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What YouWill Learn in This Chapter

An ANOVA is one option to cope with the multiple testing problem. A much simpler
way to cope with multiple testing is to avoid it by clever experimental design. Even
if you need to measure many variables, there is no need to subject all of them to
a statistical test. As we will show in this chapter, by collapsing many data into one
meaningful variable or simply by omitting data, you may increase your statistical
power. Simple and simplified designs are also easier to interpret, which can be a
problem in many complex designs. In this chapter, we also show how to compute the
power of an experiment, which is for example important to determine the sample size
of your experiment.

7.1 Model Fits

When comparing two means, a t-test has a high power and is straightforward to interpret.
Experiments with more group comparisons suffer from the multiple testing problem.
The more comparisons we compute, i.e., the more groups or levels there are, the
lower is the power. Experiments with more groups are also more complex to analyse
because interactions can occur, which are not present in simple t-tests (Chap. 6). Hence,
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simple experimental designs are usually preferred. However, complexity is sometimes
unavoidable. A classic example is a learning experiment, where performance needs to
be measured at many time points. For example, participants train on a simple visual task
for 10 blocks containing 80 trials each. For each block, we determine the percentage of
correct responses (Fig. 7.1a) and look for increases in performance across blocks. How
can we quantify the learning success and compute statistics? The null hypothesis is that
no learning occurs, i.e., performance is identical for all 10 blocks. Intuitively, one might
think of using a repeated measures ANOVA with 10 levels, one for each block. However,
this is not a good idea because, first, ANOVAs are about nominal variables, i.e., the order
of the blocks plays no role. Second, were performance increasing for the first five blocks
and then decreasing, the ANOVA would indicate a significant result when performance
for block 5 is significantly different from block 1. However, a result like this is not about
learning but a strange concatenation of learning and unlearning. Third, we would lose quite
some power. What to do? Here, we show it is by no means necessary to subject all data to
statistical analysis.

As shown in Fig. 7.1b for the learning experiment, one approach is to discard all blocks
except for the first and the last one (the intermediate blocks are relevant to the experiment
because they promote learning, but they are not relevant to the statistical analysis). The null
hypothesis is that performance in these two blocks does not differ. We can use a repeated
measures t-test to test this hypothesis. However, learning data are often noisy and thus we
are losing power with this procedure. To obtain less noisy data, we may average the first
and last two blocks and subject the two averages to a repeated measures t-test (Fig. 7.1c).

In both cases, we are discarding a large amount of data and thus do not take full
advantage of our data. We might do better by fitting a model to the data. We may know,
for example, from previous experiments that learning is reflected by a linear increase in
performance, which we can model by the equation mx + b, where m is the slope of the
learning curve, b is the y-intercept, and x is the block number. We can use a computer
program to compute the optimal parameters for m and b, for each observer individually.
Since we are only interested in the slope, we can discard b. Our null hypothesis is: m = 0.
Hence, for each observer we obtain one m-value. If 12 observers joined the experiment,
we compute a one-sample t-test with these 12 values of m and see whether they are
significantly different from 0.

There is great flexibility in this approach. For example, if learning is not linear but
follows an exponential rather than a linear function, then we can fit an exponential
function, which also contains a “slope” parameter. When we are interested in cyclic
processes, such as changes in temperature across a day or the numbers of insects across a
year, we can fit a sine function. In general, we can fit any type of function to our data and
extract one or a few parameters. We thus take full advantage of the data and do not lose
power. It is the choice of the experimenter how to proceed. However, the experimenter
must make the choice before the experiment is conducted. One cannot decide after having
looked at the data and then try many possibilities until finding a significant result (see
Sect. 11.3.5).
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Fig. 7.1 Analyzing learning
data. (a) Performance improves
with number of blocks. (b) A
statistical analysis might just
compare the first and last
blocks. (c) Alternatively, the
analysis might average the first
two and last two blocks and
then compare the averages
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The above example shows how to simplify statistics by reducing the number of
variables. As shown, there is no need to subject all your data in its original form to
statistical analysis. There are no general rules on how to simplify your analysis because
each experiment is different. However, it is always a good idea to think about what is
the main question your experiment is aimed to answer. Then, you decide what variables
address the question best and how you can compute statistics. The simpler the design and
the fewer variables, the better.

7.2 Power and Sample Size

7.2.1 Optimizing the Design

It often takes a lot of effort and resources to run an experiment. Thus, it is usually
worthwhile to estimate whether the experiment is likely to succeed and to identify sample
sizes that provide a high probability of success (if there is actually an effect to detect).
Success generally means producing a large t-value and obtaining a significant result. We
can do this in a couple of ways.

