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Abstract. Indoor scene parsing is crucial for applications like home
surveillance systems. Although deep learning based models like FCNs [10]
have achieved outstanding performance, they rely on huge amounts of
hand-labeled training samples at pixel level, which are hard to obtain. To
alleviate labeling burden and provide meaningful clues for indoor appli-
cations, it’s promising to use unsupervised co-segmentation methods to
segment out main furniture, such as bed and sofa. Following traditional
bottom-up co-segmentation framework for RGB images, we focus on the
task of co-segmenting main furniture of indoor scene and fully utilize
the complementary information of RGB-D images. First, a simple but
effective geometric prior is introduced, using bounding planes of indoor
scene to better distinguish between foreground and background. A two-
stage hypothesis filtering strategy is further integrated to refine both
global and local object candidate generation. To evaluate our method,
the NYUD-COSEG dataset is constructed, on which our method shows
significantly higher accuracy compared with previous ones. We also prove
and analyze the effectiveness of both bounding plane prior and hypoth-
esis filtering strategy with extensive experiments.
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1 Introduction

Indoor scene parsing has great significance for applications like home surveillance
systems. Deep learning models such as Fully Convolutional Networks (FCNs) [10]
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has achieved great success. However, training these models heavily relies on label-
ing huge amounts of samples, which is time consuming and labor intensive. In
contrast, the unsupervised co-segmentation methods can simultaneously parti-
tion multiple images that depict the same or similar object into foreground and
background. It can considerably alleviate labeling burden by producing object
masks without semantic labels, which can be used as ground truth for training
of deep neural networks [17]. Besides, co-segmenting main indoor furniture (bed,
table, etc.) can provide meaningful clues for room layout estimation and human
action analysis.

Although RGB co-segmentation has been studied thoroughly, RGB-D indoor
scene co-segmentation remains an untouched problem. We discover two chal-
lenges when directly applying previous RGB methods. First, foreground and
background appearance models are initialized using intuitive priors such as
assuming pixels around the image frame boundaries as background, which fails
in complex indoor scene. Second, the cluttering and occlusion of indoor condi-
tion make it hard to generate high-quality object candidates depending on RGB
only in the unsupervised manner of co-segmentation.
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Fig. 1. Demonstration of our main contributions. (a) The geometric prior is used to
reliably classify bounding planes of indoor scene, like wall and floor, as background.
(b) The Euclidean clusters corresponding to foreground objects are leveraged to filter
incomplete or overstretched object hypotheses.

To handle these challenges, we propose to integrate the geometric prior and
hypothesis filtering strategy, shown in Fig. 1, into the traditional bottom-up co-
segmentation pipeline. Our method fully utilizes the intrinsic properties of RGB-
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D indoor scene to remedy the deficiencies of previous methods. The motivation
of our method is detailed in the following two aspects.

First, our geometric prior addresses the problem of disentangling foreground
from background. Existing unsupervised methods rely on boundary prior [1,
12], saliency prior [11,15] or even objectness prior [3,4] that requires training.
All these priors are either ineffective or complicated in terms of indoor scene.
On the one hand indoor objects commonly have intersection with image frame
boundaries and show little contrast with background. On the other hand, the
objectness methods are not specifically trained for indoor scene, which requires
re-training on large labeled datasets. Instead, considering the abundant plane
structures, shown in Fig. 1(a), our approach utilizes the unsupervised bounding
plane prior that reliably specifies background regions. This simple but effective
prior has no burden on manpower or computing resources.

Second, we improve object hypothesis generation for indoor images by going
beyond simply combining connected segments in 2D RGB images. Since two
neighboring segments that belong to different objects could be adjacent in 2D
image plane but are spatially separated in 2.5D real world coordination. Inspired
by this insight, our object hypothesis generation exploits a two-stage filtering
strategy, using Euclidean clustering in 2.5D space to obtain separated point
clusters. This improvement on hypothesis generation is able to increase the pro-
portion of physically reasonable and high-quality proposals, which reduces the
error during hypothesis clustering, especially for large objects.

