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Abstract. Due to hardware limitation, multispectral imaging device
usually cannot achieve high spatial resolution. To address the issue, this
paper proposes a multispectral image super-resolution algorithm by fus-
ing the low-resolution multispectral image and the high-resolution RGB
image. The fusion is formulated as an optimization problem according to
the linear image degradation models. Meanwhile, the fusion is guided by
the edge structure of RGB image via the directional total variation reg-
ularizer. Then the fusion problem is solved by the alternating direction
method of multipliers algorithm through iteration. The subproblems in
each iterative step is simple and can be solved in closed-form. The effec-
tiveness of the proposed algorithm is evaluated on both public datasets
and our image set. Experimental results validate that the algorithm out-
performs the state-of-the-arts in terms of both reconstruction accuracy
and computational efficiency.
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1 Introduction

Multispectral imaging has been widely applied in various application fields,
including biomedicine [1], remote sensing [2], color reproduction [3], and etc.
Multispectral imaging can achieve high spectral resolution, but lacks spatial
information when compared with general RGB cameras. The objective of this
work is to reconstruct a high-resolution (HR) multispectral image by fusing a
low-resolution (LR) multispectral image and an HR RGB image of the same
scene.
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The fusion of multispectral and RGB image can be conveniently formulated in
the Bayesian inference framework. The work [4] estimates the signal-dependent
noise statistics to generate the conditional probability distribution of acquired
images, and makes the reconstruction robust to noise corruption. Extracting
auxiliary information in Bayesian framework requires additional calculations and
influences the reconstruction efficiency to some degree.

Matrix factorization has been widely employed in image fusion. As spectral
bands are highly correlated, principal component analysis (PCA) is used in [5]
to decompose the image data. By adopting the coupled nonnegative matrix fac-
torization criterion, the spectral unmixing principle is employed in [6] to unmix
the hyperspectral and multispectral image in a coupled fashion. Meanwhile, ten-
sor factorization has the potential to fully exploit the inherent spatial-spectral
structures during image fusion. The work [7] incorporates the non-local spatial
self-similarity into sparse tensor factorization and casts the image fusion problem
as estimating sparse core tensor and dictionaries of three modes.

Regularization techniques can be employed to produce a reasonable approxi-
mate solution when the fusion problem is ill-posed. The HySure algorithm [8] uses
vector total variation as an edge-preserving regularizer to promote a piecewise-
smooth solution. The NSSR algorithm [9] uses a clustering-based regularizer
to exploit the spatial correlations among local and nonlocal similar pixels. The
regularization problem is usually solved though iteration. To decrease the com-
putational complexity, the R-FUSE algorithm [10] derives a robust and efficient
solution to the regularized image fusion problem based on a generalized Sylvester
equation. In addition, the work [11] explores the properties of decimation matrix
and derives an analytical solution for the �2 norm regularized super-resolution
problem.

Deep learning presents new solutions for the multispectral image super-
resolution. The work [12] learns a mapping function between LR and HR images
by training a deep neural network with the modified sparse denoising autoen-
coder. PanNet [13] has the ability to preserve both the spectral and spatial infor-
mation during the learning process, as its network parameters are trained on the
high-pass components of the PAN and upsampled LR multispectral images.

Inspired by the above works, this paper proposes a super-resolution algorithm
to reconstruct the target HR multispectral data via structure-guided RGB image
fusion. In the algorithm, the spatial and spectral degradation models are used to
fit the acquired image data. An edge-preserving regularizer, which is in the form
of directional total variation (dTV) [14], is used to guide the image reconstruc-
tion. It is based on the reasonable assumption that the spectral images and RGB
image share not only the edge location but also the edge direction. To avoid the
singularity induced by spectral dependence, the reconstruction is performed on a
subspace of the LR multispectral image. The fusion problem is finally solved by
the alternating direction method of multipliers (ADMM) algorithm [15] through
iteration. The solutions of subproblems are in closed-form and can be accelerated
in frequency domain.
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The main contributions of this paper include: (1) The image fusion accuracy
is improved by guiding the recovered edge structure in accordance to that of
RGB image, and (2) The image fusion efficiency is improved by solving the
subproblems in closed-form and accelerating the solutions in frequency domain.
These makes the proposed algorithm more suitable for practical applications.