First, try to increase the population effect size δ = μ1−μ2
σ

. You can do this by
considering situations where you anticipate the difference between population means to
be large. For example, you may try to find the optimal stimuli for a visual experiment or
the most discriminative tests for a clinical study.

In addition, try to reduce σ . It is the ratio of the population mean differences and
the standard deviation that determines δ, and thus t and p. You may try to make your
measuring devices less noisy, for example, by calibrating every day. You may try to
homogenize the sample, for example, by testing patients at the same time every day,
making their coffee consumption comparable, using the same experimenter etc. You may
think about excluding certain patients, for example, by imposing age limits to not confuse
deficits of a disease with age effects. However, such stratifications limit the generality of
your research (see Chap. 3, Implications 4). There are many ways to reduce σ and it is
always a good idea to think about it.

Second, increase the sample size, n. Even if δ happens to be small, a large enough
sample will produce a large t-value. With a large enough sample size it will be possible
to discriminate even small differences between means (signal-and-noise) from a situation
where there is actually no difference between means (noise-alone). Note, for this approach
to be meaningful, you have to be confident that a small effect size matters. There is no point
in running a large sample study to detect a trivially small effect (see Chap. 3, Implications 1
and 2).
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7.2.2 Computing Power

Even when δ �= 0, experiments do not always produce significant results because of
undersampling (Chap. 3). Here, we show how likely it is that for a given δ �= 0 and a
given sample size n a significant result occurs. Vice versa, we show how large n needs to
be to produce a significant result with a certain probability.

We estimate an experiment’s success probability by computing power. Power is the
Hit rate. It is the probability of selecting a random sample that allows you to correctly
reject the null hypothesis. It supposes that the null hypothesis is false, meaning that
there is a non-zero effect. As noted in Chap. 3, computing power requires a specific
population standardized effect size. Where this specific population effect size comes from
is situation-specific. Sometimes it can be estimated from other studies that have previously
investigated the same (or a similar) phenomenon. Sometimes it can be derived from
computational models that predict performance for a novel situation. Instead of predicting
an effect size, it is sometimes worthwhile to identify a value that is deemed to be interesting
or of practical importance.

Once a population effect size is specified, we turn to computer programs to actually
calculate power (there is no simple formula). Figure 7.2 shows the output of a free program
called G*Power. Here, we selected t-test from the Test family and a Statistical test of a
difference between two independent samples for means. For Type of power analysis we
selected “Post hoc.” Under Input parameters we selected for a two-tailed test, entered an
estimated population effect size d = 0.55, chose our Type I error rate to be α = 0.05, and
entered planned sample sizes of n1 = n2 = 40. The program provides graphs at the top
and Output parameters on the bottom right. The graphs sketch the sampling distributions
(see Fig. 3.7) that should be produced by the null (red curve) and the specific alternative
hypothesis (blue curve). The shaded blue area is labeled β to indicate the Type II error rate.
This is the probability for a non-significant result if δ = 0.55. Power is the complement of
the Type II error rate. As indicated, for the provided input parameters, the computed power
is 0.68. This means that there is a probability of 0.68 that under the specified conditions
you will obtain a significant result.

Suppose that we were unsatisfied with the 0.68 probability and wanted to identify
sample sizes that would have a 90% chance of rejecting the null hypothesis. From the
Type of power analysis menu, we select “A priori” and in the revised Input parameters
we change the Power value from 0.68 to 0.9. Figure 7.3 shows the program output for
the new situation. In the Output parameters panel, we see that the sample sizes needed to
have a power of 0.9 for a two-tailed, two-sample t-test, when the population effect size is
δ = 0.55 are n1 = n2 = 71.

In general, for a given population effect size, one can identify the smallest sample
sizes so that an experiment has the specified power. Calculating such sample sizes is an
important part of experimental design. It usually makes little sense to run an experiment
without knowing that it has a reasonable probability of success, i.e., reasonable power.
Unfortunately, many scientists run experiments without doing a power analysis because
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Fig. 7.2 Output from the G*Power program to compute power for a t-test with specified sample
sizes. In this case, the effect size (0.55) and the sample sizes (n1 = n2 = 40) are known and we
are searching for power, i.e., how likely it is that we obtain a significant result with this effect and
sample size for an independent t-test and α = 0.05. The output parameters are the noncentrality
parameter δ, which is not the same as the population effect size and we ignore it here, the critical
t-value, the degrees of freedom Df and, most importantly, the power
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Fig. 7.3 Output from the G*Power program to compute the necessary sample sizes so that an
experiment has a t-test with at least 90% power. In this case, the effect size (0.55) is known or
desired and we are searching for the sample size to obtain a significant result with a probability of
0.9
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they do not have a particular effect size in mind. Such investigations might turn out to be
valuable, but whether they work or not is largely a matter of luck. If you cannot perform
a meaningful power analysis (with a justified effect size), then the best you can do is
“hope” that your experiment produces a significant outcome. If the experiment fails to
produce a significant outcome, you can hardly be disappointed because you never really
had any (quantitative) reason to expect that your sample was large enough to show an
effect. Many times scientists are doing exploratory work even when they think they are
doing confirmatory work. Confirmatory work almost always is built on knowledge about
an effect size that can be used to design an experiment with high power.