To the best of our knowledge, this is the first paper addressing co-
segmentation in RGB-D indoor scene. To evaluate our method, we re-organize
the NYUD v2 dataset [18] to establish a proper benchmark for co-segmentation
of indoor scene. We demonstrate that our method can achieve state-of-the-art
performance on our RGB-D indoor dataset. Our contributions are as follows:

– Our work provides the field of indoor RGB-D co-segmentation the first
methodology focusing on large objects, which can help reduce the manual
labeling effort for CNNs.

– A simple but effective bounding plane prior is first proposed to better dis-
tinguish foreground and background for RGB-D co-segmentation of complex
indoor scene.

– A two-stage hypothesis generation filtering strategy is devised to overcome
cluttering and occlusion problems of indoor scene, producing high-quality
object proposals.

2 Related Work

Work Related to Unsupervised Co-Segmentation. Co-segmentation aims
at jointly segmenting common foreground from a set of images. One setting is
that only one common object is presented in each image. Color histogram was
embedded as a global matching term into MRF-based segmentation model [14].
In [5] co-segmentation was formulated as a discriminative clustering problem
with classifiers trained to separate foreground and background maximally. Yet



RGB-D Co-Segmentation on Indoor Scene with Geometric Prior 171

another more challenging setting is to extract multiple objects from a set of
images, which is called the MFC (Multiple Foreground Co-segmentation). It
was first addressed in [6] by building appearance models for objects of interest,
followed by beam search to generate proposals. Recently RGB-D co-segmenting
small props was tackled using integer quadratic programming [3]. Different from
previous works, our method features RGB-D indoor scene.

Work Related to Co-Segmentation of Indoor Point Cloud Data.
Another similar line of work aims at co-segmenting a full 3D scene at multi-
ple times after changes of objects’ poses due to human actions. Different tree
structures [9,16] were used to store relations between object patches and present
semantical results. However, the depth images we use are single viewed in 2.5D
space, which suffer from the occlusion and cluttering problem eluded by their
full 3D counterparts. Our proposed method is able to overcome these challenges
by exploiting rich information of RGB-D image, without resorting to full viewed
3D data.

3 Bottom-Up RGB-D Indoor Co-Segmentation Pipeline

3.1 The Overall Framework for Bottom-Up Co-Segmentation

Our co-segmentation of main furniture for indoor images can be categorized
as the MFC (Multiple Foreground Co-segmentation) problem. Given the input
images I = {I1, ..., IM} of the same indoor scene, the goal is to jointly segment
K different foreground objects F = {F1, ..., FK} from I. As a result, each Ii
is divided into non-overlapping regions with labels containing a subset of K
foregrounds plus a background GIi . According to scenario knowledge, we define
common foreground as major indoor furniture with certain functionality.

Traditional bottom-up pipeline for MFC co-segmentation [1] consists of three
main steps, namely superpixel clustering, region matching and hypothesis gener-
ation. The first step merges locally consistent superpixels into compact segments.
The second step refines segments in each image by imposing global consistency
constraints, with the result that similar segments across images have the same
label. The third step goes to a higher level that object candidates are generated
by combining segments, which are later clustered to form final segmentation
result.

With the motivation in Sect. 1, we made improvements to the first and the
third step of the bottom-up pipeline, utilizing 2.5D depth information as a com-
panion to RGB space so as to reduce ambiguity resulted from relying 2D color
image only.

The pipeline of our method is shown in Fig. 2. For simplicity and clarity,
we only show the co-segmentation pipeline of a single RGB-D image. Also, the
second step in the traditional MFC of imposing consistency constraints across
images is not shown, which directly follows [1].
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Fig. 2. The main technical pipeline of our RGB-D co-segmentation using the bounding
plane prior and the two-stage hypothesis filtering. For simplicity, we exemplify the
bottom-up segmentation with only one RGB-D image sample in M input images.

3.2 Superpixel Merging with Bounding Plane Prior

Given a depth image, we can use the pin-hole camera model to transform it into
the 2.5D space, where each pixel pi in 2D image has a 3D real-world coordinate
ps(x, y, z).