2 Problem Formulation

The acquired LR multispectral image is denoted as ˜Y ∈ IRm×n×L, where m × n
is the spatial resolution and L is the number of spectral bands. The acquired
HR RGB image ˜Z ∈ IRM×N×3 has the spatial resolution M × N . Denoting the
scale factor of resolution improvement with d, the spatial dimensions are related
by M = m × d and N = n × d. The goal of super-resolution is to estimate the
HR multispectral image ˜X ∈ IRM×N×L by fusing ˜Y and ˜Z.

2.1 Observation Model

By indexing pixels in lexicographic order, the image cubes ˜Y, ˜Z and ˜X can be
represented by matrices Y ∈ IRL×mn, Z ∈ IR3×MN and X ∈ IRL×MN respec-
tively. The row vectors of these matrices are actually the vectorized band images.
With this treatment, the spatial degradation model can be constructed as

Y = XBS, (1)

where matrix B ∈ IRMN×MN is a spatial blurring matrix representing the point
spread function (PSF) of multispectral sensor in the spatial domain of X. It is
assumed under circular boundary conditions. Matrix S ∈ IRMN×mn accounts for
a uniform downsampling of image with scale factor d.

The spectral degradation model can be formulated as

Z = RX, (2)

where matrix R ∈ IR3×L denotes the spectral sensitivity function (SSF) and
holds in its rows the spectral responses of RGB camera.

2.2 Edge-Preserving Regularizer

A regularizer, which is in the form of dTV [14], is used to preserve both the
location and direction of image edges during the super-resolution procedure. It
is based on a priori knowledge that the RGB image and spectral images are
likely to show very similar edge structures.

The edge-preserving dTV regularizer is formulated as

dTV(XDx,XDy) = ‖XDx − [Gx � (XDx) + Gy � (XDy)] � Gx‖1

+ ‖XDy − [Gx � (XDx) + Gy � (XDy)] � Gy‖1,
(3)
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Fig. 1. Demonstration of edge structure preserving effect by the proposed algorithm.
From left to right: An HR image region and its edge structure, real band image at
band 420 nm, reconstructed band image using R-FUSE [10], reconstructed band image
using the proposed algorithm. The spatial resolution is improved by 16×.

where � and ‖·‖1 denote the Hadamard product and element-wise �1 norm
respectively. Matrices Dx and Dy ∈ IRMN×MN represent the first-order horizon-
tal and vertical derivative matrices under circular boundary conditions. Matrix
Gx and Gy denote the normalized horizontal and vertical gradient components
of RGB image Z, which can be computed in advance as

G∗ =
f(ZD∗)

√

f(ZDx) � f(ZDx) + f(ZDy) � f(ZDy) + η2
, ∗ := x, y

where ·/· and
√· are element-wise division and square root operators. Grayscale

conversion function f(·) integrates image gradient information across the visi-
ble spectrum. Constant η adjusts the relative magnitude of edges and is set to
0.01 in this work. Through the regulating effect of Eq. (3), the component of
reconstructed gradient that is orthogonal to the one from RGB image in the
same edge location will be penalized. Thus the reconstructed image X tends
to share the same edge direction with RGB image Z. Meanwhile, the noise of
the reconstructed image will be suppressed in flat area since Eq. (3) reduces
to total variation there. Figure 1 shows that the proposed algorithm keeps the
edge structure of reconstructed band image in consistent with the one of RGB
image, and also suppresses the band image noise. In comparison, the R-FUSE
[10] algorithm, which is based on dictionary learning and sparse representation,
fails to recover the edge structure.