7.3 Power Challenges for Complex Designs

Ideally, a power analysis is done before gathering any data; this is called a priori power.
However, it is also possible to estimate power in a post hoc fashion by using the
sample sizes and the estimated effect size from the data. For simple cases (e.g., a two-
sample t-test) the post-hoc power analysis does not tell you anything beyond the test
for significance. If you use G*Power to calculate power for different combinations of t

and sample sizes you will discover that, if your t-test gives you p > 0.05 then your
power calculation will be less than 0.5. Likewise, if your t-test gives you p < 0.05, then
your power calculation will be greater than 0.5. If your t-test gives you p = 0.05, then
your power calculation will give approximately 0.5. Here, we show that post hoc power
calculations can be more useful for complicated statistical analyses that involve multiple
tests on a set of data.

We saw above how to use G*Power to compute power for simple experimental designs.
This program, and similar alternatives, tends to focus on just one statistical test at a
time. In practice, scientists often use a combination of statistical tests to argue for a
theoretical interpretation. Estimating power for a combination of statistical tests often
requires generating simulated data sets that correspond to the experiment’s design and
sample sizes. This simulated data is then analyzed in the same way that the experimental
data will be analyzed. By repeating this process thousands of times, one can simply count
how often the full set of statistical outcomes matches the outcomes needed to support
a theoretical claim. This simulation approach allows a researcher to consider “success
probability”, which generalizes the concept of power.

We will see that complex experimental designs with multiple tests can struggle to have
high power. Even if individual tests have reasonable power, it can be the case that the full
set of tests has low power.

To demonstrate this generalization, it may be helpful to consider a concrete example.
The example is purposely complicated because the complications highlight important
characteristics of power analyses. A prominent study published in 2017 reported empirical
evidence that performance on a memory task was related to breathing through the nose.
The motivation for the study was that nasal breathing can entrain the hippocampus of
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the brain, which is related to memory processing. In contrast, oral breathing does not
entrain the hippocampus and so should not influence memory performance. Subjects were
asked to breath either orally (through the mouth) or nasally (through the nose) while
viewing pictures during a memory encoding phase, and then during a retrieval test subjects
identified pictures they had seen before. During both the encoding and retrieval phases the
pictures were presented at random times so that sometimes the picture was presented while
the subject was inhaling and sometimes the picture was presented while the subject was
exhaling. The main conclusion was that identification accuracy was better for pictures
that were presented to nasal breathers during inspiration (breathing in). This was true
for encoding pictures and for retrieving pictures. In contrast, oral breathers showed no
significant effect of inward versus outward breathing.

The study and its analysis is rather complicated, so it is useful to characterize all the
hypothesis tests. For convenience, we also list the relevant statistics from the study. All
tests compared memory performance of subjects.

1. Nasal breathers (n1 = 11) showed a significant (F(1, 10) = 6.18, p = 0.03) main
effect of breathing phase (inhale or exhale) on memory performance.

2. Nasal breathers showed enhanced memory for pictures that had been retrieved while
inhaling compared to pictures that had been retrieved while exhaling (t (10) = 2.85,
p = 0.017).

3. Oral breathers (n2 = 11) did not show enhanced memory for pictures that had been
retrieved while inhaling compared to pictures that had been retrieved while exhaling
(t (10) = −1.07, p = 0.31).

4. There was no significant difference between nasal and oral breathers overall
(F(1, 20) = 1.15, p = 0.29).

5. There was a significant interaction of breathing phase (inhale and exhale) with breath
route (nasal and oral) when pictures were labeled by how they were encoded (inhale or
exhale) (F(1, 20) = 4.51, p = 0.046).

6. There was also a significant interaction of breathing phase (inhale or exhale) with breath
route (nasal and oral) when pictures were labeled by how they were retrieved (inhale or
exhale) (F(1, 20) = 7.06, p = 0.015).