For indoor scene, there are rich geometric structures and space relationships
that can be very useful as guidance for unsupervised CV task, such as large
planes, affordance of objects, etc. As can be apparently observed, the bounding
planes, which correspond to walls, floors and ceilings in a real indoor scene, can
be taken as a reliable prior for background regions. These bounding planes have
two features to define the background. One feature is that these planes are the
outer-most planes within the 2.5D space, whose only functionality is to enclose
foreground objects within the room inside. The other feature is that dominant
foreground objects in the scene always take up a certain amount of cubic space,
whose consisting points will not lie on a sole plane.

Following [2], we first perform plane segmentation using 2.5D point cloud
data. Iteratively using RANSAC to estimate plane parameters and Euclidean
distances to assign points to planes and all planes in a image can be found,
denoted by PIi . Suppose the normal vector of each plane points towards the
camera, the set of bounding planes BPIi for Ii is selected by its first feature,
defined as:

BPIi =

{
Pk

∣∣∣∣Pk ∈ PIi ,
1
N

N∑
s=1

1 {D(ps, Pk) < 0} < τ

}
, i = {1, ...,M} (1)

where D(ps, Pk) is the Euclidean distance of point ps to plane Pk and 1{·} is the
indicator function. Referring to the first feature of bounding plane, the ratio of
points on the outer side of the plane should be lower than a given threshold τ .
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As the first main step in our bottom-up co-segmentation framework, merg-
ing locally similar superpixels into segments begins with the method of [8] to
produce superpixels for each image respectively (the number of superpixels for
each images is set to N = 1200). For superpixel merging, each superpixel S in
SIi excluded by BPIi is assigned to an initial foreground segment Rc with prob-
ability given by a set of parametric functions vc, c = {1, ..., C}. The parametric
function vc : SIi → R can be defined by the c-th foreground model, which in this
paper is GMM (Gaussian Mixture Model). We use GMM with 32 Gaussian com-
ponents to determine the color histogram hS for each superpixel S. Thus, the
probability of S belonging to the set of c-th foreground segments Rc is measured
by the normalized χ2 distance between hS and hRc

. In terms of S included by
BPIi , we use C + 1 to denote background segment label and the probability is
assumed to win over other segment label. The overall segment label probability
for every superpixel is given by

P (Rc|S) =

⎧⎨
⎩

χ2(hS ,hRc
) if S �∈ BPIi

1 − ε if S ∈ BPIi , c = C + 1
ε/C otherwise

(2)

where ε is a quantity close to 0. After initializing the probability of assigning each
superpixel S to segment Rc, we refine this merging result by GrabCut [13] using
P (Rc|S). Thus we can get the refined set of segments for each image, denoted
as RIi .

3.3 Two-Stage Hypothesis Filtering with Point Cloud Clustering

As the third main step of our bottom-up pipeline, hypothesis generation step
combines arbitrary numbers of connected segments to form a pool of object can-
didates, which is crucial for the final foreground segmentation. Sensible hypothe-
ses can accurately be clustered into K objects contained in the input images.
We make the observation that final segmenting of objects is determined by two
properties of object hypotheses, diversity and reliability. Diversity means that
the hypothesis pool should involve all possible objects in the image without
missing any. Reliability is the probability that a candidate belongs to a whole
foreground object. Our goal is to find a pool with suffice diversity wherein each
candidate is of maximal reliability.

Naively combining all possible connected segments in RIi to form object
candidate reaches the maximum of pool diversity but the minimum of reliability.
To make a trade-off, we propose a two-stage hypothesis filtering strategy to
enlarge the proportion of reliable candidates while still retain the diversity.

Before filtering, we first provide a measurement tool for reliable candidate or
in other words, objectness. While it is challenging for general purposed objectness
prediction, in the case of RGB-D indoor scene it can be reduced to Euclidean
clustering. In 2.5D point cloud, ignoring the bounding planes found in Sect. 3.2,
we can find dominant clusters using Euclidean distance within a neighborhood
tolerance and map them back to 2D image frame. These clusters, denoted as
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Qk ∈ EIi of image Ii, represent occupancy of dominant objects in the image,
hence candidates who coincide with them are reliable.