2.3 Optimization Problem

The target HR multispectral image X usually lives in a linear subspace, i.e.,

X = ΨC, (4)

where matrix Ψ ∈ IRL×KΨ is the subspace basis that can be obtained in advance
by applying PCA on the LR multispectral image Y, and the dimension KΨ is
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set to 10 in this work. Matrix C ∈ IRKΨ×MN is the corresponding projection
coefficients of X.

In this case, based on degradation models with the proposed regularizer,
the reconstruction problem can be converted to the problem of estimating the
unknown coefficient matrix C from the following optimization equation

C = arg min
C

1
2
‖Y−ΨCBS‖2

F +
β

2
‖Z−RΨC‖2

F +γdTV(ΨCDx,ΨCDy), (5)

where β and λ are weighting and regularization parameters, respectively, and
‖ . ‖F denotes the Forbenious norm.

3 Optimization Method

Due to the nature of dTV regularizer, which is nonquadratic and nonsmooth,
the ADMM algorithm [15] is employed to solve problem (5) through the variable
splitting technique. Each subproblem can be efficiently solved.

3.1 ADMM for Problem (5)

By introducing 5 auxiliary variables, the original problem (5) is reformulated as

min
1
2
‖Y − ΨCBS‖2

F +
β

2
‖Z − RΨV1‖2

F + γ {‖V2‖1 + ‖V3‖1}dTV

s.t. V1 = C,

V2 = Vx − (Gx � Vx + Gy � Vy) � Gx, Vx = ΨCDx,

V3 = Vy − (Gx � Vx + Gy � Vy) � Gy, Vy = ΨCDy.

(6)

The auxiliary variable V1 helps bypass singularity. The auxiliary variables V2

and V3 help generate closed-form solutions associated with the dTV regularizer.
The auxiliary variables Vx and Vy help compute the coefficient matrix C in
frequency domain. Problem (6) has the following augmented Lagrangian

min Lρ(C,V1,V2,V3,Vx,Vy,A1,A2,A3,Ax,Ay)

=
1
2
‖Y − ΨCBS‖2

F +
β

2
‖Z − RΨV1‖2

F +
ρ

2
‖C − V1 − A1‖2

F

+ γ‖V2‖1 +
ρ

2
‖[Vx − (Gx � Vx + Gy � Vy) � Gx] − V2 − A2‖2

F

+ γ‖V3‖1 +
ρ

2
‖[Vy − (Gx � Vx + Gy � Vy) � Gy] − V3 − A3‖2

F

+
ρ

2
‖ΨCDx − Vx − Ax‖2

F +
ρ

2
‖ΨCDy − Vy − Ay‖2

F ,

(7)

where matrices A1, A2, A3, Ax, Ay represent five scaled dual variables, and ρ
denotes the penalty parameter.

The variables in (7) are solved through iteration. The subproblem of coef-
ficient matrix Cj+1 can be fast minimized in frequency domain, which will be
detailed in Subsect. 3.2.
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The auxiliary variable V1 has the following closed-form solution of an uncon-
strained least squares problem

Vj+1
1 =

(

β(RΨ)H(RΨ) + ρI
)−1

(

β(RΨ)HZ + ρ(Cj+1 − Aj
1)

)

, (8)

where (·)H denotes matrix conjugate transpose and I represents the unit matrix
with proper dimensions.

By using soft shrinkage operator, the minimization problems involving V2

and V3 have the analytical solutions

Vj+1
2 = shrink

{

[

Vj
x − (

Gx � Vj
x + Gy � Vj

y

) � Gx

] − Aj
2, γ/ρ

}

,

Vj+1
3 = shrink

{

[

Vj
y − (

Gx � Vj
x + Gy � Vj

y

) � Gy

] − Aj
3, γ/ρ

}

,
(9)

where shrink {y, κ} := sgn(y) ·max(|y| − κ, 0), with the sign and maximum func-
tions denoted by sgn(·) and max(·, ·) respectively.

