the path pi limits the response time of the operator graph gi. Thus,
we try to improve the placement of pi. Then, we find the operator ωtar whose
input stream is the output stream of last deployed operator ωsrc in the path pi,
and the edge node vtar that has the minimum delay of the connection to ωsrc.
Algorithm 1 deploys the operator ωtar (line 18) on the edge node vtar (line 19).

For example, in the case of Fig. 1, at the moment that only the operator
ωlane is deployed, Fig. 2 shows how to select the operator ωtar in the operator
graph. Because the response time of path1 is the largest response time in the
paths (path1 and path2) and ωspeed is the undeployed operator connecting to
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the output stream of data source in path1, the Algorithm 1 preferentially makes
placement decision on ωspeed. Then, only the edge nodes v1 and v2 have capacity
to host ωspeed. The algorithm first assumes that ωspeed is deployed on v1 and v2,
calculates the response time of these two placements, and selects the placement
with the minimum response time. Thus, ωspeed is deployed on the edge node v1.

If all edge nodes within H hops have no resources, return ∅ (line 20). The
hops number of candidate edge nodes should be increased (line 21). the algorithm
is then restarted based on the new monitored information (line 22).

When the algorithm gets ωtar and vtar, the request is sent to the edge node
vtar for hosting the operator ωtar. If vtar accepts the request, system deploys the
operator ωtar on the edge node vtar (line 24). Otherwise, the algorithm deletes
the edge node and finds vtar again.

The manage edge node monitors information every Δt second. If the response
time of an operator graph exceeds the thread θt, the manage edge node rede-
ploys operators to improve the response time of the operator graphs. To avoid
fluctuation in the edge network transmission or the input rate of the operator
graphs, this replacement judgement is performed every Δt second.

4.2 Time Complexity

Algorithm 1 makes placement decision for every operator. The number of oper-
ators is |Ω|. For every operator graph, Algorithm1 calculates its response
time. The number of operator graphs is Ncep. The length of an path pi is
npi

. The time complexity of calculating the response time for an operator
graph is O(

∑Np

i=1 npi
. The largest number of operators in an operator graph

is |Gcep|. The worst case time complexity of calculating the response time for
an operator graph is O(|Gcep|2). The time complexity of finding the edge node
with minimum delay is O(|Vedge|). Thus, the time complexity of Algorithm1 is
O(|Ω| × |Gcep|2 × Ncep + |Ω| × |Vedge|).

5 Evaluation

We conduct simulations by using Omnet++ [17] that is a network simulation
tool widely used in the field of the discrete event simulation, e.g. the simulation
of MCEP [9]. There is no widely accepted real data set for CEP currently. By
using Omnet++, we change the input rate of the CEP services to evaluate the
performance of our algorithm in different workloads. We discuss the results of
the simulations in this section.

5.1 Reference Algorithms

As a reference for the results achieved by response time aware operator place-
ment algorithm, we compare our algorithm with two baseline algorithms: greedy
algorithm and load balance algorithm. Because both the load balance algorithm
and the greedy algorithm do not consider the application structure, we formu-
late the following rule for both algorithms: the order of placing operators is
determined by the shortest logical distance from the data source.
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Greedy Algorithm. Greedy algorithm [14] deploys operators on the edge node
closest to the input streams of the operators except the edge nodes which do not
have sufficient resources.

Load Balance Algorithm. Load balance algorithm [6] calculates the average
response time of every edge node, and then reduces the load of the overloaded
edge nodes by redirecting some of the operators to the underloaded edge nodes.

5.2 Simulation Environment

We randomly generate 30 different topologies of edge networks and 100 opera-
tor graphs to evaluate the response time aware operator placement algorithm.
We run two sets of simulation. In the first set of simulations, we run our algo-
rithm and two baseline algorithms in the different edge networks where the same
operator graphs are deployed. The initial capacity of edge nodes are 3, 4, and
5 resource units, respectively. In the second set of simulations, we run the algo-
rithms in a network where different operator graphs are deployed. The network
is the one whose simulation result is the most similar to the average result in the
first set simulation. In this network, the resources capacity of the edge nodes is
5 resource units. We report the average results of these simulations.

We set θt = 1 s and Δt = 20 s. Every 20 s, if the response time of the operator
graphs exceeds 1 s, the manage edge node redeploys operators to achieve lower
response time.

Edge Networks. Considering the goal of this paper and the core of our pro-
posed algorithms, i.e., deploying operators on the nearby edge nodes to keep the
response time low, relatively small sized edge networks are sufficient for our eval-
uation. Specially, we set up three different kinds of 10-node edge networks. The
first kind is a ring; the second kind is generated randomly with 15 links; and the
third kind is generated randomly with 20 links. We repeat 10 times simulations
on each network. In each simulation, we randomly choose a node in the edge
network as the manage edge node. The transmission rate is generated randomly
between 10 Mbps and 20 Mbps. The manage edge node initially monitors nearby
edge nodes within 2 hops.