Class Filtering. Spatially isolated point cloud clusters Qk represent different
objects respectively. We use class filtering to rid off hypotheses with coverage
over two or more clusters. Let H0 denote hypothesis pool without filtering, H1

with class filtering, then the first selection step of candidates h can be expressed
as

H1 =

⎧⎨
⎩h

∣∣∣∣∣
‖EIi

‖∑
k=1

1 {h ∩ Qk �= ∅} = 1, h ∈ H0

⎫⎬
⎭ (3)

The class filtering can refine the global segmentation result of foreground objects,
largely alleviating the problem of segmenting out two or more objects that are
in close proximity to each other as a single object.

Portion Filtering. Due to the inconsistent texture or piled clutter on the main
furniture, it is likely to divide a whole object into locally consistent subsegments.
To further improve the segmentation accuracy for main objects of indoor scene,
we additionally impose portion filtering. Hypotheses that are overlapping with
Qk under a given threshold are discarded, leaving the most reliable candidate
pool H2, which can be expressed as

H2 =
{

h
∣∣∣area(h ∩ Qk)

area(Qk)
> θ, h ∈ H1

}
(4)

The portion filtering refines the segmentation for single main object, which in
particular reduce the case where large objects are partially segmented.

4 Results and Discussion

4.1 NYUD-COSEG Dataset and Experimental Setup

Previous work on RGB-D co-segmentation such as [3] used the dataset of images
captured under controlled lab environment or estimated depth images from gen-
eral RGB image. No dataset of indoor scene suited for co-segmentation has been
put forward. Based on the widely used RGB-D indoor dataset NYUD v2 [18] for
supervised learning algorithms, we propose a new dataset, NYUD-COSEG, with
modification to the original NYUD v2 dataset to extensively test our method
and compare with other state of the art co-segmentation methods.

Since large furniture plays a more important role in scene layout estimation
or applications involving daily human actions, we take classes like floor, wall
and ceiling as background while furniture like bed, table and sofa as foreground.
With this definition of object class of interest, we construct the NYUD-COSEG
dataset by firstly grouping images captured in the same scene with aforemen-
tioned foreground classes. Each group contains 2 to 4 images and can be taken
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as input for any co-segmentation algorithm. Next, the original ground truths are
re-labeled. Trivial classes such as small props are removed. Small objects over-
lapped with large furniture are merged as the latter, exemplified by taking the
pillow class as the bed class. The class-simplified ground truth is more sensible
for evaluation of unsupervised methods.

After the organizing, the NYUD-COSEG dataset can be divided into of 3
main classes as Bed, Table and Sofa, each containing 104, 31 and 21 images
respectively. It contains 62 classes in total (we consider all classes during evalu-
ation).

We randomly choose 20% of images in the NYUD-COSEG dataset as vali-
dation set and apply grid search to find the optimal value for parameters. In our
implementation, we set C = 8 in Eq. (2) and θ = 0.8 in Eq. (4) as default.

4.2 Evaluation Metric and Comparison Study on NYUD-COSEG

The evaluation metric we adopt for co-segmentation algorithm on indoor scene
is frequency weighted IOU (f.w.IOU). This choice takes into consideration that
for room layout estimation and its applications, dominant objects (bed, sofa,
etc.) of an image has more significance than less obvious ones (cup, books, etc.).
On the contrary, metrics such as pixel accuracy, mean accuracy and mean IOU
make no different treat on large and small objects, which is not practical for
unsupervised co-segmentation algorithm comparison on indoor dataset. Let nij

be the number of pixels of class i classified as class j, ti =
∑

j nij be the total
number of pixels belonging to class i, and t =

∑
i ti be the number of all pixels.

The f.w.IOU can be defined as 1
t

∑
i tinii/

(
ti +

∑
j nji − nii

)
.