Under the definitions of Hadamard product and Forbenious norm, every
matrix element of Vj+1

x and Vj+1
y can be solved independently by minimiz-

ing a simple quadratic function. The solution details are omitted for the sake of
simplicity.

Then the scaled dual variables are updated according to the ADMM iterative
framework [15]. At the end of iteration, the target HR image X is recovered as
X = ΨC. Algorithm 1 lists the procedure of this reconstruction. For any β > 0,
γ > 0, and ρ > 0, Algorithm 1 will converge to a solution of (5) as its ADMM
steps are all closed, proper, and convex [15]. Our study reveals that 20 iterations
are enough to obtain a satisfactory HR image.

Algorithm 1. Reconstruct X using ADMM
Input: LR multispectral matrix Y ∈ IRL×mn, HR RGB matrix Z ∈ IR3×MN ,

SSF R ∈ IR3×L.
Output: HR multispectral matrix X.
Compute gradient matrices Gx and Gy from Z;
Train the subspace basis Ψ from Y;
for j = 1 to 20 do

Compute Cj according to Section 3.2;
Compute Vj

1 using (8);
Compute Vj

2 and Vj
3 using (9);

Compute Vj
x and Vj

y;
Update Aj

1, Aj
2, Aj

3, Aj
4, and Aj

5;
end
Compute X = ΨC.
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3.2 Solving Coefficient Matrix

By forcing the derivative of (5) w.r.t. C to be zero, an efficient analytical solution
can be derived in terms of solving the following Sylvester function

Cj+1W1 + W2Cj+1 = W3, (10)

where
W1 = BSSHBH + ρDxDH

x + ρDyDH
y ,

W2 = ρ(ΨHΨ)−1,

and

W3 = (ΨHΨ)−1[ΨHYSHBH+ρ(Vj
1 + Aj

1) + ρΨH(Vj
x + Aj

x)DH
x

+ρΨH(Vj
y + Aj

y)DH
y ].

Using the decomposition W2 = QΛQ−1 and multiplying both sides of (10)
by Q−1 leads to

CW1 + ΛC = W3,

where C = Q−1Cj+1 and W3 = Q−1W3. Thus each row of C can be solved
independently as

Ci = W3(W1 + λiI)−1, 1 ≤ i ≤ KΨ, (11)

where i denotes the row index, and λi denotes the ith eigenvalue of W2.
Utilizing the properties of convolution and decimation matrices, the solution

(11) can be accelerated in frequency domain. Convolution matrices B, Dx and
Dy can be diagonalized by Fourier matrix F ∈ IRMN×MN , i.e., B = FΛBFH,
Dx = FΛxFH and Dy = FΛyFH. Then when computing W3, right multiplying
with these matrices can be achieved through fast Fourier transform (FFT) and
entry-wise multiplication operations. Meanwhile, right multiplying with SH is
equivalent to the simple upsampling operation.

For further simplification, the matrix inverse in (11) is represented as

F
(

ΛBFHSSHFΛH
B + ρΛ2

x + ρΛ2
y + λiI

)−1

FH := FK−1FH.

By translating the frequency properties of decimation matrix [10] into

FHSSHF = PPH/d2,

K can be consolidated as

K =
1
d2

ΛBPPHΛH
B + ΛK ,

where ΛK = ρΛ2
x + ρΛ2

y + λiI is a diagonal matrix, P ∈ IRMN×mn is a trans-
form matrix with 0 and 1 elements. Right multiplying with P and PH can be
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achieved by performing sub-block accumulating and image copying operations
to the corresponding image. As the inverse of large-scale matrix is difficult, the
Woodbury inversion lemma [11] is used to decompose K−1 as