CEP Operator Graphs. To simulate different structures of operator graphs,
100 operator graphs are generated randomly, 10 of which contains 3 operators,
30 of which contains 4 operators, and 60 of which contains 5 operators. In each
simulation, only one kind of operator graphs is sent to the manage edge node and
the number of operator graphs is 3. For each operator, 25% of events conform
to user-defined complex events sent to output streams. The resources capacity
required for an operator execution is one-resource units. We gradually increase
the input rate of the operator graphs to simulate a system from idle to busy.
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5.3 Simulation Results

As Fig. 3(a), (b), and (c) shows, in the first set of simulation, our algorithm
performs the best among the three algorithms. On average, our algorithm can
reduce the total response time by 76% compared to the greedy algorithm and by
82% compared to the load balance algorithm. Because of the extra monitored
information about the edge network, our algorithm adapts well to different net-
works.
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(a) The edge node capacity is 3.
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(b) The edge node capacity is 4.
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(c) The edge node capacity is 5.

Fig. 3. Place the same operator graphs
on the different edge networks.
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(a) An operator graph has 3 operators.
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(b) An operator graph has 4 operators.
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(c) An operator graph has 5 operators.

Fig. 4. Place different operator graphs
on the same network.

When the capacity of edge nodes is limited, load balance algorithm performs
the worst (Fig. 3(a), (b)). In this case, congestion is inevitable. Load balances
algorithm redirects operators to other edge nodes, which makes data have to be
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delivered to the operators distributed in the congested edge nodes. The extra
network traffic aggravates the congestion. In contrast, our algorithm predicts
the delay to the edge nodes, and deploys operators on the edge node with the
lowest delay to keep the low response time. When the capacity of the edge nodes
becomes sufficient, greedy algorithm performs the worst. Because the average
load of edge nodes can be reduced by more resources, the load balance per-
forms much better in this situation. Greedy algorithm makes operators gathered
around the data source to reduce transmission delay. However, when the input
rate increases, the congestion occurs due to large amounts of data are sent to the
same edge node. Our algorithm avoids this by predicting the delay to different
edge nodes and deploying operators on the edge node with low delay.

As Fig. 4(a), (b), and (c) shows, in the second set of simulation, our algorithm
performs the best among the three algorithms. On average, our algorithm can
reduce the response time by 33% compared to greedy algorithm and by 45%
compared to load balance algorithm. We find that congestion is more likely to
happen if the operator graph has more paths, because more events from different
input streams are sent to an operator.

When the number of operators increases, the response time becomes higher
because there are more transmission between operators. The performance of
load balance algorithm becomes the worst in Fig. 4(c), because the algorithm
distributes more operators than before to balance the load of edge nodes, which
increases the transmission delay.

In Fig. 4(c), when the event input rate is low, our algorithm performs better
than the other two algorithms. When the input rate increases, our algorithm per-
forms worse than greedy algorithm, because the input rate increases faster than
the prediction of our algorithm. However, In Fig. 4(b) and (c), when response
time exceeds thread θt, the manage edge node updates the information about
the edge network and the CEP services (including the input rate), and then
redeploys the operator graphs resulting in the response time decreasing. These
results show that our algorithm can adapt to the dynamic environment, improve
the operator placement, and reduce the response time of CEP services.

Besides the response time, we also use bandwidth-delay to measure network
usage as an additional criterion. The lower bandwidth-delay product indicates
that the network load is lower [11]. Figure 5 shows the total network usage after
running the three algorithms. With operator number increasing in an operator
graph, due to the network transmission between different operators increases,
the network usage increases. Our algorithm performs the best because the algo-
rithm gives priority to the operator graphs with large input rate. Load balance
algorithm performs the worst because the algorithm distributes the operators in
the edge network resulting in more network transmission.

5.4 Threats to Validity

Construct Validity. In the simulations, we observe that our algorithm can
reduce the response time of the operator graphs deployed on the edge networks.
Because the problem is NP-hard, we cannot get the optimal solution in poly-
nomial time. Our algorithm greedily deploys the selected operators on the edge
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Fig. 5. Network usage versus different operator number.

node with the minimum delay, which is an approximate solution. We can reduce
threats to construct validity by searching more edge nodes instead of only the
edge node with the minimum delay.

External Validity. The threats to external validity come from our simulation
environment. Although we gradually increase the input rate of operator graphs,
dynamic network environment cannot be fully simulated.

6 Conclusions

We study response time aware operator placement for CEP in edge computing to
reduce the average response time of operator graphs. Since the optimal operator
placement problem is NP-hard, we present an approximation-based algorithm
to ensure the response time of operator graphs low. The evaluation results show
that our algorithm outperforms other approaches in the average response time of
operator graphs. We plan to improve our algorithm by searching more placements
and use real-world data in the experiments on actual systems in the future.
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