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Abstract. Real-time SLAM is a prerequisite for online virtual and aug-
mented reality (VR and AR) applications on mobile devices. Under the
observation that the efficient feature matching is crucial for both 3D
mappings and camera locations in the feature-based SLAM, we pro-
pose a clustering forest-based metric for feature matching. Instead of
a predefined cluster number in the k-means-based feature hierarchy, the
proposed forest self-learn the underlying feature distribution, where the
affinity estimation is based on efficient forest traversals. Considering the
spatial consistency, the matching feature pair is assigned a confident score
by virtue of contextual leaf assignments to reduce the RANSAC itera-
tions. Furthermore, an incremental forest growth scheme is presented
for a robust exploration in new scenes. This framework facilitates fast
SLAMs for VR and AR applications on mobile devices.

1 Introduction

The simultaneous localization and mapping (SLAM) play an important role in
the VR and AR applications on mobile devices (Fig. 1). The SLAM has under-
gone rapid developments in recent years with an inception of several SLAM
systems, such as PTAM [8], LSD-SLAM [6], and ORB-SLAM [10]. The feature-
based SLAM is known to be effective for the 3D global mapping and camera
locations, especially invariant to viewpoints and illuminations compared with
the direct SLAM methods. A group of image features, including SIFT [9], SURF
[1], BRIEF [4], ORB [14], and bag of words [7] have been used in feature-based
SLAMs. The ORB feature has obvious advantages over others in fast extrac-
tions for the real-time SLAM. However, without the GPU and PC support, the
ORB-SLAM has limited processing frame rates on mobile devices [15], which is
not enough for online applications.

Considering the time-consuming feature matching for map generations as well
as the camera locations in feature-based SLAMs, we investigate an adaptation of
the ORB-SLAM by proposing a clustering forest for the fast feature correspon-
dence establishment (see Fig. 2). Compared with the hierarchical vocabulary tree
[10], there is no need to predefine the clustering number in the training phase
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Fig. 1. Real-time feature-based SLAM on mobile devices. (a) A mobile phone mounted
with a stereo camera Fingo. (b) A mobile phone on an HMD. (c) One sampled view
of the hand-held mobile phone in the exploration of the virtual scene with a colored
balloon. The 3D maps (red dots) are shown at the lower left corner along with the
viewpoints of keyframes (green pyramids). The corresponding viewpoints are yellow
circled in the 3D maps. (Color figure online)

Fig. 2. Flowchart of the proposed forest-based feature matching for the SLAM on
mobile devices.

of the feature forest. Moreover, there is just a limited number of binary com-
parisons in forest traversals for feature affinity estimation. Taking into account
the spatial consistency, we propose a confident score for the feature matching
by virtue of feature contexts. The matching pairs with similar contextual leaf
assignments are assumed to be reliable. Furthermore, we present an incremental
adaptation of the forest to accommodate newly-explored keyframes compared
with the fixed vocabulary tree. The main point of this paper is to propose a
forest-based method for efficient feature matching, and further the fast SLAM
on mobile devices.

2 Feature Forest

The clustering forest works in an unsupervised manner without prior labeling,
which is known for its self-learning underlying data distributions. The optimal
node splitting parameters are learned by maximizing the information gain I as in
the density forest [5]. We use the trace operator [12] to avoid the rank deficiency
of the covariance matrix σ(F ) of the high dimensional ORB feature set F . Here
we measure the information gain by the Hamming metric.

I = −
∑

k=l,r

|Fk|
|F | ln tr(σ(Fk)), (1)
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where | · | returns the cardinality of feature set Fk in left and right children
nodes. The ORB feature is a 256-dimensional binary vector with each 8-bit byte
serving as a feature channel. The binary function φ(s, ρ, τ) = [‖f(s) − ρ‖h < τ ],
where [·] is an indicator function. The features bearing channel f(s), s ∈ [1, 32]
with the Hamming distance to byte ρ lower than threshold τ is assigned to the
left child node.

The forest is composed of five independent decision trees learned from
randomly-selected feature subsets. The tree growths terminate when the number
of instances inside the leaf node is below a predefined threshold γ, and γ = 50.
Each tree has approx. 10 layers. Of course, the binary decision tree in the feature
forest is deeper than the vocabulary tree. Fortunately, the forest traversals are
extremely fast considering binary tests in branch nodes. Since the parameters of
the hierarchical forest model are composed of binary tests in branch nodes, as
well as the mean representor f� and instance number n� of the leaf nodes, it is
easy to load the forest model into the memory of the mobile devices.