K−1 = Λ−1
K − Λ−1

K ΛBP
(

d2I + PHΛH
BΛ−1

K ΛBP
)−1

PHΛH
BΛ−1

K , (12)

where matrix d2I + PHΛH
BΛ−1

K ΛBP is diagonal.
Inserting (12) into (11) yields the final solution

Ci = W3FΛ−1
K FH−W3FΛ−1

K ΛBP
(

d2I + PHΛH
BΛ−1

K ΛBP
)−1

PHΛH
BΛ−1

K FH, 1 ≤ i ≤ KΨ,
(13)

and the coefficient matrix is computed as Cj+1 = QC. Noting that this solution
procedure mainly contains the efficient FFT, entry-wise multiplication, sub-block
accumulating, and image copying operations.

4 Experiments

Experiments are performed on both simulated and our acquired LR multispec-
tral images. In the simulation, the LR multispectral images with 31 bands are
generated by applying Gaussian blur and downsampling operations to the images
in the Harvard scene dataset [16]1 and CAVE object dataset [17]2. The HR RGB
images are generated using the SSF of Canon 60D camera provided in the Cam-
Spec database [18]. In our real image set, the LR multispectral images with 31
bands are acquired across the visible spectrum 400–720 nm by an imaging sys-
tem consisting of a liquid crystal tunable filters and a CoolSnap monochrome
camera. The HR RGB images are captured using a Canon 70D camera. The
acquired multispectral and RGB images are aligned according to [19].

To evaluate the quality of reconstructed multispectral images, four objective
quality metrics namely spectral angle mapper (SAM) [6], root mean squared
error (RMSE) [6], relative dimensionless global error in synthesis (ERGAS) [6],
and peak signal to noise ration (PSNR) [6] are used in our study. For comparison,
three leading super-resolution methods namely HySure [8], R-FUSE [10], and
NSSR [9] are also implemented under the same environment. Their source codes
are publicly available online3,4,5.

4.1 Parameter Setting

We evaluate the effect of three key parameters (weighting parameter β, regular-
ization parameter γ, and penalty parameter ρ) on the reconstruction accuracy
1 http://vision.seas.harvard.edu/hyperspec/download.html.
2 http://www1.cs.columbia.edu/CAVE/databases/multispectral/.
3 https://github.com/alfaiate/HySure.
4 https://github.com/qw245/BlindFuse.
5 http://see.xidian.edu.cn/faculty/wsdong/Code release/NSSR HSI SR.rar.

http://vision.seas.harvard.edu/hyperspec/download.html
http://www1.cs.columbia.edu/CAVE/databases/multispectral/
https://github.com/alfaiate/HySure
https://github.com/qw245/BlindFuse
http://see.xidian.edu.cn/faculty/wsdong/Code_release/NSSR_HSI_SR.rar
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Fig. 2. Reconstruction results of imgc4 with 16× spatial resolution improvement. The
1st row shows the reconstructed HR images at 580 nm using different algorithms. The
LR image and ground truth image are listed on the right. The remaining rows illustrate
the corresponding RMSE maps and SAM maps calculated across all the spectral bands.

Fig. 3. The average RMSE values of all the reconstructed images with respect to
parameters (a) log10β, (b) log10γ, and (c) log10ρ.

of proposed algorithm. Figure 3 plots the average RMSE values of all the recon-
structed images with respect to these parameters. In this work, we set β = 1,
γ = 10−6, and ρ = 10−5 that result in small RMSE value. We note that setting
the β value too large will overemphasize the importance of RGB data term, and
setting the γ value too small will decrease the role of RGB edge guidance.

4.2 Results on Simulated Images

Figure 2 shows the reconstruction results of imgc4 with 16× spatial resolution
improvement, as well as the detailed RMSE maps and SAM maps. The average
RMSE and SAM values are also listed for quantitative comparison. It is observed
that the HySure [8] algorithm exhibits large spectral errors, and the R-FUSE [10]
and NSSR [9] algorithms do not handle the spatial details well. In comparison,
the proposed algorithm produces relatively accurate HR images.