We first make self-comparison among our proposed method and its several
variants to verify the effectiveness of bounding plane prior and hypothesis fil-
tering. We show the result of our method with center prior instead of bounding
plane prior (BP−), with class filtering only (PF−), with portion filtering only
(CF−), without any filtering (F2−), and our full version (Our), respectively. We
then compare our method with two recent RGB co-segmentation of multiple
foreground objects [1,7], with code available on the Internet.

Table 1 lists the f.w.IOU scores of each method on our NYUD-COSEG
dataset. Some of the visual results are shown in Fig. 3. From both quantitative
and qualitative results, we can make the following observations: (i) Our method
and its variants have significantly higher f.w.IOU than other methods, with
our full version exceeding previous RGB methods by at least 16% on average.
The result confirms that the depth information has great potential in unsuper-
vised co-segmentation. (ii) The bounding plane prior is the most decisive part
in performance boosting, of which the absence causes the lowest average score
among all variants. Correctly distinguishing between foreground and background
is essential for further clustering and segmentation. (iii) The two-stage hypothe-
sis filtering is also effective. Class filtering has more effect than portion filtering.
The former avoids merging of different objects in the global image and the latter
adds more detailed refinement to single objects.
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Fig. 3. Some qualitative co-segmentation results on our RGB-D indoor co-
segmentation dataset NYUD-COSEG. From left to right: input RGB images, depth
maps, results of [1,7], Our full version. (Common objects are shown in the same color
with red separating boundaries.). (Color figure online)

4.3 Parameter Evaluation and Discussion

As mentioned in Sect. 4.1, our method contains two important parameters: clus-
ter number C for superpixel merging and portion ratio θ for portion filtering.
We fix one parameter to default and vary the other in a reasonable range to see
how the f.w.IOU score will change accordingly, as shown in Fig. 4. The purple
line indicating mean f.w.IOU score proves that our default values for the two
parameters are optimal. Additionally, we find in Fig. 4(a) that too many clusters
will not improve segmentation accuracy. Besides, in hypothesis generation step,
the time costing is proportional to 2C . As shown in Fig. 4(b) the accuracy varies
mildly with respect to portion ratio θ, within 2.6%, although higher θ has the
tendency to improve the result in view of mean f.w.IOU score.
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Table 1. Comparison of f.w.IOU score of different methods (%) on NYUD-COSEG
dataset. The highest is marked in bold.

Method [7] [1] BP− CF− PF− F2− Our

Bed 43.56 46.37 53.08 62.59 65.85 61.18 68.42

Table 46.13 42.63 48.16 52.68 57.21 51.69 58.31

Sofa 46.66 53.82 59.96 54.69 62.40 56.69 64.56

Mean 45.45 47.61 53.73 56.65 61.82 56.52 63.76

(a) (b)

Fig. 4. The accuracy changing with respect to variation of two parameters of our
co-segmentation method. (Color figure online)

5 Conclusion

In this paper the problem of RGB-D indoor co-segmentation of main furniture is
considered. Previous methods use RGB images only. As indoor scene are typical
of cluttering and occlusion, foreground merged with similar background and low
quality object hypotheses are the two main factors that hinder the performance.
We propose to handle these challenges using geometric and spatial information
provided by depth channel. Bounding plane prior and a two-stage hypothesis
filtering strategy are introduced and integrated into traditional bottom-up co-
segmentation framework. To evaluate our method, the NYUD-COSEG dataset
is constructed based on NYUD v2, with thorough experiments proving the effec-
tiveness of our two improvements.

As the first work on the task of indoor co-segmentation, our method is limited
in segmenting small objects like stuff on the table, which is most challenging
in terms of unsupervised machine learning condition. In the future work we
plane to extending our model by incorporating more supervising signals such as
supporting relationship to discern small objects. Besides, the question of how to
use probabilistic models to formulate our bounding plane prior and hypothesis
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filtering is worth studying. We believe it will reduce the number of parameters
needed to be set manually and thus can elevate the robustness of our method.
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