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What YouWill Learn in This Chapter

In Part III of this book, we will show that combining data from multiple experiments
can provide completely new insights. For example, whereas the statistical output of
each experiment itself might make perfect sense, sometimes the combination of data
across experiments indicates problems. How likely is it that four experiments with a
small effect and a small sample size all lead to significant results? We will show it is
often very unlikely. As a simple consequence, if experiments always produce significant
results, the data seem to good to be true. We will show how common, but misguided,
scientific practice leads to too-good-to-be-true data, how this practice inflates the Type
I error rate, and has led to a serious science crisis affecting most fields where statistics
plays a key role. In this respect, Part III generalizes the Implications from Chap. 3. At
the end, we will discuss potential solutions.

In this chapter, we extend the standardized effects size from Chap. 2 and show how
to combine data across experiments to compute meta-statistics.
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9.1 Standardized Effect Sizes

As we noted in Part I of this book, much of statistics involves discriminating signal and
noise from noise alone. For a standard two sample t-test, the signal to noise ratio is called
Cohen’s d , which is estimated from data as (see Chap. 3):

d = x1 − x2

s
.

Cohen’s d tells you how easily you can discriminate different means. The mean difference
is in the numerator. A bigger difference is easier to detect than a smaller one, but we also
need to take the noise into account. A bigger standard deviation makes it more difficult
to detect a difference of means (see Chap. 2). When n1 = n2 = n, the t-value for a two-
sample t-test is just:

t = x1 − x2

sx1−x2

= x1 − x2

s

√
2
n

= d√
2
n

= d

√
n
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So, a t-value simply weights Cohen’s d by (a function of) sample size(s). As mentioned in
Chap. 3, it is always good to check out the effect size. Unfortunately, many studies report
just the p-value, which confuses effect size and sample size. Based on the above equation,
we can compute Cohen’s d from the reported t-value and the sample sizes:

d = t

√
2

n

An important property of Cohen’s d is that its magnitude is independent of the sample
size, which is evident from d being an estimate of a fixed (unknown) population value.1

In Chap. 3, we have shown that we can estimate δ by d . However, d is only a good
estimator when the sample size is large. For rather small samples, d tends to systematically
overestimate the population effect size δ. This overestimation can be corrected by using
Hedges’ g instead of d:

g =
(
1 − 3

4 (2n − 2) − 1

)
d

For nearly all practical purposes Hedges’ g can be considered to be the same as Cohen’s
d . We introduced it here because we will use Hedges’ g to compute meta-analyses. The

1Note that although the sample size n appears in this particular formula, it basically just compensates
for t increasing with larger sample size.
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Appendix to this chapter includes formulas for when n1 �= n2 and for other types of
experimental designs.

9.2 Meta-analysis

Suppose we run the same (or very similar) experiments multiple times. It seems that
we should be able to pool together the data across experiments to draw even stronger
conclusions and reach a higher power. Indeed, such pooling is known as meta-analysis. It
turns out that the standardized effect sizes are quite useful for such meta-analyses.

Table 9.1 summarizes statistical values of five studies that concluded that handling
money reduces distress over social exclusion. Each study used a two-sample t-test, and
the column labeled g provides the value of Hedges’ g, which is just an estimate of the
effect size.

To pool the effect sizes across studies, it is necessary to take the sample sizes into
account. An experiment with 46 subjects in each group counts a bit more than an
experiment with 36 subjects in each group. The final column in Table 9.1 shows the
weighted effect size, w × g, for each experiment (see the Appendix for the calculation of
w). The pooled effect size is computed by summing the weighted effect sizes and dividing
by the sum of the weights:

g∗ =
∑5

i=1 wigi∑5
i=1 wi

= 0.632.

This meta-analytic effect size is the best estimate of the effect size based on these
five experiments. Whether it is appropriate to pool standardized effect sizes in this way
largely depends on theoretical interpretations of the effects. If your theoretical perspective
suggests that these experiments all measure essentially the same effect, then this kind of
pooling is appropriate, and you get a better estimated effect size by doing such pooling.
On the other hand, it would not make much sense to pool together radically different
experiments that measured different effects.