Table 1 shows the average SAM, RMSE, ERGAS, and PSNR values of all the
reconstructed multispectral images in Harvard and CAVE datasets. The spatial
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Table 1. Average SAM, RMSE, ERGAS, and PSNR values produced by different
algorithms on two datasets. The resolution is improved with 16×

Harvard dataset CAVE dataset

SAM RMSE ERGAS PSNR SAM RMSE ERGAS PSNR

HySure [8] 8.36 2.57 0.96 36.92 16.70 4.08 1.00 38.81

R-FUSE [10] 5.70 2.72 1.00 35.57 6.38 3.85 0.95 38.71

NSSR [9] 4.65 1.85 0.68 40.00 5.34 4.71 1.01 39.60

Proposed 4.06 1.69 0.57 40.56 5.24 3.42 0.75 40.97

resolution is improved by 16 times. It is observed that the proposed algorithm
outperforms all the competitors when evaluated using these metrics. Further-
more, Fig. 4 shows the overall reconstruction accuracy on the 109 multispectral
images of the two datasets in terms of RMSE and SAM. For clear demonstration,
the image indexes are sorted in ascending order with respect to the metric values
produced by the proposed algorithm. It is observed that in most cases the pro-
posed algorithm performs better than the competing methods when evaluated
using either spatial or spectral metrics.

Fig. 4. (a) RMSE and (b) SAM values produced by different algorithms on all the
stimulated data with scale factors d = 16.

Fig. 5. (a) Reconstruction results on real data Masks at band 590 nm with 8× spatial
resolution improvement. (b) Marked pixels in reconstructed images compared with the
ones in original LR image.
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4.3 Results on Real Images

We also evaluate the performance of the proposed algorithm on real images
acquired in our laboratory. The RGB image is linearized beforehand with the
inverse camera response function estimated by [20]. The SSF is computed
through linear regression with existing image data. Figure 5(a) shows the orig-
inal HR RGB image and LR band image at 590 nm of Masks, as well as the
corresponding reconstructed results with 8× spatial resolution improvement.
Figure 5(b) shows the marked pixels in smooth regions. Each marked pixel in the
reconstructed HR image is compared with the one in the original LR image, and
it is desired that the intensity of the two pixels should be close. It is observed that
the face edges produced by HySure and NSSR are not clear, and the intensity
of eye produced by R-FUSE is too high. In comparison, the proposed algorithm
performs well in handling these details.

4.4 Computational Complexity

The complexity of the proposed algorithm is dominated by the FFTs when
computing coefficient matrix C, and is of order O(KΨMN log(MN)) per ADMM
iteration. Table 2 shows the running times of the HySure [8], R-FUSE [10], NSSR
[9], and proposed algorithms for reconstructing an HR multispectral image with
31 spectral bands and 1392 × 1040 spatial resolution. These algorithms are all
implemented using MATLAB R2016a on a personal computer with 2.60 GHz
CPU (Intel Xeon E5-2630) and 64 GB RAM. The proposed algorithm gains
improvement in computational efficiency.

Table 2. Running times (in seconds) of different algorithms for reconstructing an HR
multispectral image with 31 bands and 1392 × 1040 spatial resolution. The numbers
in parentheses are the speedup of the proposed algorithm over the corresponding com-
petitors

HySure [8] R-FUSE [10] NSSR [9] Proposed

1256.8 (7×) 6758.5 (36×) 998.8 (5×) 185.7

5 Conclusions

This paper has proposed a super-resolution algorithm to improve the spatial
resolution of multispectral image with an HR RGB image. The HR multispec-
tral image is efficiently reconstructed according to the linear image degradation
models, and the dTV operator is used to keep the recovered edge locations and
directions in accordance with those of the RGB image. Experimental results val-
idate that the proposed algorithm performs better than the state-of-the-arts in
terms of both reconstruction accuracy and computational efficiency.
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