If you are confused, then take comfort in knowing that you are not alone. This study
and its analysis is very complicated, which makes it difficult for a reader to connect the
reported statistics to the theoretical conclusions. Moreover, some of the comparisons seem
inappropriate. For example, the authors of the study used tests 2 and 3 to demonstrate
a difference of significance for the nasal and oral breathers (comparing retrieval during
inhaling versus exhaling). We noted in Chap. 3 (Implication 3b) that a difference of
significance is not the same as a significant difference. Likewise, the authors of the study
took the null result in test 4 as indicating “no difference” in performance of nasal and oral
breathers overall. We saw in Chap. 3 (Implication 3a) that absence of proof is not proof of
absence.
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Table 7.1 Estimated success probabilities for the findings of a study relating memory performance
to breathing orally or nasally

Test Probability of success

Nasal: main effect of breath phase 0.690

Nasal retrieval: effect of breath phase 0.655

Oral retrieval: null effect of breath phase 0.809

Nasal vs. oral breathers: null main effect 0.820

During encoding: interaction for breath phase and route 0.604

During retrieval: interaction for breath phase and route 0.708

All tests 0.216

For the moment let us set aside our concerns about the appropriateness of the
tests. Success for this study required four significant outcomes and two non-significant
outcomes. If any of these outcomes were unsuccessful, it would call into doubt some
of the conclusions made by the authors. As it turns out, the data supported every one
of these necessary outcomes. We will show that with so many outcomes that must be
satisfied by a single data set, such full success should be rare even if the effects are real
and close to the values estimated by the experimental data. To estimate the probability of
such a level of success, a statistical software program, R, was used to generate 100,000
simulated experiments with the reported sample sizes, means, standard deviations, and
correlations (for within-subject aspects of the experiment). Table 7.1 shows how often
each test produced the desired outcome. The success probability for any given hypothesis
test varies between 0.60 and 0.82. For each significant test, the success probability of that
specific test corresponds to power. For tests 3 and 4 listed above, a successful outcome
was a non-significant result, and the table lists the probability of not rejecting the null
hypothesis.

However, the probability of every test being successful for a given simulation is much
lower than the probability for an individual test being successful because the data needs to
have just the right properties to deliver a significant result for certain tests and to deliver
a non-significant result for other tests. Based on the simulations, the joint probability
that all of the tests would be successful in a single experiment is only 0.216. This low
probability suggests that, simply due to random sampling, a direct replication of the study
with similar sample sizes would have a rather small probability of producing the same
pattern of outcomes.

A researcher replicating this study would want to pick sample sizes that give a high
probability of success. Larger samples increase the power of a test, so that a study with
just one test is more likely to find an effect if it exists. However, when the theoretical
claims are based on both significant and non-significant tests, there are limits to the
maximum probability of success because with large sample sizes small effects generate
significant results (even for the studies where the authors hope for a null finding). The
limit for this study can be investigated with additional simulated experiments that vary the
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Fig. 7.4 Each colored line shows the estimated probability of success as a function of sample size
for a test from a study investigating the effects of breathing on memory performance. The solid black
curve shows the estimated success probability for all of the tests. The dashed black lines mark the
sample size with the highest possible success probability for all of the tests combined. Each value is
based on 10,000 simulated experiments

sample size for each condition. The colored lines in Fig. 7.4 plot the estimated probability
of success for each of the six tests as a function of sample size (assuming the same sample
size for each condition). For the four tests where success corresponds to producing a
significant result, the probability of success increases with sample size and converges on
the maximum value of 1 at around a sample size of 40. For the two tests where success
corresponds to producing a non-significant result, the probability of success decreases with
sample size (because some random samples show significant differences). The dashed
black lines in Fig. 7.4 show that considering all six tests together (the black line), the
maximum possible success probability is 0.37 with around n1 = n2 = 20 subjects in each
condition.

This success probability analysis suggests that a better investigation of breathing and
memory performance needs a different experimental design. Simpler designs are generally
better because the more requirements you impose on a set of data (e.g., to produce
many significant or non-significant outcomes) the lower the probability that any particular
dataset will produce the required set of outcomes. Given the low estimated probability of
success for this study, one might wonder how the original authors were so fortunate as to
pick random samples that happened to reject/not reject results in exactly the pattern they
needed to support their theoretical claims.We address this issue in Chap. 10 by considering
how statistics should be interpreted across replications.
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Take Home Messages

1. Keep your design simple: consider compressing raw data into intermediate
variables, which then are subjected to statistical analysis.

2. Compute a power analysis before you do your experiment to check whether there
is a real chance that it may show an existing effect.

3. Keep your design simple: if a theory presupposes both significant and null results
your power may be strongly reduced.
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