Meta-analyses can become quite complicated when experiments vary in structure
(e.g., published analyses may involve t-tests, ANOVAs, or correlations). Despite these

Table 9.1 Data from five
experiments used for a
meta-analysis

n t g w × g

36 3.01 0.702 12.15

36 2.08 0.485 8.66

36 2.54 0.592 10.43

46 3.08 0.637 14.17

46 3.49 0.722 15.83
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difficulties, meta-analysis can be a convenient way to combine data across experiments
and thereby get better estimates of effects.

Take Home Messages

1. Pooling effect sizes across experiments produces better estimates.
2. Combining data across experiments increases power.

Appendix

Standardized Effect Sizes Beyond the Simple Case

When samples sizes are different (n1 �= n2), the t-value of a two-sample t-test is:

t = x1 − x2

sx1−x2

= x1 − x2

s

√
1
n1

+ 1
n2

= d√
1
n1

+ 1
n2

= d

√
n1n2

n1 + n2
.

If a published study does not report the means and standard deviations from the
samples, it is possible to compute Cohen’s d from the reported t-value and sample sizes:

d = t

√
n1 + n2

n1n2

For Hedges’ g, the calculation with unequal sample sizes is:

g =
(
1 − 3

4 (n1 + n2 − 2) − 1

)
d

There are similar standardized effect sizes and corrections for other experimental designs.
For example, for a one-sample t-test with a null hypothesis of the population mean being
equal to the value a, Cohen’s d is calculated as

d = x − a

s

which, again, represents signal in the numerator (deviation from the value specified by
the null hypothesis) and noise in the denominator (the sample standard deviation). An
unbiased version of Cohen’s d for the one-sample case is Hedges’ g:

g =
(
1 − 3

4 (n − 1) − 1

)
d
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For repeated measures t-tests, the appropriate standardized effect size depends on how it
will be used. Sometimes, a scientist wants an effect size relative to the difference scores
that are calculated for each subject. For that use, the one-sample d or g is appropriate.
Other times, scientists want to find an effect size that is equivalent to what it would be
for a two-sample independent t-test. In that situation it is necessary to compensate for
the correlation between scores. When computed from the reported t value of a dependent
sample, the formula is:

d = t√
n

√
2 (1 − r)

Unfortunately, most papers do not report the correlation between scores for a dependent
sample. For our purposes, the basic idea of a standardized effect size is more important
than the specific calculation. However, you should be aware that formulas you may find
on the Internet sometimes include unstated assumptions such as equal sample sizes for an
independent t-test or r = 0.5 for a dependent t-test.

Extended Example of theMeta-analysis

Table 9.2 fills in some intermediate terms that are not present in Table 9.1.
To pool the effect size across studies, we weight each g value by its inverse variance.

The calculation of the inverse variance involves multiple steps. For an independent two-
sample t-test, the formula for the variance of Cohen’s d is

vd = n1 + n2

n1n2
+ d2

2 (n1 + n2)

and the variance for Hedges’ g includes the square of the correction term used earlier:

vg =
(
1 − 3

4 (n1 + n2 − 2) − 1

)2

vd

Table 9.2 Detailed
meta-analysis, including
additional computations, of the
data shown in Table 9.1

n1 n2 t g vg w wg

36 36 3.01 0.702 0.058 17.3 12.15

36 36 2.08 0.485 0.056 17.9 8.66

36 36 2.54 0.592 0.057 17.6 10.43

46 46 3.08 0.637 0.045 22.2 14.17

46 46 3.49 0.722 0.046 21.9 15.83
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which is shown in a separate column in Table 9.2. To do the meta-analysis, each
standardized effect size is multiplied by its inverse variance:

w = 1

vg

which is shown in a column in Table 9.2 next to a column listing the product ofwg for each
experiment. The pooled effect size is computed by summing the products and dividing by
the sum of the weights:

g∗ =
∑5

i=1 wigi∑5
i=1 wi

= 0.632.
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permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium
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The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
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