2.1 Affinity Estimation

When given the feature forest, it’s straightforward to estimate pairwise affinities
of ORB features. The ORB feature pair reaching the same leaf node is assumed
to be similar with a distance set at 0, and 1 otherwise. The distance matrix D =
1

nT

∑nT

k=1 Dk by the forest with nT trees, where Dk(fi, fj) = 1 if �(fi) = �(fj).
�(f) denotes the leaf node of feature f . Given the distance matrix D between
ORB feature set Fn of the newly-explored frame and Fo of the already stored
keyframes, the feature matching

C = {(fn
i , fo

j )|fn
i ∈ Fn, fo

j ∈ Fo},D(fn
i , fo

j ) = arg min
j′∈[1,|Fo|]

Dij′ . (2)

The feature pair with the smallest pairwise distance is assumed to be the match-
ing pair.

Note that, the pairwise distance entry is set according to binary functions φ
stored in branch nodes. The balanced tree depth ν depends on the cardinality
of the training data F , and ν = log2 |F |. The time cost for the pairwise distance
matrix between ORB feature set Fi and Fj is O((|Fi| + |Fj |) · ν · nT ). In our
experiments, ν ∈ [9, 12] and nT = 5. The time cost is lower than the common
pairwise distance computation of ORB features with a complexity of O(|Fi|·|Fj |).

Similar to the vocabulary tree [10], the feature forest stores the direct and
inverse indices between leaf nodes and features on keyframes. There are approx.
|F |/γ leaf nodes. The leaf index can be denoted by log2(|F |/γ) bits. On the
keyframes of already explored scenes, there is a direct index from the ORB fea-
ture to leaf nodes of the feature forest as shown in Fig. 3. On the other hand, the
inverse index stores all the ORB features of keyframes that reach the leaf node.
For the correspondence estimation between the newly-explored frame Fn and
stored keyframes, just the forest traversals of Fn are needed with a complexity
of O(|Fn| · ν · nT ) on byte-based binary comparisons. As we can see, the online
distance matrix update cost for the newly-explored frame is extremely lower than
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the common pairwise distance computation with a complexity of O(|Fn| · |Fo|).
The time cost is also lower than the vocabulary tree with O(|Fn| · k · ν) of Ham-
ming distance computations for the 256-dimensional features with k clusters for
each splitting.

2.2 Matching Confidence

Considering the spatial consistency and perspective geometry, the correspon-
dences of neighboring ORB features of one frame tend to be close in other frames
or 3D maps. We no longer treat the matching pairs equally as in traditional
features-based SLAMs. Instead, we present a confident score of the matching
feature pair (fi, fj).

α(fi, fj) =
1
Z

nT∑

k=1

θk (N (fi)) ∧ θk(N (fj)) , (3)

where function θk(N (f)) returns leaf indices of surrounding context N (f) of
feature f with respect to the k-th decision tree. The direct index of ORB feature
as described in Sect. 2.1 is utilized to get the leaf index set of feature context
N (f). The confident score is computed by the intersection ∧ of the contextual
leaf assignments of corresponding features fi and fj . Since decision trees in the
feature forest are constructed almost independently, we consider all decision trees
in the forest to measure the consistency of contextual leaf assignments. Z is a
normalization constant. In our experiments, the size of the context patch is set at
1% of the image size. The matching pair is denoted as a triplet 〈fi, fj , α(fi, fj)〉.

The feature pairs bearing large confident scores are likely to be correct match-
ings. The feature matchings are sorted according to the confident scores. The 3D
mapping and camera location are prone to use the feature pairs with high con-
fident scores. For instance, the RANSAC process for camera locations prefers
the matching pairs with large confident scores. We observe that the weighted
RANSAC using the confident scores is likely to terminate after a small number
of iterations.

2.3 Online Forest Refinement

The feature forest is trained offline. When the scene exploration goes on, more
and more keyframes and ORB features are located and stored. In this work,
we present an online forest refinement scheme with incremental tree growths to
accommodate the newly-added features on the keyframes, which facilitates the
adaptation to the new scene. Similar to [13], we incrementally split the leaf nodes
with available online data. There are two criteria to split the candidate leaf node
in online forest refinements: (1) The number of newly-added features in the leaf
node is larger than a predefined threshold, i.e. γ, the same as the predefined leaf
size; (2) The deviation from the mean of the newly-added features Fn,� to the
offline learned leaf node representor f� is large enough.
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Fig. 3. (a) Inverse and (b) direct index of leaf nodes and keyframes. (c) The online
forest refinement with incremental tree growths of leaf splitting. The nodes to be split
are purple colored, and the newly-added nodes are orange-colored. (Color figure online)

We measure the deviation between f� and the representor f ′
� of its brother

node. When ‖f� − F̄n,�‖ > β‖f� − f ′
�‖, the second criterion is met. The constant

coefficient β is set at 0.5. The leaf nodes of the feature forest is incrementally split
and the tree grows when the above two criteria are met as shown in Fig. 3(c). The
optimal splitting parameters are determined by maximizing the information gain
as described in Sect. 2. Taking into account the features assigned to the leaf node
in the training phase, we employ the weighted covariance matrix to estimate the
information gain. The following weights are assigned to newly-added features
Fn,� and offline learned leaf node representor f�.

ui =

{
1

n�+|Fn| , forfi ∈ Fn,�

n�

n�+|Fn| , for f�

(4)

Different from the unweighted information gain estimation in the training phase
(Sect. 2), the trace of the covariance matrix σ(Fk) of the child node is defined as

tr(σ) =
|Fk|∑

i=1

u2
i

∥∥fi − F̄k

∥∥2

h∑|Fk|
i′,j ui′uj

. (5)

The center of the leaf node is computed as a weighted mean, and F̄ =∑|F |
i=1 uifi. Note that, the incremental tree growth changes the tree configura-

tions, and the direct and inverse indices update accordingly. We keep a dynamic
leaf node index list. The features in the already explored keyframes can be
assigned to the online-split leaf nodes. Considering that the leaf node splitting
just handles a limited number of instances, the leaf-splitting-based forest refine-
ment is efficient enough for the online adaptation to new scenes.
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Fig. 4. (a) 3D map (red dots) with the connection of keyframes (blue lines) and view-
points (green pyramids). (b)–(f) Sampled views with the hand-held mobile phone in the
exploration of the virtual scene of a colored balloon with viewpoints (1–5) annotated
in the 3D maps. (Color figure online)

3 Experimental Results

We perform experiments on the mobile device to evaluate the proposed method.
We use Samsung Galaxy S7 with Snapdragon 820 processor 1.6 GHz and 4 GB
RAM. The stereo gray images are captured by uSens Fingo camera as shown
in Fig. 1(a, b). The proposed method establishes the feature correspondences in
both 3D mapping and tracking processes by the feature forest. The proposed
system works real-time and achieves up to 60 FPS without the common GPU
and PC support.

Given the feature correspondence, the 3D maps and continuous camera loca-
tions are obtained as shown in Figs. 1 and 4. We test one virtual scene with a
colored balloon and several white blocks. With the hand-held mobile phone, we
can freely explore the virtual environments as shown in the supplemental video.
We illustrate the feature matching between keyframes in Fig. 5. The proposed
method is robust to obtain the ORB feature matching regardless of the viewpoint
and illumination variations.

We report the precision and recall rates of the proposed feature forest (FF)
and the incremental feature forest (IFF) with online refinement on public SLAM
datasets, including New College [16], Bicocca25b [3], Ford2 [11], and Malaga6L
[2] as listed in Table 1. The proposed IFF method achieves an improvement over
the comparable bag of word (BoW) [7] and the FF methods.

We also report the precision and recall of the proposed FF and the IFF
methods of different types indoor scenes, including the table/chair, the plant,
and the poster as shown in Table 2. We observe that the posters with abundant
textures have higher precision and recall rates than other types of objects. The
IFF approach with online refinement produces an improvement over the original
feature forest. We believe the reason is that the adaptation to the new scene
enables the accurate affinity estimation and feature matching.
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Fig. 5. Feature matching between keyframes. (Color figure online)

Table 1. Precision and recall.

Dataset Precision (%) Recall (%)

BoW [7] FF IFF

New College 100 55.9 63.2 66.4

Bicocca25b 100 81.2 81.5 82.4

Ford2 100 79.4 80.1 81.1

Malaga6L 100 74.7 73.2 75.1

Table 2. Precision and recall of indoor objects.

Dataset Precision (%) Recall (%)

FF IFF FF IFF

Table/Chair 80.1 82.6 29.9 30.5

Plant 87.8 90.5 40.1 40.1

Poster 93.5 95.9 59.7 60.7

4 Conclusion

This paper presents a random-forest-based fast feature matching technique for
the mobile device mounted SLAM. The proposed method takes advantage of
the offline feature forest together with the online incremental forest adaptation
for the feature affinity and matching confidences. The matching confident scores
reduce the candidate searching space and facilitate the real-time SLAM for VR
and AR applications on mobile devices.
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